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Abstract. In this paper we study the self-adjointness and spectral proper-

ties of two-dimensional Dirac operators with electrostatic, Lorentz scalar, and
anomalous magnetic δ-shell interactions with constant weights that are sup-

ported on a smooth unbounded curve that is straight outside a compact set

and whose ends are rays that are not parallel to each other. For all possible
combinations of interaction strengths we describe the self-adjoint realizations

and compute their essential spectra. Moreover, we prove in different situations
the existence of geometrically induced discrete eigenvalues.

1. Introduction

Operators with contact interactions are frequently used as quantum mechanical
Hamiltonians. True, as models of real physical systems they are idealized but often
they provide a description which preserves the salient features of the system one
wants to describe while being mathematically more accessible than their ‘regular’
counterparts. In nonrelativistic quantum mechanics there is wealth of such models;
for a survey and bibliography we refer to the monograph [2]. The motivation to
investigate Dirac operators with contact interactions was weaker for a long time; the
only system of that type appeared in connection with the so-called MIT bag model
[23]. This changed with the advent of graphene and similar materials, in which the
effective dynamics is described by the Dirac equation, see, e.g., [5], and the systems
of interest may have many geometric features depending on their experimental
design.

The goal in this paper is to study the self-adjointness and the spectrum of a Dirac
operator in R2 with a combination of electrostatic, Lorentz scalar, and anomalous
magnetic δ-shell potentials supported on an unbounded curve Γ that is straight
outside a compact set and such that its ends are not parallel to each other. Such
an operator is associated with the formal differential expression

Am,cη,τ,λ := −ic(σ · ∇) +mc2σ3 + (ησ0 + τσ3 + λi(σ1ν1 + σ2ν2)σ3)δΓ, (1.1)

where c > 0 is the speed of light, m ≥ 0 is the mass of the particle (note that we will
later consider m ∈ R), δΓ stands for the δ- or single layer distribution supported
on Γ and ν = (ν1, ν2) is a unit normal vector field along Γ; finally, η, τ, λ ∈ R are
coupling constants for the electrostatic, Lorentz scalar, and anomalous magnetic
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interaction, respectively. It is known that with these three parameters one can
define a general symmetric δ-interaction with constant coefficients for the two-
dimensional Dirac operator; a fourth possible parameter in the 2× 2-matrix-valued
coefficient of δΓ can be gauged away by a unitary transformation, see [16, 22].

Operators of the form Am,cη,τ,λ were first studied in the one-dimensional case [32],
in which the singular interaction is supported on a point in R. By using this
analysis and a decomposition to spherical harmonics, the three-dimensional coun-
terpart of the operator in (1.1) was investigated in the end of the 1980s with the
interaction support being a sphere [27]. It took then 25 years, until more general
bounded C2-surfaces in R3 were considered as supports of purely electrostatic in-
teractions in [3]. After that the interest on the operators induced by (1.1) grew, the
more general interactions including Lorentz scalar and anomalous magnetic terms
were introduced, and the self-adjointness, the spectral and scattering properties
were studied for bounded interaction supports in dimensions two and three, see
[4, 7, 8, 11, 22], to mention just a few of references, and the recent review [13] for
more references. The case of unbounded interaction supports was not studied that
extensively, despite the fact that for the case of the straight line in R2 interest-
ing spectral transitions were observed in [15, 16]. We also mention the paper [18],
where the self-adjointness and spectral properties for combinations of electrostatic
and Lorentz scalar interactions supported on surfaces in R3, which are compact
perturbations of the plane, were investigated, the works [31, 39, 42, 43] about the
self-adjointness of the operator in (1.1) under different assumptions on the interac-
tion support including non-smooth broken lines, and the recent paper [30], where
the spectrum of the operator Am,c0,τ,0 was studied, when Γ is a broken line.

It is the main goal in this paper to treat the two-dimensional Dirac operator
in (1.1) with a singular potential that is supported on a smooth unbounded curve
in R2 that is straight outside a compact set in a systematic way. As for bounded
interaction supports, the operator associated with Am,cη,τ,λ lacks semi-boundedness
and hence, form methods are not suitable to introduce it as a self-adjoint operator.
Therefore, a different technique from extension theory of symmetric operators will
be applied. We follow closely the approach in [13], where two- and three-dimensional
Dirac operators with singular potentials supported on bounded interaction supports
were studied with the help of boundary triples and their Weyl functions. More
precisely, we construct a suitable ordinary boundary triple, which allows us to
introduce Am,cη,τ,λ as a self-adjoint operator for all combinations of the interaction
strengths η, τ, λ ∈ R and to identify the essential spectrum. In a similar way as
it is known for bounded interaction supports, it turns out that there are special
combinations of the interaction strengths η, τ, λ for which there is a lack of Sobolev
regularity in the operator domain. Moreover, as in the case of the straight line
[15, 16], unexpected transitions in the essential spectra appear in several situations.

Finally, we are going to show for particular geometries of the interaction support
and/or parameter values the existence of isolated eigenvalues. Relations between
spectral properties of differential operators and the geometry belong to the most
traditional questions, and one of the intriguing examples is the fact that geometri-
cally induced bound states may exist even in regions which are spatially infinitely
extended. A classical example is the Dirichlet Laplacian in strips around a bent
reference curve, for which we refer to the monograph [29] and the bibliography
therein. The same effect was observed for two-dimensional Schrödinger operators
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with attractive δ-potentials supported on unbounded curves [28, 38], and recently
also for Dirac operators with Lorentz scalar δ-shell interactions on broken lines
[30]. We will prove that also for smooth unbounded interaction supports Γ that
are straight outside a compact set geometrically induced eigenvalues may exist. We
do this first in the case, where the electrostatic and the Lorentz scalar interaction
strengths have the same negative value, no magnetic term is present, and the speed
of light c is large by using the nonrelativistic limit of the Dirac operator in combi-
nation with the known result about the corresponding Schrödinger operator from
[28]. Secondly, we prove the existence of geometrically induced bound states for
attractive purely Lorentz scalar interactions that are supported on a compact per-
turbation of a broken line with a sufficiently small opening angle by using the claim
proved in the paper [30]. While such existence results are of obvious interest, they
lack the universal character of their nonrelativistic counterparts mentioned above,
and their extension to a wider class of operators represents an important challenge.

The paper is organized as follows: In Section 2 we state and discuss the main
results of this paper in detail. Then, in Section 3 we provide some preliminary
material that is necessary to prove the main results in Sections 4 and 5. Finally, in
Appendix A we recall some useful abstract results about ordinary boundary triples,
and in Appendix B we prove a technical statement about compactness properties
of integral operators.

