
1 
 

A unified dynamic equation of the classical field in local manifold 

Shisheng Wang 
Karlsruhe Institute of Technology (KIT) 

Institute for Neutron Physics and Reactor Technology (INR) 
Postfach 3640, D-76021 Karlsruhe, Germany 

Shisheng.Wang@kit.edu 
 

Abstract 

 

 

The fluid dynamics, gravitational field dynamics, and electromagnetic field 
dynamics can be expressed as a unified field equation in a local inertial 
frame by 𝐷𝑡𝑝 = ∇ℒ , where 𝑝  is the momentum vector, and ℒ  is the 
Lagrangian’s density. In a time-freezing configuration (static state), the 
stored energy density and the mass density in the instantaneous 

configuration have the relation of 𝑝 = 𝜌𝑐2 . It can be positive (potential 
energy) or negative (binding energy), depending on the zero potential 
energy definition point in the field. Its sign only affects the chirality. Given 
a slight motion in a local inertial frame, the momentum vector field and 
potential energy field are combined into a single physical field — a 4-
momentum vector field. In general, for a many-particle system, the 
interactions between particles obey the weak law of action and reaction. 
The action and interaction forces can be decomposed into two 
components: one is along the jointing line to consider the linear 
momentum, and another one is perpendicular to the jointing line to 
consider the rotational motion. It is suggested that the fluid dynamics 
equations should include an extra term, a Coriolis-like force term, to 
consider the spin (or rotational) effect (because of the vorticity field). 
Electromagnetic fields have no rest frame; they have an intrinsic 4-
momentum vector relative to a rest observer. With the 4-momentum vector 
the Maxwell equations can be deduced. In a “vacuum”, each of the electric 
field and magnetic field contribute half to the total energy. It implies that 
the linear and rotational kinetic energy equals each other. The Gauss law 
thinks of an electrical dipole as a “vacuum” space; this implies that photon 
gas is composed of a mixture of electrical dipoles. Their trajectories will be 
helical or spiral, as is shown by the circular polarized Electromagnetic 
waves. 
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1. Introduction 

 
 

Classical field theories provide a foundation for understanding and 

modeling physical phenomena in many areas of physics [1-5]. In classical 

field theories, fields are mathematical functions that assign a value or 

intensity (e.g., a scalar field, vector field, or tensor field) to every point in 

space. For studying the field dynamics, these values are also a function of 

time. These field values are continuous (maybe differentiable) and defined 

to spread throughout space and time. the dynamic behavior of these 

physical phenomena is predicted by field equations, which can be used to 

describe wave-like and particle-like physical phenomena such as sound 

(based on the dynamic behavior of the pressure field) and light (based on 

the electric and magnetic field), or other continuous phenomena such as 

fluid dynamics. It describes the motion and behavior of fluids using a 

vector field for velocity and a scalar field for pressure (energy density), and 

other fluid properties [6]. 

 

2. Stored potential energy density in the Configuration of a field 

 

Fields in physics can store energy. In general, we have a scalar field of 

potential energy density that can be specified everywhere in space as a 

function of position (for the dynamics or time evolution of the field, the 

potential energy density in the field will depend on time).  

In an instantaneous configuration (a snapshot of the field), that means we 
‘freeze’ the time, and no motion occurs. In the language of the relative 
theory, there is no relative motion with respect to the observer – it is called 
the co-moving frame. 

We consider the first law of thermodynamics for a closed system [7, p.409] 

in the co-moving frame. An infinitesimal change of the internal energy of 

the system is: 
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𝑑𝐸 = 𝑑𝑄 + 𝑑𝑊, (1) 
 

where 𝑑𝑊 is work done by the surroundings (external forces) on this 

system.  

 

𝑑𝑊 = 𝑑(𝑝𝑉). (2) 
 

 
In an elastic fluid, recalling the definition of the speed of sound, it 
depends on the bulk modulus and density [8]: 
 

 
The elastic bulk modulus B can be formally defined by the equation 
 

𝐵 = −
𝑑𝑝

(
𝑑𝑉
𝑉 )

. (4) 

 
 
Substituting Eq. (3) into Eq. (4), we have 
 
 

−
𝑑𝑝

(
𝑑𝑉
𝑉 )

= 𝜌𝑐2. (5) 

 
 
Recalling the mass density definition and re-arranging it, we have 
 

𝑑𝑝 = −
𝑚𝑐2

𝑉2
𝑑𝑉. (6) 

 

Integral from a reference point to the present configuration (𝑝, 𝑉): 

 

𝑐2 =
𝐵

𝜌
. (3) 
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𝑝 − 𝑝𝑟𝑒𝑓 = 𝑚𝑐2 (
1

𝑉
−

1

𝑉𝑟𝑒𝑓
). (7) 

 

 

We can define an infinitely dilute state as the reference point: 

 

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡: {
𝑝𝑟𝑒𝑓 → 0

𝑉𝑟𝑒𝑓 → ∞
. (8) 

 

Equation (7) thus becomes (volume is compressed from v=∞ to present 

configuration of V):  

 

𝑝 =
𝑚𝑐2

𝑉
= 𝜌𝑐2. (9) 

 

We get the equation of the configuration energy density, p, and the mass 

density, 𝜌. 

 

If there is no other energy exchange, such as heat exchange, between the 

system and its environment, or it can be ignored,  𝑑𝑄 = 0,  we can 

rearrange the equation  (9) and substitute into eq. (1), we have following 

expression: 

 

𝐸 =  𝑝𝑉 = 𝑚𝑐2. (10) 
 

 

It looks like the mass-energy equivalence. When they are stationary, that 

is how much net work it takes (work done by external force through a 

compression process) from the reference point to the present 

configuration. It is also the amount of net work that we will get back, if we 

disassemble the present configuration to the reference point through an 

expansion process. 
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It contains a square of wave speed. That means the stored energy density 

in the present configuration (p and V) represents the “wave energy content” 

in the co-moving frame. When the constraints (imaginary) of this 

configuration are removed, the disturbance of the field will propagate by a 

wave through the whole field. Energy will be transported by the wave from 

one position to another in a wave speed of c.   

 

This stored energy density in the field is called potential energy. In general, 

it is positive, but potential energy may also be negative, dependent on the 

zero energy position, the point where the potential energy is assigned to 

be zero (no any interaction between the researched particle and other 

particles in the field). We can also call the negative configuration energy 

as “binding energy”. It refers to the amount of a negative energy needed 

to disassemble the present configuration into its individual components, 

where there is no force interaction between individual components.  

 
In a static state (time is “freezing”), this is a conservative energy density; 

the force density in the field can be expressed as a negative gradient of 

the potential energy density. 

 

ℱ⃗⃗ = −∇𝑝 = −𝑐2∇𝜌, (11) 

 

and 

 

{
−∇ × ℱ⃗⃗ = ∇ × (∇𝑝) = 0,

−∇ ∙ ℱ⃗⃗ = ∇2𝑝 = 𝑐2∇2𝜌.
 (12) 

 

 

The above equations hold only for a static state — no motion in the field, 

if there is a relative motion between particles, there exists an extra velocity 

(momentum) vector field.  Eq. (11) and (12) do not hold anymore. Thus, 

modifications are needed to reflect the motion effect. 
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3. Dynamic equation of a field using 4 potential 

 

For simplicity, we consider here an isolated field — there exists only one 

field in the space, thus there are no interaction terms between different 

fields. 

 

Let it slightly move, the configuration will change. The potential energy 

product a force to drive the particle to move (exactly to say, the negative 

gradient of the potential energy is a force). In this case, besides the scalar 

field of the potential energy, we specify another momentum vector field in 

space as a function of position and time.   

 

For a system containing a group of particles, in the general case, the 

internal interaction forces in the field between two particles are equal and 

opposite, but do not necessarily act along the line joining each other [9,10, 

11]. 

 

As shown in Fig. 1 (a). We can decompose the internal interaction forces 

vector as a component of ℱ⃗⃗∥, along the jointing line (the central force), and 

a component of  ℱ⃗⃗⊥, perpendicular to the jointing line (the tangent force). 

In a stationary state, gravitational and electric forces (negative gradient of 

the potential energy) are central forces (no relative motion occurs). The 

tangent forces between the particles may be due to their relative motions 

and it will affect the angular momentum of the system. That is the angular 

momentum of a system about the center of mass. In the local manifold, 

the velocity is an element of tangent space, while the angular velocity is in 

the normal direction of the tangent space, as shown in Fig. 1(b). 
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(a) 
 

 
(b) 

 
Fig.1(a). The weak law of action and reaction between particles; Fig.1(b), 
the velocity field is in the tangent space in the local manifold, the vorticity 

field is the normal direction of the tangent space. 
 

Accordingly, in the space we have now a scalar field and a vector field 

(or rather to say, a momentum field). It can be assembled as a single 

physical entity, a 4-momentum flux density per unit volume: 

 

𝐴𝛼 = (
𝑝

𝑐
;  𝜌�⃗�). (13) 
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Its physical unit is [
𝑁∙𝑠

𝑚3
] . 

In the local manifold, we have the following force density per unit volume: 

 

ℱ⃗⃗ = ℱ⃗⃗∥ + ℱ⃗⃗⊥. (14) 

 

The central force component points in the same direction as the 

displacement between the interactions of particles. As mentioned before, 

because of the extra momentum field, eq. (11) does not hold anymore, it 

can be modified as:  

 

ℱ⃗⃗∥ = −∇𝑝 −
𝜕𝜌𝑣⃗⃗⃗⃗⃗

𝜕𝑡
. (15) 

 

The central force components do not affect the total angular momentum 

of the system. The curl of velocity (momentum) will produce a vorticity field, 

thus, the tangent component of the interaction force density is expressed 

as: 

 

ℱ⃗⃗⊥ = �⃗� × (∇ × 𝜌𝑣⃗⃗⃗⃗⃗). (16) 

 

We can define a rotational vector field density, similar to the vorticity field: 

 

�⃗⃗⃗� = ∇ × 𝜌𝑣⃗⃗⃗⃗⃗. (17) 
 

With these definitions, then we can get the field dynamic equation for 

every point in field space: 

 