Notations. Let

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
, (1.2)

be the Pauli spin matrices and denote by σ0 the 2 × 2-identity matrix. Note that
the Pauli matrices satisfy

σjσk + σkσj = 2δjkσ0, j, k ∈ {1, 2, 3}. (1.3)

For x = (x1, x2) we will often write σ · x = σ1x1 + σ2x2 and σ · ∇ = σ1∂1 + σ2∂2.

Let Ω be an open set. The L2-based Sobolev spaces of k times weakly differen-
tiable functions are denoted by Hk(Ω;C) and we write Hk(Ω;C2) := Hk(Ω;C)⊗C2.
Moreover, if Γ is an infinite curve that is straight outside a compact set as in (2.1)
with arc-length parametrization γ : R→ R2, then we define the mapping

Uγ : S ′(Γ;C)→ S ′(R;C), (Uγf)(ϕ) = f(ϕ(γ−1(·))). (1.4)

Clearly, if f ∈ L1(Γ;C), then the distribution Uγf ∈ L1(R;C) is generated by f ◦γ.
With the help of Uγ we introduce the Sobolev space of order s ∈ R on Γ by

Hs(Γ) :=
{
f ∈ S ′(Γ;C) : Uγf ∈ Hs(R;C)

}
.

In the main part of the paper we will often use the mapping Λ defined by

(FUγΛf)(p) = 4
√

1 + p2 (FUγf)(p), p ∈ R, (1.5)

where F is the Fourier transform in S ′(R;C). Evidently, for any s ∈ R the operator
Λ : Hs(Γ;C) → Hs−1/2(Γ;C) is well defined and bijective and for s = 1

2 it can

be viewed as an unbounded self-adjoint operator in L2(Γ;C) with dense domain
H1/2(Γ;C).

If H is a Hilbert space and A is a closed operator in H, then we denote its domain
of definition, its range, and its kernel by domA, ranA, and kerA, respectively.
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Furthermore, we use the symbols σ(A), σp(A), and ρ(A) for the spectrum, the point
spectrum, and the resolvent set of A, respectively. If A is self-adjoint, then σdisc(A)
and σess(A) denote the discrete and the essential spectrum of A, respectively.

2. Main results

2.1. Definition of Am,cη,τ,λ and confinement. Throughout the paper, we assume
that the support of the singular interaction is a smooth curve that does not intersect
with itself and that is straight outside a compact set. To make this mathematically
more precise, we make the following assumption:

Hypothesis 2.1. Assume that γ : R→ R2 is a C∞-smooth and injective map that
satisfies |γ̇(s)| = 1 for all s ∈ R and

γ(s) =

{
(a−s+ b−, c−s+ d−) for s < −M,

(a+s+ b+, c+s+ d+) for s > M,
(2.1)

for suitable constants M > 0 and a±, b±, c±, d± ∈ R with a2
± + c2± = 1 and

(a−, c−) 6= −(a+, c+). We set Γ := ran γ and denote by ν(x) the unit normal
vector at x = γ(s) ∈ Γ, s ∈ R, that is given by ν(γ(s)) = (γ̇2(s),−γ̇1(s)). The set
Ω+ is the domain with boundary Γ such that ν is pointing outwards of Ω+ and we
define Ω− := R2 \ Ω+.

If not mentioned differently, we always assume that Γ satisfies the above hy-
pothesis. The condition (a−, c−) 6= −(a+, c+) in Hypothesis 2.1 means that the
two asymptotes of Γ are not parallel rays (of the same orientation) as t → ±∞.
Note that for γ in Hypothesis 2.1 there exists C1 > 0 such that for all s, t ∈ R

C1|s− t| ≤ |γ(s)− γ(t)| ≤ |s− t| (2.2)

holds. The second inequality in (2.2) is clear. To see the first one consider the func-

tion (s, t) 7→ r(s, t) := |γ(s)−γ(t)|
|s−t| , which is positive and continuous, being extended

to r(s, s) = 1 as Γ is smooth by assumption. In the first and the third quadrant
of the (s, t) plane we have r(s, t) = 1 for all s, t large enough. Moreover, for any
a ∈ [0,+∞),

lim
s→±∞

inf
±t∈[0,a]

r(s, t) = lim
s→±∞

|γ(s)|
|s|

= 1,

and similarly with the roles of s and t interchanged. In the other two quadrants we
have r(s, t) ≤ 1 and it is not difficult to check that

lim
|s|→∞

r(s,−µs) =

√
1 + µ2 − 2µ cos θ

1 + µ

holds for µ > 0, where θ is the angle between the asymptotes; the right-hand
side reaches its minimum sin θ

2 at the axis of the quadrants, µ = 1. We conclude
that there is a compact subset M of the plane outside of which we have r(s, t) >
1
2 sin θ

2 . In view of the compactness, the minimum is attained within M and C2 :=
minM r(s, t) > 0, because the curve does not intersect itself; it is then enough to
choose C1 = min{C2,

1
2 sin θ

2}.
In the following we use the notation f± := f � Ω± for a function f that is defined

on R2. Recall that σ1, σ2, σ3 are the C2×2-valued Pauli spin matrices defined in (1.2)
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and σ0 is the 2× 2 identity matrix. We define the spaces

H(σ,Ω±) :=
{
f± ∈ L2(Ω±;C2) : (σ · ∇)f± ∈ L2(Ω±;C2)

}
and note that for f± ∈ H(σ; Ω±) the trace TD± f± exists in the Sobolev space

H−1/2(Γ;C2); cf. Section 3.1 for details. This allows us to define for m, η, τ, λ ∈ R
and c > 0 in L2(R2;C2) the operator

Am,cη,τ,λf :=
(
− ic(σ · ∇) +mc2σ3

)
f+ ⊕

(
− ic(σ · ∇) +mc2σ3

)
f−,

domAm,cη,τ,λ :=

{
f = f+ ⊕ f− ∈ H(σ,Ω+)⊕H(σ,Ω−) :

− ic(σ · ν)(TD+ f+ − TD− f−) =
1

2
(ησ0 + τσ3 + λi(σ · ν)σ3)(TD+ f+ + TD− f−)

}
.

(2.3)

Using integration by parts, it can be seen that the operator in (2.3) is the rigorous
mathematical definition of the formal expression in (1.1), see, e.g., [19].

A remarkable property of Am,cη,τ,λ is that it decomposes for special combinations

of η, τ, λ to the orthogonal sum of two Dirac operators in L2(Ω±;C2) with bound-
ary conditions. This phenomenon, which was observed originally in the three-
dimensional setting and later in the current two-dimensional case (but always with
bounded interaction supports) in [4, 8, 11, 13, 22, 27], is known as confinement and
means that the δ-potential is, in this case, impenetrable for the quantum particle.
The mentioned boundary conditions are known as quantum dot boundary condi-
tions and play an important role in the mathematical analysis of graphene [17].
Note that in all studied cases the confinement occurs if and only if the parameter

d := η2 − τ2 − λ2 (2.4)

satisfies d = −4c2 and the same is also true in the current setting.