−∇𝑝 −
𝜕𝜌𝑣⃗⃗⃗⃗⃗

𝜕𝑡
+ �⃗� × �⃗⃗⃗� = 0. (18) 

 

With the help of the vector identity of 
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�⃗� × (∇ × 𝜌𝑣⃗⃗⃗⃗⃗) =
1

2
∇(�⃗� ∙ 𝜌𝑣⃗⃗⃗⃗⃗) − (�⃗� ∙ ∇)(𝜌𝑣⃗⃗⃗⃗⃗), (19) 

 

equation (18) can be rewritten as: 

 

−∇𝑝 −
𝜕𝜌𝑣⃗⃗⃗⃗⃗

𝜕𝑡
+

1

2
∇(�⃗� ∙ 𝜌𝑣⃗⃗⃗⃗⃗) − (�⃗� ∙ ∇)(𝜌𝑣⃗⃗⃗⃗⃗) = 0. (20) 

 

Re-arranging the terms: 

 

𝜕𝜌𝑣⃗⃗⃗⃗⃗

𝜕𝑡
+ (�⃗� ∙ ∇)(𝜌𝑣⃗⃗⃗⃗⃗) = −∇𝑝 +

1

2
∇(�⃗� ∙ 𝜌𝑣⃗⃗⃗⃗⃗). (21) 

 

 

As mentioned by Goldstein et. al., [3, p. 20.], the last term of the right 

hand side arises from the curvature of the local manifold. 

 

The left hade side of the equation is the total derivate of momentum with 

respect to time.  The right hand side is the Lagrangian’s density. 

 

𝑑𝜌𝑣⃗⃗⃗⃗⃗

𝑑𝑡
= ∇(𝑇 − 𝑝). (22) 

 

 

It can be written more concisely: 

 

𝐷𝑡𝑝 = ∇ℒ. (23) 
 

The above field equation of (23) is more general; actually, no assumptions 

and restrictions have been made for the derivation of this field equation.  If 

we check it in a deeper sense, it is similar to the general motion equation 
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in classical mechanics for a system with finite degree of freedom, based 

on the D’Alembert’s principle, [3, p.20].  

 

Its physical interpretation is clear, force can be defined either in the time 

domain or in the spatial domain: if the space is “freezing”, force equals the 

derivative of momentum with respect to time; if the time is “freezing”, it will 

equal the derivative of energy with respect to spatial coordinates. Both 

definitions should be equivalent to each other. In other words, the space 

and time is treated on an equal footing. 

 

If above equations are written out explicitly, it will be very lengthy. It is 
arranged as Appendix A in this work; here we give out the final vector 
form: 
 

𝜕𝜌𝑣⃗⃗⃗⃗⃗

𝜕𝑡
+ (�⃗� ∙ ∇)(𝜌𝑣⃗⃗⃗⃗⃗) = −∇𝑝 +

1

2
𝑆̿�⃗� +

1

2
�⃗� × �⃗⃗⃗�. (24) 

 

The last term represents a rotation motion; it implies the trajectory of the 

particle motion in general exhibits helical motion. 

    

If the potential energy density is explicitly given out, combining the relation 

of eq. (9), we can solve the dynamic behavior of this field. In the following, 

we consider two typical classical “free” fields, without considering the 

interaction between different fields. 

 

 

4. Gravitational field: attractive force 

 

In the above derivation of the field equation, we assume the potential 

energy is positive, as indicated by eq. (9), the zero point is at infinity. 

Through compression process, we form a positive equation of state of eq. 

(9). This compression process is similar to a procedure to push electrical 

charges with equal signs together. The external force must do work to form 

the present configuration, and the stored energy in the configuration is 

positive. 
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In a gravitational field, the stored configuration energy in the field is 

negative potential energy, namely the external force must do a negative 

net work to form the present configuration. In other words, from a finite 

volume of V, the present configuration is pulled away to the infinity of V=∞, 

where the zero point is defined; the external force must do a negative net 

work. This process is similar to the process pulling electrical charges with 

the opposite sign away, as shown in Fig. 2. 

 

 
 

Fig. 2 The configuration-stored energy can be positive or negative. 
 

 

The Einstein energy-momentum tensor for a perfect fluid is [12, p.140] 

 

𝑇𝜇𝜈 = (𝜌𝐺 +
𝑝𝐺

𝑐2
)𝑈𝜇𝑈𝜈 − 𝑝𝐺𝑔𝜇𝜈 . (25) 

 

 

The time–time component is the relativistic energy density.  
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The fluid in the local inertial frame are at rest, the metric tensor degrades 

to the Minkowski metric tensor for a flat space.  

 

𝑔𝜇𝜈 = 𝜂𝜇𝜈 = (1,−1,−1,−1). (26) 
 

 

The fluid is at rest, the 4-velocity tensor becomes to 

 

𝑈𝜇 = lim
�⃗⃗�→0

(𝑈𝜇) = (𝑐, 0,0,0). (27) 

 

The time-time component of the Einstein energy-momentum tensor in the 

co-moving frame is just the static energy, this component of the equation 

(25) becomes 

 

𝑇00 = −𝑝𝐺 = 𝜌𝐺𝑐2. (28) 
 

It has a direct physical interpretation. In the co-moving frame, it is just the 

stored configuration energy at rest. In case of a perfect fluid this 

component is expressed as 

 

𝜌𝐺 = −
𝑝𝐺

𝑐2
. (29) 

 

The physical meaning is clear. In the gravitational field, the particles attract 

each other, just like the interaction between electrical charges with 

opposite signs, interactions between particles have only attraction forces, 

(the zero point of potential energy is still defined at x=∞). 