Proposition 2.2. Let Γ be as in Hypothesis 2.1, m, η, τ, λ ∈ R and c > 0. Then,
the following is true:

(i) If d 6= −4c2, then there exists a map Qη,τ,λ : Γ→ C2×2 depending on the pa-
rameters η, τ, λ such that Qη,τ,λ is pointwise invertible and f ∈ domAm,cη,τ,λ

if and only if f ∈ H(σ; Ω+)⊕H(σ; Ω−) and

TD+ f+ = Qη,τ,λT
D
− f−.

(ii) If d = −4c2, then Am,cη,τ,λ = A+
η,τ,λ ⊕ A

−
η,τ,λ, where A±η,τ,λ are the operators

acting in L2(Ω±;C2) given by

A±η,τ,λf =
(
− ic(σ · ∇) +mc2σ3

)
f,

domA±η,τ,λ =
{
f ∈ H(σ; Ω±) :

(
2cσ0 ∓ i(σ · ν)(ησ0 + τσ3 + λi(σ · ν)σ3)

)
TD± f = 0

}
.

The proof of this result can be done in exactly the same way as, e.g., in [4,
Theorem 5.5], [11, Lemma 4.1], [13, Lemma 5.11], or [22, Theorem 2.3], and hence,
we omit it in this paper.
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2.2. Self-adjointness and essential spectrum of Am,cη,τ,λ. In the following the-

orem the self-adjointness and the essential spectrum of Am,cη,τ,λ are discussed. Note

that, in a similar way as it was observed in [10, 11, 13, 22, 37] for compact in-
teraction supports, there is a loss of Sobolev regularity in the operator domain in
the case of critical interaction strengths (d4 − c

2)2 − λ2c2 = 0. Moreover, in the
particular case of Γ being a straight line the spectrum of Am,cη,τ,λ was computed in

[16]; Theorem 2.3 says that the essential spectrum is preserved under the geometric
perturbations as long as Γ is straight outside a compact set. We point out that to
the best of our knowledge item (i) of the following theorem on the Sobolev regu-
larity in domAm,cη,τ,λ was not known in this generality before even for the straight
line.

Theorem 2.3. Let m, η, τ, λ ∈ R, c > 0, d be given in (2.4), and Γ be as in
Hypothesis 2.1. Then, the operator Am,cη,τ,λ is self-adjoint in L2(R2;C2) and the
following holds:

(i) For the domain of Am,cη,τ,λ one has:

(a) If (d4 − c
2)2 − λ2c2 6= 0, then domAm,cη,τ,λ ⊂ H1(R2 \ Γ;C2).

(b) If (d4 −c
2)2−λ2c2 = 0, then domAm,cη,τ,λ 6⊂ Hs(R2 \Γ;C2) for all s > 0.

(ii) For the essential spectrum of Am,cη,τ,λ one has:

(a) If d = 4c2 and λ 6= 0, then

σess(A
m,c
η,τ,λ) = σ(Am,cη,τ,λ) = R.

(b) If d = 4c2 and λ = 0, then

σess(A
m,c
η,τ,λ) = (−∞,−|m|c2] ∪

{
−τ
η
mc2

}
∪ [|m|c2,+∞).

(c) If d 6= 4c2, then

(−∞,−|m|c2] ∪ [|m|c2,+∞) ⊂ σess(A
m,c
η,τ,λ)

and σess(A
m,c
η,τ,λ) ∩ (−|m|c2, |m|c2) coincides with the set{

z±(k) : (d− 4c2)
( η
c2
z±(k) + λk + τm

)
> 0
}
∩ (−|m|c2, |m|c2),

where z±(k), k ∈ R, is given by

z±(k) =
1

η2

c2 +
(
d

4c2 − 1
)2(− η(λk + τm)

±
∣∣∣∣ d4c2 − 1

∣∣∣∣√(τ2c2 +
(
d
4 + c2

)2)
k2 − 2λτmkc2 +

(
λ2c2 +

(
d
4 + c2

)2)
m2

)
.

Moreover, if Γ is the straight line, then σ(Am,cη,τ,λ) = σess(A
m,c
η,τ,λ), i.e. the spectrum

of Am,cη,τ,λ is fully characterized by (ii) in this case.

We point out that an interesting spectral transition appears in the case when
d = 4c2: If λ 6= 0, then always σ(Am,cη,τ,λ) = R, but for λ = 0 the essential spectrum

within the interval (−|m|c2, |m|c2) breaks down to the single point − τηmc
2.

Theorem 2.3 will be proved in Section 4 with the help of a suitable boundary
triple. In Subsection 4.4 we will also show a variant of the Birman-Schwinger
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principle, a Krein type resolvent formula, and an isospectral relation that are useful
in the analysis of Am,cη,τ,λ.

2.3. Special cases. The next results follow immediately from Theorem 2.3 (and
thus, no proofs of these corollaries are given), but we prefer to state them here as
they are more explicit than Theorem 2.3 and of particular interest in applications.
First, we discuss the case of purely electrostatic interactions, i.e. when η ∈ R and
τ = λ = 0. Note that, as in the case of the straight line [15], there appears a
spectral transition at η = ±2c, where an interval of continuous spectrum of Am,cη,0,0

collapses to a single point in the essential spectrum.

Corollary 2.4. Let η ∈ R. Then, one has

σess(A
m,c
η,0,0) =



(−∞, 4c2−η2
4c2+η2 |m|c

2] ∪ [|m|c2,+∞) for η ∈ (−∞,−2c),

(−∞,−|m|c2] ∪ {0} ∪ [|m|c2,+∞) for η = −2c,

(−∞,−|m|c2] ∪ [ 4c2−η2
4c2+η2 |m|c

2,+∞) for η ∈ (−2c, 0),

(−∞,−|m|c2] ∪ [|m|c2,+∞) for η = 0,

(−∞, η
2−4c2

η2+4c2 |m|c
2] ∪ [|m|c2,+∞) for η ∈ (0, 2c),

(−∞,−|m|c2] ∪ {0} ∪ [|m|c2,+∞) for η = 2c,

(−∞,−|m|c2] ∪ [η
2−4c2

η2+4c2 |m|c
2,+∞) for η ∈ (2c,+∞).

For purely Lorentz scalar interactions, i.e. for τ ∈ R and η = λ = 0, the following
result holds. Note that for τm ≥ 0 the essential spectrum of Am,c0,τ,0 coincides with
the spectrum of the free Dirac operator.

Corollary 2.5. Let τ ∈ R. Then, one has

σess(A
m,c
0,τ,0) =

{
(−∞,−|m|c2] ∪ [|m|c2,+∞) for τm ≥ 0,

(−∞,− |4c
2−τ2|

4c2+τ2 |m|c2] ∪ [ |4c
2−τ2|

4c2+τ2 |m|c2,+∞) for τm < 0.

Finally, we consider the case of purely anomalous magnetic interactions, i.e.
when λ ∈ R and η = τ = 0. Note that in this configuration the essential spectrum
of Am,c0,0,λ always coincides with the spectrum of the free Dirac operator.

Corollary 2.6. Let λ ∈ R. Then, one has

σess(A
m,c
0,0,λ) = (−∞,−|m|c2] ∪ [|m|c2,+∞).

2.4. Geometrically induced bound states. In the present paper we prove the
existence of geometrically induced bound states in two situations: Firstly, for
Am,cη/2,η/2,0 for large values of c with the help of the nonrelativistic limit, and secondly

for Am,c0,τ,0 by using the test functions from [30].

The nonrelativistic limit is one way to relate a relativistic Dirac operator Am,c

with the Schrödinger operator H that describes the same physical system [45, Chap-
ter 6]. To compute the nonrelativistic limit, one has to subtract the particle’s
rest energy mc2, which is a purely relativistic quantity, from the total energy and
compute the limit in the operator norm of the resolvent of the resulting operator
Am,c −mc2 for c → +∞. The expected limit is then the resolvent of H times a
projection onto the upper component. This result is of interest by its own, as it
gives a physical interpretation of the model, but taking properties of convergence
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of the resolvents into account, this allows to relate the spectral properties of H to
those of Am,c for large values of c.

In this paper we consider a simple case and compute the nonrelativistic limit of
Am,cη/2,η/2,0, see also Remark 5.3 for a more general consideration. In the following,

we assume that Γ is given as in Hypothesis 2.1 and that m > 0. First, we have to
introduce the expected limit operator, a Schrödinger operator with a δ-potential
supported on Γ. Define for η ∈ R in L2(R2;C) the sesquilinear form

hη[f, g] :=
1

2m
(∇f,∇g)L2(R2;C) + η(TDf, TDg)L2(Γ;C), dom hη = H1(R2;C),

(2.5)
where TD : H1(R;C) → H1/2(Γ;C) is the Dirichlet trace operator. It is well-
known that hη is densely defined, symmetric, and closed [20, 28]. Hence, by the
first representation theorem [36, Chapter VI, Theorem 2.1] there exists a unique self-
adjoint operator Hη that is associated with hη. The operator Hη can be regarded
as the rigorous way to interpret the formal expression − 1

2m∆ + ηδΓ. With this
notation we can formulate the result about the nonrelativistic limit of Am,cη/2,η/2,0,

which yields, combined with a result from [28], a statement about the existence of
geometrically induced bound states:

Theorem 2.7. Let η ∈ R, m > 0, and Γ be as in Hypothesis 2.1. Then, there
exists z0 < 0 such that every z ∈ (−∞, z0) belongs to ρ(Am,cη/2,η/2,0 −mc

2) ∩ ρ(Hη),

whenever c is above a z-dependent threshold value cz. Moreover, there exists a
constant K > 0 such that∥∥∥∥(Am,cη/2,η/2,0 − (z +mc2)

)−1 − (Hη − z)−1

(
1 0
0 0

)∥∥∥∥
L2(R2;C2)→L2(R2;C2)

≤ K

c

for all c > cz. In particular, if Γ is not the straight line, η < 0, and c is sufficiently
large, then σdisc(Am,cη/2,η/2,0) 6= ∅.

Theorem 2.7 will be proved in Section 5 with the help of the Krein type resolvent
formula for Am,cη/2,η/2,0 provided in Section 4. In this resolvent formula, convergence

of each term appearing there can be proved, when c→ +∞, which yields the claim
about the nonrelativistic limit. The statement about the discrete spectrum is then
a simple consequence of the nonrelativistic limit, the non-emptiness of σdisc(Hη)
under the stated assumptions shown in [28], and general results that are known for
operators that converge in the norm resolvent sense.

Another way to show the existence of geometrically induced bound states is to

transfer a recent result from [30]. Define for ω ∈ (0, π2 ) the broken line Γ̃ω of opening
angle 2ω by

Γ̃ω :=
{

(r cos(ω), r sin(ω)) : r > 0
}
∪
{

(r cos(ω),−r sin(ω)) : r > 0
}
. (2.6)

It was shown in [30] that a Dirac operator with a Lorentz scalar δ-shell interaction

supported on Γ̃ω of strength τ ∈ (−∞, 0) \ {−2} always has non-empty discrete
spectrum, if ω is sufficiently small. This can be transferred to obtain an associated
result for Am,c0,τ,0, if the interaction support Γ is a compact smooth perturbation of

Γ̃ω. We remark that any curve Γ satisfying Hypothesis 2.1, that is not a compact
perturbation of the straight line, is, up to a translation and rotation, of this form
and that the following result, in contrast to the one in Theorem 2.7, can be shown
for arbitrary c > 0.
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Theorem 2.8. Let τ ∈ (−∞, 0) \ {−2} and Γ be as in Hypothesis 2.1 such that

Γ coincides with Γ̃ω away from a compact set in R2, and m, c > 0. Then, for
any N ∈ N there exists an angle ω? ∈ (0, π2 ) depending on N, τ such that for all
ω ∈ (0, ω?] the operator Am,c0,τ,0 has at least N discrete eigenvalues with multiplicities
taken into account.

Theorem 2.8 is also shown in Section 5 with the help of the min-max principle
applied to the non-negative and self-adjoint operator (Am,c0,τ,0)2 and a family of test

functions constructed in [30] that are supported in a region where Γ and Γ̃ω coincide,
which allows to transfer the result from [30] to the situation studied in this paper.

3. Preliminaries

In this section we collect several results, that are needed to prove the main
claims made on Am,cη,τ,λ in Section 2. First, in Section 3.1 we summarize some well-

known properties of the free Dirac operator Am,c0 and in Section 3.2 we state some
properties of integral operators that are associated with the integral kernel of the
resolvent of Am,c0 . In Section 3.3 we construct a boundary triple that is useful to
study Am,cη,τ,λ. Throughout this section, we always assume that Γ ⊂ R2 is as in
Hypothesis 2.1.

3.1. The free Dirac operator and function spaces for Dirac operators. In
this section we recall the definition of the free Dirac operator in R2 and state several
related results that are needed in the main part of the paper. Let σ1, σ2, σ3 be the
Pauli spin matrices defined in (1.2). For m ∈ R and c > 0 the free Dirac operator
in R2 is

Am,c0 f := −ic(σ · ∇)f +mc2σ3f, domAm,c0 = H1(R2;C2). (3.1)

We will sometimes make use of the relation Am,c0 = cAmc,10 . With the help of the
Fourier transform it is not difficult to show that Am,c0 is self-adjoint in L2(R2;C2)
and that

σ(Am,c0 ) = σess(A
m,c
0 ) = (−∞,−|m|c2] ∪ [|m|c2,+∞).