 

Now, let it slightly move, there exists a relative motion with respect to the 

local observer, in Language of General Relativity, Let us assume that the 

space is “slightly curved”. Then we have 4-vector: 
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𝐴𝛼 = (
𝑝𝐺

𝑐
; 𝑝𝐺𝑣⃗⃗⃗⃗⃗⃗ ⃗⃗ ). (30) 

 

In the local inertial frame, the relative effect is ignored, namely we assume 

v/c<<1. 

Substituting this 4-momentum vector, combined with equation of (29), into 

Eq. (24), we can get the dynamic behavior of the gravitational field, 

observed in the local inertial frame. The sole requirement is to assume the 

gravitational field wave speed is equal to the electromagnetic wave 

propagation speed of c, or the gravitational field has its own wave speed. 

 

Comparison of eq. (9) and (29), difference is only the negative or positive 

sign between the potential energy density and mass density. The positive 

and negative sign of the potential energy density only affect the rotation 

direction; it will be shown in section 6 of this work. 

 

 

5. Electromagnetic field — no rest frame 

 

Both sections 3 and 4 have a rest frame (co-moving frame). In the co-

moving frame, adding an extra momentum field up to the potential energy 

density, we can get the dynamic equation of the field, utilizing this 4-

momentum vector. 

 

While electromagnetic fields have no rest frame, (to say, relative to Lab 

frame). A moving charged particle will produce both an electric and a 

magnetic field. This is because a charged particle always produces an 

electric field, if the particle is also moving, it will produce a magnetic field 

in addition to its electric field. The produced magnetic field is perpendicular 

to the direction of the particle's motion. 

 

Electromagnetic fields (photon gases) carry energy and transport it from 

one region of space to another at a speed of light. The total energy stored 

per unit volume [13, p.398] in a region of Electromagnetic space is 
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𝑝𝑒𝑚 =
1

2
(𝜀0𝐸

2 +
1

𝜇0
𝐵2). (31) 

 

Analog to the pressure density relationship of eq (9), we can define the 

photon gas mass density using the total energy: 

 

𝜌𝑒𝑚 =
𝑝𝑒𝑚

𝑐2
. (32) 

 

 

Electromagnetic fields have no rest frame; they have an intrinsic 4-

potential: 

 

𝐴𝛼 = (
𝑝𝑒𝑚

𝑐
; 𝜌𝑒𝑚𝑣⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗). (33) 

 

With this definition, we have electric field density per unit volume: 

 

�⃗⃗� = −∇𝑝𝑒𝑚 −
𝜕(𝜌𝑒𝑚𝑣⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)

𝜕𝑡
= −∇𝑝𝑒𝑚 −

1

𝑐2

𝜕(𝑝𝑒𝑚�⃗�)

𝜕𝑡
, (34) 

 

 

and the magnetic field density per unit volume: 

 

�⃗⃗� = ∇ × (𝜌𝑒𝑚𝑣⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) =
1

𝑐2
∇ × (𝑝𝑒𝑚�⃗�). (35) 

 

Substituting these two definitions into eq. (18), we can get the dynamic 

equation for the electromagnetic field. The role of the �⃗⃗� field is similar to 

the vorticity field of eq. (17); it is responsible for the rotational motion of 

photon particles. Equations (34) and (35) borrow the electrical and 

magnetic field strength symbols,  �⃗⃗� and �⃗⃗�, but they are interpreted here 

as field density per unit volume. 



15 
 

 

Equations (33)-(35) automatically fulfills the two homogeneous Maxwell 

equations: 

 

{∇ × �⃗⃗� = −
𝜕�⃗⃗�

𝜕𝑡

∇ ∙ �⃗⃗� = 0.

; 

 

(36) 

 

With some algebra manipulations, it is easy to show that we can also get 

the Gauss’s law and the Ampère/Maxwell law with source terms for the 

non-homogeneous Maxwell equations, see D. J. Griffith [13, p.437]. With 

a similar procedure we can also get the pressure wave equation for fluid 

dynamics, see Appendix B. 

 

Here we are interested on the “vacuum” state. 

 
5.1 In vacuum, “no source term” of the charge particles 
 
 In “vacuum”, the Gauss’s law reads: 
 

∇ ∙ �⃗⃗� = 0 (37) 

 
Substituting eq. (34) into the eq. (37), we have 
 
 

∇ ∙ [−∇𝑝𝑒𝑚 −
𝜕(𝜌𝑒𝑚𝑣⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)

𝜕𝑡
] = 0. (38) 

 
 
In a local inertial frame, we have the mass conservation law (it is exactly 
the mass conservation law for the compressible fluid): 
 
 

∇ ∙ (𝜌𝑒𝑚𝑣⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) = −
𝜕𝜌𝑒𝑚

𝜕𝑡
= −

1

𝑐2

𝜕𝑝𝑒𝑚

𝜕𝑡
. (39) 
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This condition is also similar to the Lorenz-invariant gauge condition for 
the Maxwell’s equation in the Electromagnetic fields. 
 
 
Manipulating the eq. (38) a bit and using the definition of eq. (32) and the 
mass conservation condition of (39), we get a wave equation for 
electromagnetic wave energy: 
 
 

∇2𝑝𝑒𝑚 −
1

𝑐2

𝜕2𝑝𝑒𝑚

𝜕𝑡2
= 0. (40) 

 
 
Similarly, substituting the definition (34) and (35) into the Ampère/Maxwell 
law, we have: 
 
 

[∇ ∙ (𝜌𝑒𝑚𝑣⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) +
1

𝑐2

𝜕𝑝𝑒𝑚

𝜕𝑡
] − ∇2(𝜌𝑒𝑚𝑣⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) +

1

𝑐2

𝜕2(𝜌𝑒𝑚𝑣⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)

𝜕𝑡2
= 0. (41) 

 
 
In the process, we have used the following vector calculus identity: 
 
 

∇ × (∇ × (𝜌𝑒𝑚𝑣⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)) = ∇[∇ ∙ (𝜌𝑒𝑚𝑣⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)] − ∇2(𝜌𝑒𝑚𝑣⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗). (42) 

 
 
and the relation: 
 

1

𝑐2
= 𝜇0𝜀0. (43) 

 
 
Again, using the energy-mass equivalence relation of (32) and the mass 
conservation law of equation (39), we get another wave equation for the 
photon particle momentum, and it propagates in a wave shape at the 
speed of light in vacuum.   
 
 
 

∇2(𝜌𝑒𝑚𝑣⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) −
1

𝑐2

𝜕2(𝜌𝑒𝑚𝑣⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)

𝜕𝑡2
= 0. (44) 
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Both equation (40) and (44) show that the energy and the momentum of 
the photon gas propagates in electromagnetic field in a speed of light in 
vacuum. Physically it is clear, because of the existence of a magnetic field 
(produced by other moving charged particles), the particle will perform a 
rotational motion in addition to its linear motion. 
 

 

Observing the total electromagnetic energy density of equation (31), we 

saw that the 𝑝𝑒  (𝐽 𝑚3⁄ ) stored in a static electric field E is 

 

𝑝𝑒 =
1

2
𝜀0�⃗⃗�

2. (45) 

 

 

The energy density 𝑝𝑚 (𝐽 𝑚3⁄ ) stored in a magnetic field �⃗⃗� is given by 

 

𝑝𝑚 =
1

2

�⃗⃗�2

𝜇0
. (46) 

 

 

In equation (31), E and B represent the electric and magnetic field density 

of the wave at any instant in a small region of space. we can either write 

eq. (31) in terms of E field only using the relation of B=E/C and the wave 

speed relation of (43), or we can write the energy density in terms of the 

B field only, thus [7, p. 623], 

 

𝑝𝑒𝑚 = 2𝑝𝑒 = 2𝑝𝑚 . (47) 
 

Noticed that the energy density associated with the B field equals that 

due to the static E field, and each contributes half to the total energy. 

 

Comparison of eq. (32) and (47), we have 
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𝑝𝑒𝑚 = 2𝑝𝑒 = 2𝑝𝑚 = 𝜌𝑒𝑚𝑐2. (48) 
 

Photons exist as moving particles (at least for the observer in the Lab 

frame). The Planck-Einstein relation says that the total energy of a photon 

depends on its frequency. It is directly proportional to the frequency [14, 

15]. 

 

𝐸𝑡𝑜𝑡 = ℏ𝜔. (49) 
 

 

where ℏ is the reduced Planck constant, and 𝜔 is the angular frequency 

of a photon wave. 

 

𝑝𝑒 = 𝑝𝑚 =
1

2
ℏ𝜔. (50) 

 

 

Accordingly, we have the following relation: 

 

𝑝𝑒 = 𝑝𝑚 =
1

2
𝜌𝑒𝑚𝑐2. (51) 

 

 

It is well known that photon gas particle travels in vacuum in the speed of 

light, the right-hand side represents “formally” the linear kinetic energy of 

photon gas, and it amounts to half of the total photon gas energy. The 

magnetic part physically should represent the rotational motion of particles, 

it can be deduced that the rotating kinetic energy equals the linear kinetic 

energy. Thus, it means the particle motion trajectory of the photon particle 

is a helical motion (rotational plus linear); both the linear and rotational 

kinetic energy contribute to half of the total energy. This phenomenon has 

been observed by many experimental results: the circularly polarized light 

will emerge with orbital angular momentums (OAMs) [16-27]. As indicated 
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by Shen et al. [21], analogous to the hydrodynamic vortices, an optical 

vortex will appear as an isolated dark spot in the center. 

 

In “vacuum”, Maxwell’s equation for electrostatic field states that the 

divergence of the electrical field equals zero, as expressed by eq. (37). 