Moreover, for z ∈ ρ(Am,c0 ) the resolvent of Am,c0 is given by

(Am,c0 − z)−1f(x) =

∫
R2

Gm,cz (x− y)f(y)dy, f ∈ L2(R2;C2), x ∈ R2,

where

Gm,cz (x) =
1

2πc

√
z2

c2 − (mc)2K1

(
−i
√

z2

c2 − (mc)2|x|
)

(σ · x)

|x|

+
1

2πc
K0

(
−i
√

z2

c2 − (mc)2|x|
)(z

c
σ0 +mcσ3

) (3.2)

and Kj is the modified Bessel function of the second kind and order j; cf. [1].
We remark that we always choose the complex square root such that for all w ∈
C \ [0,+∞) one has Im(

√
w) > 0 and hence

√
w = −

√
w for w ∈ C \ [0,+∞). Note

also that Am,c0 = cAmc,10 yields

(Am,c0 − z)−1 =
1

c

(
Amc,10 − z

c

)−1

and Gm,cz =
1

c
Gmc,1z/c , z ∈ ρ(Am,c0 ). (3.3)
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Recall that Ω± ⊂ R2 are the two open sets with joint boundary ∂Ω± = Γ, see
Hypothesis 2.1, and that we denote elements in L2(Ω±;C2) with a subscript ±. We
consider the spaces

H(σ,Ω±) :=
{
f± ∈ L2(Ω±;C2) : (σ · ∇)f± ∈ L2(Ω±;C2)

}
, (3.4)

which are, endowed with the norms

‖f±‖2H(σ,Ω±) := ‖f±‖2L2(Ω±;C2) + ‖(σ · ∇)f±‖2L2(Ω±;C2),

Hilbert spaces; cf. [17, Lemma 2.1] for similar arguments in the case when Γ is
bounded. An important property of H(σ,Ω±) is the fact that the trace operator
can be extended to these spaces. The proof of the next lemma for our geometric
setting follows very similar ideas as the ones in [17, Lemma 2.3] or [39, Lemma 2.3].

Lemma 3.1. The map TD±,0 : H1(Ω±;C2) → H1/2(Γ;C2), TD±,0f = f |Γ, extends

uniquely by continuity to a bounded linear operator TD± : H(σ,Ω±)→ H−1/2(Γ;C2).

In the main part of the paper we will work with the densely defined closed
symmetric restriction S of Am,c0 onto H1

0 (R2 \ Γ;C2), that is,

Sf = −ic(σ · ∇)f +mc2σ3f, domS = H1
0 (R2 \ Γ;C2), (3.5)

and its adjoint

S∗f =
(
− ic(σ · ∇) +mc2σ3

)
f+ ⊕ (−ic(σ · ∇) +mc2σ3

)
f−,

domS∗ = H(σ,Ω+)⊕H(σ,Ω−).
(3.6)

3.2. Integral operators for the Dirac operator. In this section, we introduce
two families of integral operators that will play an important role in the analysis
of Am,cη,τ,λ. For this, recall the fundamental solution Gm,cz in (3.2) and note that Γ

given in Hypothesis 2.1 belongs to the class of curves considered in [12].

Following [12, Appendix C], we introduce for

z ∈ ρ(Am,c0 ) = C \
(
(−∞,−|m|c2] ∪ [|m|c2,+∞)

)
the operator

(Φm,cz )∗ := TD(Am,c0 − z)−1 : L2(R2;C2)→ H1/2(Γ;C2), (3.7)

which is well-defined and bounded due to the mapping properties of the Dirichlet
trace TD : H1(R2)→ H1/2(Γ) and the resolvent of Am,c0 . Hence, also its anti-dual

Φm,cz :=
(
(Φm,cz )∗

)′
: H−1/2(Γ;C2)→ L2(R2;C2) (3.8)

is well-defined and bounded. Using (3.7) and Gm,cz (x)∗ = Gm,cz (−x) one finds that
the action of Φm,cz on ϕ ∈ L2(Γ;C2) is

Φm,cz ϕ(x) =

∫
Γ

Gm,cz (x− y)ϕ(y)dσ(y), x ∈ R2 \ Γ.

Moreover, as ker(Φm,cz )∗ = ran(S − z), where S is the symmetric operator in (3.5),
and ran(Φm,cz )∗ is closed, we get that

ran Φm,cz = ker(S∗ − z) ⊂ H(σ,Ω+)⊕H(σ,Ω−). (3.9)
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Since by (3.3) one has Φm,cz = 1
cΦmc,1z/c and Φmc,1z/c = Φz/c in the notation of [12]

(when m is replaced by mc), we conclude from [12, Proposition 2.8] that Φm,cz has
the bounded restriction

Φ̃m,cz : H1/2(Γ;C2)→ H1(R2 \ Γ;C2). (3.10)

The boundary integral operator formally given by

Cm,cz ϕ(x) := p.v.

∫
Γ

Gm,cz (x− y)ϕ(y)dσ(y), x ∈ Γ, ϕ ∈ L2(Γ;C2), (3.11)

where z ∈ ρ(Am,c0 ) and the integral is understood as the principal value, will be

used throughout this paper. Since Cm,cz = 1
cC

mc,1
z/c holds by (3.3) and Cmc,1z/c = Cz/c

in the notation of [12] (when m is replaced by mc), we get with [12, Proposition 2.9]
that Cm,cz gives rise to a bounded operator in Hr(Γ;C2) for r ∈ [− 1

2 ,
1
2 ]. Moreover,

as Gm,cz (x)∗ = Gm,cz (−x), x ∈ R2 \ {0}, it can be shown that the adjoint of Cm,cz ,
viewed as an operator in L2(Γ;C2), is (Cm,cz )∗ = Cm,cz .

Next, we explain that in a suitable sense Cm,cz can be regarded as a compact
perturbation of the same mapping Cm,c,Σz on the straight line Σ = R× {0}, i.e. of
the operator that acts on ϕ ∈ L2(Σ;C2) as

Cm,c,Σz ϕ(s, 0) := p.v.

∫ ∞
−∞

Gm,cz (s− t, 0)ϕ(t, 0)dt, s ∈ R. (3.12)

In the formulation of the next proposition, the multiplication operator with the
matrix-valued function

V =

(
1 0
0 t

)
, (3.13)

where t = t1 + it2 with (t1, t2) = γ̇ ◦ γ−1 being the unit tangent vector at Γ,
will play an important role. Since t is C∞-smooth and |t| = 1, one clearly has
that for any r ∈ R the multiplication with V gives rise to a bounded and bijective
operator in Hr(Γ;C2). Moreover, recall the definition of the map Ug from (1.4) for
any arc-length parametrization g of an unbounded curve. The technical proof of
Proposition 3.2 is given in Appendix B.