However, if we are not careful, to choose a Gaussian integral surface that 

is not small enough, so that exits an electrical dipole in this small region, 

the Gaussian integral region will contain an electrical dipole, eq. (37) still 

hold for this case. Consequently, we are of the opinion that the space is a 

“vacuum”. Under this circumstance, the electrical dipole can be entangled 

together to propagate in “vacuum” space in the form of an electromagnetic 

wave. Based on the above arguments, we can deduce that a photon is a 

helically entangled electrical dipole in free space; both the linear and 

rotational kinetic energy contribute half to the total energy. 

 

6. Chirality and potential energy sign (attractive or repulsive force) 

 

6.1 The classical fluid dynamic equation (repulsive force) 

 

Eq. (24) contains a rotational term of  
1

2
�⃗� × �⃗⃗⃗�. Physically it represents 

half of the tangent force to account for the rotational motion: 

 

1

2
�⃗� × �⃗⃗⃗� =

1

2
ℱ⃗⃗⊥.  (52) 

 

 

Substituting the mass density and potential energy density equivalence 

of eq. (9) into eq. (53), we get 

 

ℱ⃗⃗⊥ = �⃗� × (∇ × 𝜌𝑣⃗⃗⃗⃗⃗) = 𝛽 × [∇ × (𝑝𝛽)],  (53) 

 

where 𝛽 is the ratio of particle velocity to the wave speed: 
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𝛽 =
�⃗�

𝑐
.  (54) 

 

 

6.2 Gravitational field (attractive force) 

 

For perfect fluid of gravitational field, substituting the mass density and 

potential energy density relation of the eq. (29), into the Eq. (53), we 

have 

 

ℱ⃗⃗⊥ = �⃗� × (∇ × 𝜌𝐺𝑣⃗⃗⃗⃗⃗⃗ ⃗⃗ ) = −𝛽 × [∇ × (𝑝𝐺𝛽)].  (55) 

 

In another word, the vorticity field, in general, can be expressed as: 

 

�⃗⃗⃗� = ∇ × (𝜌𝑣⃗⃗⃗⃗⃗) =
1

𝑐2
∇ × 𝑝𝑣⃗⃗⃗⃗⃗ =

1

𝑐
∇ × (𝑝𝛽⃗⃗⃗⃗⃗⃗ ).  (56) 

 

Comparison of eq. (53) and (55), It can be seen that the potential energy 

sign will determine the rotational motion directions. 

 

6.3 Electromagnetic field — observed in an inertial frame 

 

As mentioned before, the photon gases have no rest mass, they travel 

along the left and right light cone surface in Minkowski space at the speed 

of light in the vacuum, relative to a rest observer, e.g. relative to Lab frame. 

The world line is just the light cone surface, as shown in Fig.3. 
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Fig. 3 the photon travels along the left and right light cone at a speed of light in 
vacuum, observed in Lab frame. 

 

 

On the light cone, we have the following relation (the relation between 

photon momentum and photon total energy, “off mass-shell”): 

 

𝑝𝑒𝑚
2 = 𝑝2𝑐2.  (57) 

 

where, 𝑝 is the linear momentum of photon gas, relative to a rest observer. 

Taking square root for both side, 

 

𝑝𝑒𝑚 = ±𝑝𝑐;     𝑜𝑟     �⃗� = ±
𝑝𝑒𝑚

𝑐
= ±

1

𝑐
ℏ𝜔 (58) 

 

Namely, the photon gas energy can be either positive or negative, 

depending on the momentum direction relative to the observer. 

 

ℱ⃗⃗⊥ = �⃗� × �⃗⃗� = ±𝛽 × [∇ × (𝑝𝑒𝑚𝛽)].  (59) 

 

Comparison eq. (53), (55) and (59). It can be concluded that the potential 
energy density sign (or rather to say, the interactions between particles 
are either through attractive forces or through repulsive forces), will affect 
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the particle rotation direction in the local manifold, or to say, depends on 
the perspective views of the observer. The electromagnetic waves have 
no rest frame; they can be either positive or negative, and the positive or 
negative sign depends on the traveling direction between the photon 
gasses and the observer.  

 

7. Conclusion 

 

The configuration stored energy density and mass density have the 

relation of 𝑝 = 𝜌𝑐2. This energy density and momentum vector forms a 4-

vector potential. The scalar energy field and momentum vector field are 

entangled with each other through the mass density. Based on the weak 

law of action and reaction, a unified dynamic equation of the classical field 

in the local manifold is derived. This field equation reads 𝐷𝑡�⃗� = ∇ℒ. For the 

derivation of this field equation, no further assumptions and restrictions 

have been applied.  The configuration-stored energy density can be 

positive or negative, depending on the zero energy definition position in 

the field. Its sign will affect the rotational direction (vorticity field) of the 

particle motions. The gradient of the kinetic energy density contains all the 

possible deformations of the infinitesimal element. It can be decomposed 

into two parts: a symmetric part, which is mainly responsible for the 

expansion (contraction) and shear deformation; and an antisymmetric part, 

which is responsible for a pure rotational motion. The classical Navier-

Stokes equation models the symmetric part as viscosity stress based on 

the Stokes hypothesis, while the antisymmetric part is ignored. This 

antisymmetric part will result in a Coriolis-like force. A moving charged 

particle produces an electric field and a magnetic field. The magnetic field 

will force other charged particles to make a rotational motion. The rotating 

kinetic energy equals the linear kinetic energy, both contribute to half of 

the total energy of the electromagnetic field.  It can be deduced that the 

electromagnetic wave is a helically entangled electrical dipole. The moving 

trajectory of the photon particle will be helical or spiral and the circular 

polarized lights confirm this phenomenon. 
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Appendix A. The fluid dynamics equations 

 

The right hand side of the equation (22) contains a gradient of the kinetic 

energy; it arises from the curvature of the local manifold. 

 

If the kinetic energy is written explicitly in local manifold using Cartesian 

coordinate, it reads:  

 

𝑇 =
1

2
(𝜌𝑣⃗⃗⃗⃗⃗ ∙ �⃗�) =

1

2
(𝜌𝑢𝑢 + 𝜌𝑣𝑣 + 𝜌𝑤𝑤).  (A1) 

 

Thus the gradient of the kinetic energy is: 

 

∇𝑇 = 𝐽𝜌𝑣⃗⃗⃗⃗⃗⃗
𝑇 �⃗�.  (A2) 

 

 

where 𝐽𝜌𝑣⃗⃗⃗⃗⃗⃗
𝑇  is the transpose of the Jacobian Matrix of momentum. 

 

𝐽�⃗�
𝑇 =

[
 
 
 
 
 
 
𝜕𝜌𝑢

𝜕𝑥

𝜕𝜌𝑣

𝜕𝑥

𝜕𝜌𝑤

𝜕𝑥
𝜕𝜌𝑢

𝜕𝑦

𝜕𝜌𝑣

𝜕𝑦

𝜕𝜌𝑤

𝜕𝑦
𝜕𝜌𝑢

𝜕𝑧

𝜕𝜌𝑣

𝜕𝑧

𝜕𝜌𝑤

𝜕𝑧 ]
 
 
 
 
 
 

.  (A3) 

 

 

Any square matrix can be decomposed into its symmetric and 

antisymmetric parts. This decomposition is often referred to as the 

"symmetric part" and "skew-symmetric part". 
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𝐽𝜌𝑣⃗⃗⃗⃗⃗⃗
𝑇 =

1

2
(𝐽�⃗�

𝑇 + 𝐽�⃗�) +
1

2
(𝐽�⃗�

𝑇 − 𝐽�⃗�) =
1

2
𝑆̿ +

1

2
�̿�.  (A4) 

 

 

 

Symmetric part: 

 

The Symmetric part of the gradient of the kinetic energy, thus, is: 

 

1

2
𝑆̿�⃗� = [

𝑠𝑥𝑥 𝑠𝑥𝑦 𝑠𝑥𝑧

𝑠𝑥𝑦 𝑠 𝑠𝑦𝑧

𝑠𝑥𝑧 𝑠𝑦𝑧 𝑠𝑧𝑧

] [
𝑢
𝑣
𝑤

].  (A5) 

 

where 

 

𝑆̿ =

[
 
 
 
 
 
 

𝜕𝜌𝑢

𝜕𝑥

1

2
(
𝜕𝜌𝑣

𝜕𝑥
+

𝜕𝜌𝑢

𝜕𝑦
)

1

2
(
𝜕𝜌𝑤

𝜕𝑥
+

𝜕𝜌𝑢

𝜕𝑧
)

1

2
(
𝜕𝜌𝑢

𝜕𝑦
+

𝜕𝜌𝑣

𝜕𝑥
)

𝜕𝜌𝑣

𝜕𝑦

1

2
(
𝜕𝜌𝑤

𝜕𝑦
+

𝜕𝜌𝑣

𝜕𝑧
)

1

2
(
𝜕𝜌𝑢

𝜕𝑧
+

𝜕𝜌𝑤

𝜕𝑥
)

1

2
(
𝜕𝜌𝑣

𝜕𝑧
+

𝜕𝜌𝑤

𝜕𝑦
)

𝜕𝜌𝑤

𝜕𝑧 ]
 
 
 
 
 
 

.  (A6) 

 

It can be interpreted as the classical strain-rate tensor, if the density in 

the local manifold is regards as a constant value.  

 

Recalling the definition of the stress tensor in the Navier-Stokes equation 

by Stokes hypothesis, we have the flowing relation: 

 

1

2
𝑆̿�⃗� = 2𝜇𝑆𝑖𝑗 . (A7) 

 

Anti-Symmetric part: 
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Another part is the anti-symmetric term: 

 

1

2
�̿��⃗� =

1

2
[

0 𝜔𝑧 −𝜔𝑦

−𝜔𝑧 0 𝜔𝑥

𝜔𝑦 −𝜔𝑥 0
] [

𝑢
𝑣
𝑤

].  (A8) 

 

 

Where, the rotational tensor is expressed as: 

 

�̿� =

[
 
 
 
 
 
 0 (

𝜕𝜌𝑣

𝜕𝑥
−

𝜕𝜌𝑢

𝜕𝑦
) −(

𝜕𝜌𝑢

𝜕𝑧
−

𝜕𝜌𝑤

𝜕𝑥
)