Proposition 3.2. Let z ∈ ρ(Am,c0 ) = C \ ((−∞,−|m|c2]∪ [|m|c2,+∞)), Γ be as in
Hypothesis 2.1, and x(t) = (t, 0) be a parametrization of Σ. Then the operator

UγV (σ · ν)Cm,cz (σ · ν)V ∗U−1
γ − Uxσ2Cm,c,Σz σ2U

−1
x : H−1/2(R;C2)→ H1/2(R;C2)

is compact.

Remark 3.3. In fact, we will show in the proof of Proposition 3.2 that the map
UγV (σ·ν)Cm,cz (σ·ν)V ∗U−1

γ −Uxσ2Cm,c,Σz σ2U
−1
x can be extended, for any r ∈ [−1, 0],

to a compact operator from Hr(R;C2) to Hr+1(R;C2).

Finally, we state a useful variant of the Plemelj-Sokhotskii formula, which relates
the trace of Φm,cz ϕ to Cm,cz ϕ; cf. [12, Proposition 2.9 (ii)]. For a direct proof of
this formula one can also follow line by line the proof of [11, Proposition 3.4] using
the classical Plemelj-Sokhotskii formula for the Cauchy transform on unbounded
curves, see, e.g., [33, Proposition 4.6.1].
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Lemma 3.4. Let z ∈ ρ(Am,c0 ) = C \ ((−∞,−|m|c2] ∪ [|m|c2,+∞)). Then one has

for all ϕ ∈ H−1/2(Γ;C2)

TD± Φm,cz ϕ = ∓ i

2c
(σ · ν)ϕ+ Cm,cz ϕ.

Eventually, we note that Lemma 3.4 allows to show, in the same way as in [3,
Lemma 3.3 (ii)], the identity

− 4c2
(
(σ · ν)Cm,cz

)2
= −4c2

(
Cm,cz (σ · ν)

)2
= I, z ∈ ρ(Am,c0 ). (3.14)

3.3. A boundary triple for Am,cη,τ,λ. In this section we show how the operator

Am,cη,τ,λ defined in (2.3) can be described with the help of a boundary triple. The
general definition and some useful properties of boundary triples are recalled in
Appendix A. As before, Γ, Ω±, and ν are as in Hypothesis 2.1, and we use for
f : R2 → C2 the notation f± := f � Ω±. First, we introduce an auxiliary Dirac
operator and discuss its properties. Recall that Am,c0 is the free Dirac operator
given by (3.1), define the unitary operator

U : L2(R2;C2)→ L2(R2;C2), U(f+ ⊕ f−) = f+ ⊕ (−f−),

and introduce in L2(R2;C2) the operator

B := U∗Am,c0 U. (3.15)

In a more explicit form the operator B is given by

Bf =
(
− ic(σ · ∇) +mc2σ3

)
f+ ⊕

(
− ic(σ · ∇) +mc2σ3

)
f−,

domB =
{
f = f+ ⊕ f− ∈ H1(Ω+;C2)⊕H1(Ω−;C2) : TD+ f+ + TD− f− = 0

}
.

The basic properties of B are stated in the following lemma. Recall that Φ̃m,cz and
Cm,cz are the operators defined by (3.10) and (3.11), respectively.

Lemma 3.5. The operator B is self-adjoint in L2(R2;C2), its spectrum is given by
σ(B) = σess(B) = σ(Am,c0 ) = (−∞,−|m|c2] ∪ [|m|c2,+∞), and for z ∈ ρ(B) one
has

(B − z)−1 = (Am,c0 − z)−1 + 4c2Φ̃m,cz (σ · ν)Cm,cz (σ · ν)(Φm,cz )∗.

Proof. Since the operator U is unitary, it follows from the definition of B in (3.15)
and the properties of Am,c0 in (3.1) that B is self-adjoint in L2(R2;C2) and that
σ(B) = σ(Am,c0 ). It remains to show the claimed resolvent formula. For this, fix
z ∈ ρ(B) = ρ(Am,c0 ) and f ∈ L2(R2;C2), and define

g := (Am,c0 − z)−1f + 4c2Φ̃m,cz (σ · ν)Cm,cz (σ · ν)(Φm,cz )∗f.

Then, by the mapping properties of (Am,c0 −z)−1, Φ̃m,cz , Cm,cz , and (Φm,cz )∗ in (3.10),
(3.11), and (3.7), respectively, we get g ∈ H1(Ω+;C2) ⊕ H1(Ω−;C2). Moreover,
using Lemma 3.4 and (3.14), we find

TD+ g+ + TD− g− = 2TD(Am,c0 − z)−1f + 8c2Cm,cz (σ · ν)Cm,cz (σ · ν)(Φm,cz )∗f

= 2TD(Am,c0 − z)−1f − 2(Φm,cz )∗f = 0

and hence, g ∈ domB. Finally, equation (3.9) yields

((B − z)g)± = (−ic(σ · ∇) +mc2σ3 − zσ0)
(
(Am,c0 − z)−1f

)
± = f±.

Taking the injectivity of B−z and the definition of g into account, we see that also
the claimed resolvent formula is true. �
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Next, we show how a boundary triple that is useful to study Am,cη,τ,λ is given, see

also [13, Theorem 4.8] and [11, 22] for similar constructions. In order to formulate
the result, recall the definition of the map Λ in (1.5), of the free Dirac operator Am,c0

in (3.1), of its restriction S and extension S∗ in (3.5) and (3.6), respectively, of the
boundary integral operator Cm,cz in (3.11), and of the unitary map V in (3.13).

Proposition 3.6. Let ζ ∈ ρ(Am,c0 ). Define the maps Γ0,Γ1 : domS∗ → L2(Γ;C2)
acting on f = f+ ⊕ f− ∈ domS∗ by

Γ0f :=
1

2
Λ−1V

(
TD+ f+ + TD− f−

)
,

Γ1f := −Λ
(
icV (σ · ν)(TD+ f+ − TD− f−)

+ c2V (σ · ν)(Cm,cζ + Cm,c
ζ

)(σ · ν)(TD+ f+ + TD− f−)
)
.

Then {L2(Γ;C2),Γ0,Γ1} is a boundary triple for S∗. Moreover, the associated γ-
field and Weyl function are given by

ρ(Am,c0 ) 3 z 7→ γ(z) = −4c2Φm,cz (σ · ν)Cm,cz (σ · ν)V ∗Λ

and

ρ(Am,c0 ) 3 z 7→M(z) = 4c2ΛV (σ · ν)

(
Cm,cz − 1

2
(Cm,cζ + Cm,c

ζ
)

)
(σ · ν)V ∗Λ,

respectively.