−(
𝜕𝜌𝑣

𝜕𝑥
−

𝜕𝜌𝑢

𝜕𝑦
) 0 (

𝜕𝜌𝑤

𝜕𝑦
−

𝜕𝜌𝑣

𝜕𝑧
)

(
𝜕𝜌𝑢

𝜕𝑧
−

𝜕𝜌𝑤

𝜕𝑥
) −(

𝜕𝜌𝑤

𝜕𝑦
−

𝜕𝜌𝑣

𝜕𝑧
) 0

]
 
 
 
 
 
 

.  (A9) 

 

 

Changing the positive sign, accordingly: 

 

�̿� = − [

0 −𝜔𝑧 𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥 0
] = −�⃗⃗⃗�.  (A10) 

 

then, the rotational part can be expressed as: 

 

1

2
�̿��⃗� = −

1

2
�⃗⃗⃗� × �⃗� =

1

2
�⃗� × �⃗⃗⃗�.  (A11) 

 

finally, we get the field equation as expressed by eq. (24): 

 

𝜕𝜌𝑣⃗⃗⃗⃗⃗

𝜕𝑡
+ (�⃗� ∙ ∇)(𝜌𝑣⃗⃗⃗⃗⃗) = −∇𝑝 +

1

2
𝑆̿�⃗� +

1

2
�⃗� × �⃗⃗⃗�.  (A12) 
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The symmetric part, (
1

2
𝑆̿�⃗�),  performs shear; reflection and expansion 

(dilation) deformation of the infinitesimal element in the field; the 

antisymmetric part, (
𝟏

𝟐
�⃗⃗⃗� × �⃗⃗⃗⃗�), performs a pure rotation of the element. 

 

The second term in the left hand side of eq. (A12) is the directional 

derivative of momentum along the velocity vector v at a given point x, 

 

(�⃗� ∙ ∇)(𝜌𝑣⃗⃗⃗⃗⃗) = ∇�⃗⃗�(𝜌𝑣⃗⃗⃗⃗⃗).  (A13) 
 

It represents the instantaneous rate of change of the momentum, moving 
through a point in space of x with a velocity specified by v. Geometrically, 
it represents momentum gradient projection onto the velocity vector field 
at a given point of x. 

 

 

 
 

Fig. A1. The antisymmetric term produce a lift force, which leads the boundary 
layer to become thicker along the flow direction. 

 

The antisymmetric term, (
𝟏

𝟐
�⃗⃗⃗� × �⃗⃗⃗⃗�),  will produce an extra force, which 

leads the shear boundary layer to become thicker along the flow direction, 

as shown in Fig. A1. Assuming it is one dimensional shear flow along the 

x-direction, �⃗� = (𝑢, 0,0).   The induced vorticity field is, thus, �⃗⃗⃗� =
(0,0,− 𝜕(𝜌𝑢) 𝜕𝑦⁄ ). This extra force term is then: 
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�⃗� =
1

2
�⃗� × �⃗⃗⃗� =

1

2
[

0

𝑢
𝜕(𝜌𝑢)

𝜕𝑦
0

] = [

𝐹𝑥

𝐹𝑦

𝐹𝑧

].  (A14) 

 

It can be seen that interaction between the velocity and vorticity in the 

shear boundary layer will produce an extra lift force, 𝐹𝑦 =
1

2
𝑢

𝜕(𝜌𝑢)

𝜕𝑦
, which 

depends on the magnitude of the velocity and the gradient of the 

momentum in the boundary layer.  

 

Appendix B. From the field equation to a pressure wave equation 

 

Rearranging the equation (18): 

 

−∇𝑝 −
𝜕𝜌𝑣⃗⃗⃗⃗⃗

𝜕𝑡
= −�⃗� × (∇ × 𝜌𝑣⃗⃗⃗⃗⃗). (B1) 

 

 

Taking divergence of both side: 

 

−∇2𝑝 −
𝜕

𝜕𝑡
(∇ ∙ 𝜌�⃗�) = −∇ ∙ [�⃗� × (∇ × 𝜌𝑣⃗⃗⃗⃗⃗)]. (B2) 

 

Mass conservation law in the local coordinate frame states: 

 

𝜕𝜌

𝜕𝑡
+ (∇ ∙ 𝜌�⃗�) = 0  →   (∇ ∙ 𝜌�⃗�) = −

𝜕𝜌

𝜕𝑡
. (B3) 

 

Substituting equation B3 into eq. B2: 

 

−∇2𝑝 +
𝜕2𝜌

𝜕𝑡2
= −∇ ∙ [�⃗� × (∇ × 𝜌𝑣⃗⃗⃗⃗⃗)]. (B4) 
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Recalling the potential energy density and mass density relation of the eq. 

(9): 

 

𝑝 = 𝜌𝑐2  →  𝜌 =
𝑝

𝑐2
. (B5) 

 

Substituting eq. B5 into B4, thus we get the pressure wave equation for 

compressible fluid in the local inertial frame. 

 

∇2𝑝 −
1

𝑐2

𝜕2𝑝

𝜕𝑡2
= ∇ ∙ (�⃗� × �⃗⃗⃗�). (B6) 
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