Proof. We apply the construction from the end of Appendix A leading to Propo-
sition A.3 with the self-adjoint operator B in (3.15) and the boundary mapping
T : domB → L2(Γ;C2) given by

T f = −icΛV (σ · ν)(TD+ f+ − TD− f−), f ∈ domB. (3.16)

Since TD± : H1(Ω±;C2) → H1/2(Γ;C2) is surjective, V and σ · ν give rise to bijec-

tive maps in H1/2(Γ;C2) (these functions are pointwise invertible and C∞-smooth),
and Λ : H1/2(Γ;C2) → L2(Γ;C2) is bijective by construction (1.5), the operator
T is surjective. Moreover, as domB is a closed subspace of H1(R2 \ Γ;C2), the
embedding of domB equipped with the norm inherited from H1(R2 \ Γ;C2) into
domB equipped with the graph norm is bounded and bijective. Therefore, the
graph norm induced by B and the norm in H1(R2 \Γ;C2) are equivalent on domB.
Hence, by the properties of TD± , σ · ν, V , and Λ the map T is continuous. Further-
more, ker T = H1

0 (R2 \ Σ;C2) is dense in L2(R2;C2). Next, with Lemma 3.4 and
Lemma 3.5, one finds

Gz = (T (B − z)−1)∗ = −4c2Φm,cz (σ · ν)Cm,cz (σ · ν)V ∗Λ (3.17)

for z ∈ ρ(Am,c0 ) = ρ(B). Recall that ζ ∈ ρ(B). For f = fζ + Gζξ with fζ ∈ domB
and ξ ∈ L2(Γ;C2) it follows from (3.17), Lemma 3.4, and (3.14) that

1

2
Λ−1V

(
TD+ + TD−

)
(fζ + Gζξ)

= −2c2Λ−1V
(
TD+ + TD−

)
Φm,cζ (σ · ν)Cm,cζ (σ · ν)V ∗Λξ

= −4c2Λ−1V
(
Cm,cζ (σ · ν)

)2
V ∗Λξ

= ξ,

(3.18)
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and hence we obtain the representation of Γ0 from Proposition A.3. In order to
obtain the formula for Γ1 we note first that the mapping T in (3.16) can be extended
onto domS∗. Using (3.16), (3.17), and Lemma 3.4 we then compute

T Gzξ = 4ic3ΛV (σ · ν)(TD+ − TD− )Φm,cz (σ · ν)Cm,cz (σ · ν)V ∗Λξ

= 4c2ΛV (σ · ν)Cm,cz (σ · ν)V ∗Λξ
(3.19)

for z ∈ ρ(Am,c0 ) = ρ(B) and ξ ∈ L2(Γ;C2). Now consider f = fζ + Gζξ = fζ + Gζξ
and observe that by Proposition A.3

Γ1f =
1

2
T (fζ + fζ) =

1

2
T (f − Gζξ + f − Gζξ) = T f − 1

2
T
(
Gζ + Gζ

)
ξ. (3.20)

Inserting T f and the expressions T Gζξ, T Gζξ from (3.19) in (3.20), and making use

of ξ = Γ0f = 1
2Λ−1V (TD+ f+ + TD− f−) we obtain the representation of Γ1. Finally,

the expressions for the γ-field and Weyl function follow immediately from γ(z) = Gz
and M(z) = T (Gz − 1

2 (Gζ + Gζ)) in Proposition A.3. �

In the following proposition we describe the operator Am,cη,τ,λ with the help of

the boundary triple from the previous proposition. For similar arguments see [13,
Section 6] and also [22, Proposition 6.3] or [11, Proposition 4.3]. Recall that V is
given by (3.13) and define for η, τ, λ ∈ R the matrix

F :=

(
η + τ λ
λ η − τ

)
, (3.21)

implying

V ∗FV = ησ0 + τσ3 + iλ(σ · ν)σ3. (3.22)

Proposition 3.7. Let η, τ, λ ∈ R and define in L2(Γ;C2) the operator

Θϕ := Λ
[
F − 2c2V (σ · ν)(Cm,cζ + Cm,c

ζ
)(σ · ν)V ∗

]
Λϕ,

dom Θ =
{
ϕ ∈ L2(Γ;C2) :[

F − 2c2V (σ · ν)(Cm,cζ + Cm,c
ζ

)(σ · ν)V ∗
]
Λϕ ∈ H1/2(Γ;C2)

}
.

(3.23)

Then Am,cη,τ,λ = S∗ � ker(Γ1 −ΘΓ0).

Proof. Recall that f ∈ domAm,cη,τ,λ if and only if f± ∈ H(σ,Ω±) and

−ic(σ · ν)(TD+ f+ − TD− f−) =
1

2
(ησ0 + τσ3 + iλ(σ · ν)σ3)(TD+ f+ + TD− f−).

Using (3.22) and

1

2
(TD+ f+ + TD− f−) = V ∗ΛΓ0f,

−ic(σ · ν)(TD+ f+ − TD− f−) = V ∗Λ−1Γ1f + 2c2(σ · ν)(Cm,cζ + Cm,c
ζ

)(σ · ν)V ∗ΛΓ0f,

one finds that f ∈ domAm,cη,τ,λ if and only if f ∈ domS∗ and Γ1f −ΘΓ0f = 0. �



15

4. Proof of Theorem 2.3 and further properties of Am,cη,τ,λ

The claims in Theorem 2.3 are shown in various steps: Subsection 4.1 is devoted
to the self-adjointness of Am,cη,τ,λ, the claim in Theorem 2.3 (i) about the Sobolev

regularity of domAm,cη,τ,λ is then shown in Subsection 4.2. Afterwards, σess(A
m,c
η,τ,λ) is

computed in Subsection 4.3. Finally, in Subsection 4.4 we state some further prop-
erties of Am,cη,τ,λ like a useful Krein type resolvent formula and a Birman-Schwinger
principle.

We will make use of the following two main ingredients: We use that Am,cη,τ,λ can
be described with the boundary triple in Proposition 3.6 as explained in Proposi-
tion 3.7, and the abstract results in Appendix A. And we will use that the claimed
properties can be obtained explicitly when the interaction support is the straight
line Σ; cf. [16]. To distinguish the appearing objects on the straight line from
the case of the more general interaction support Γ, we will denote them with a
superindex Σ. Eventually, we will make often use of the arc-length parametrization

x : R→ R2, x(t) = (t, 0), (4.1)

of the straight line Σ.

4.1. Self-adjointness of Am,cη,τ,λ. Let {L2(Γ;C2),Γ0,Γ1} be the boundary triple

for S∗ from Proposition 3.6 and Θ be defined by (3.23). Recall that

Am,cη,τ,λ = S∗ � ker(Γ1 −ΘΓ0).

Hence, by Theorem A.2 the operator Am,cη,τ,λ is self-adjoint in L2(R2;C2) if and only

if Θ is self-adjoint in L2(Γ;C2). We show that the latter is the case.

Denote by ΛΣ the map in (1.5) on Σ, by Cm,c,Σz the operator in (3.11) on the
straight line Σ, and we write ΘΣ for the parameter defined as in (3.23) on Σ. Since
σ · νΣ = −σ2 and V Σ = σ0 on Σ, one has the more explicit representation

ΘΣ = ΛΣ
[
F − 2c2σ2(Cm,c,Σζ + Cm,c,Σ

ζ
)σ2

]
ΛΣ (4.2)

and as in (3.23) this map is defined on the maximal domain. This operator is self-
adjoint in L2(Σ;C2) by Theorem A.2 and Proposition 3.7 (applied for Γ = Σ), as

Am,c,Ση,τ,λ is self-adjoint in L2(R2;C2); this follows for d 6= −4c2 from [16, Section 6]

noting that Am,c,Ση,τ,λ = cAmc,1,Ση/c,τ/c,λ/c and Amc,1,Ση/c,τ/c,λ/c = Aη/c,τ/c,λ/c is the operator

studied in [16], when m is replaced by mc, and for d = −4c2 from [34]. Next, recall
that γ is the arc-length parametrization of Γ given by (2.1) and that x is the arc-
length parametrization of Σ in (4.1). By definition, one has ΛΣ = U−1

x UγΛU−1
γ Ux.

Then, by Proposition 3.2

UγΘU−1
γ − UxΘΣU−1

x

= −2c2UγΛU−1
γ

[
UγV (σ · ν)Cm,cζ (σ · ν)V ∗U−1

γ − Uxσ2Cm,c,Σζ σ2U
−1
x

+ UγV (σ · ν)Cm,c
ζ

(σ · ν)V ∗U−1
γ − Uxσ2Cm,c,Σζ

σ2U
−1
x

]
UγΛU−1

γ ,

(4.3)

defined on its natural maximal domain, can be extended to a compact operator
in L2(R;C2). Since the adjoint of Cm,cζ in L2(Γ;C2) is given by Cm,c

ζ
, the right

hand side of the latter equation is symmetric and can be extended to a self-adjoint
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operator. As ΘΣ is self-adjoint in L2(Σ;C2) and Uγ : L2(Γ;C2) → L2(R;C2) and
Ux : L2(Σ;C2)→ L2(R;C2) are unitary, this implies that Θ is self-adjoint.

4.2. Sobolev regularity in domAm,cη,τ,λ. In this subsection we show item (i) of
Theorem 2.3. For this we prove an auxiliary lemma in which we analyze dom Θ.
Afterwards the Krein type resolvent formula for Am,cη,τ,λ from Theorem A.2 allows us

to show the claims on domAm,cη,τ,λ. Sincemc2σ3 is a bounded perturbation of the self-

adjoint operator Am,cη,τ,λ, it does not affect domAm,cη,τ,λ, and hence, it is no restriction
to assume in this subsection that m 6= 0 and to choose ζ = 0 in Proposition 3.6.

Lemma 4.1. Assume that m 6= 0. Then, for the domain of the operator Θ defined
in (3.23) with ζ = 0 one has:

(a) If (d4 − c
2)2 − λ2c2 6= 0, then dom Θ = H1(Γ;C2).

(b) If (d4 − c
2)2 − λ2c2 = 0, then dom Θ 6⊂ Hs(Γ;C2) for all s > 0.

Proof. The proof of this lemma is split into two steps: We analyze dom ΘΣ first
and with the help of Proposition 3.2 we transfer these results to the case of more
general curves Γ.

Step 1. We use the Fourier transform F in L2(R;C2) = UxL
2(Σ;C2) and note

first that FUxCm,c,Σz U−1
x F−1 is the maximal multiplication operator associated

with the function

cz(p) =
1

2
√
p2c2 + (mc2)2 − z2

(
z
c +mc p
p z

c −mc

)
;

to see this, one can apply [15, Lemma 2.1] and note with (3.3) that Cm,c,Σz =
1
cC

mc,1,Σ
z/c and Cz = Cmc,1,Σz in the notation of [15]. Recall that we chose ζ = 0 in

the definition of ΘΣ. Hence, with (4.2) one sees that the operator FUxΘΣU−1
x F−1

is the maximal multiplication operator associated with the function

θ(p) =
√
p2 + 1

[
F − σ2

2c2√
p2c2 + (mc2)2

(
mcσ3 + pσ1

)
σ2

]
= θ1(p) + θ2(p)

with

θ1(p) =
√
p2 + 1

 η + τ λ+ 2pc√
p2+(mc)2

λ+ 2pc√
p2+(mc)2

η − τ

 ,

θ2(p) =
2
√
p2 + 1√

p2 + (mc)2
mc2σ3.

Since θ2 is a bounded function, its associated multiplication operator is bounded
and everywhere defined in L2(R;C2). The eigenvalues of θ1(p) are given by

µ±(p) =
√
p2 + 1

(
η ±

√
η2 − d+

4p2c2

p2 + (mc)2
+

4pcλ√
p2 + (mc)2

)
=
√
p2 + 1

(
η ±

√
η2 − d+ 4c2 + 4λc sign (p) + f(p)

)
,

where d is given by (2.4) and f is a continuous function such that f(p) = O
(

1
p2

)
for p → ±∞. Hence, if (d4 − c

2)2 − λ2c2 6= 0, then µ±(p) ∼
√
p2 + 1 and thus,

dom ΘΣ = H1(Σ;C2). On the other hand, if (d4 − c
2)2 − λ2c2 = 0, then at least
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one of the functions µ± is bounded on R+ or on R− (or bounded everywhere on R,
if 0 = λ = d − 4c2), implying that dom ΘΣ 6⊂ Hs(Σ;C2) for all s > 0. Thus, the
claim of the lemma is true for the straight line Γ = Σ.

Step 2. Recall that UγΘU−1
γ −UxΘΣU−1

x can be extended to a compact operator

in L2(R;C), see Proposition 3.2 and (4.3). Hence, the maximal domain of Θ can
be described in the form dom Θ = dom (ΘΣU−1

x Uγ) and now the claim follows from
our observation in Step 1. �

Proof of Theorem 2.3 (i). As explained above we can assume, without loss of gen-
erality, that m 6= 0, and choose ζ = 0 in (3.23). To prove item (a) we use
domAm,cη,τ,λ = ran(Am,cη,τ,λ − z)−1 for z ∈ C \ R and the resolvent formula

(Am,cη,τ,λ − z)
−1 = (Am,c0 − z)−1 + γ(z)

(
Θ−M(z)

)−1
γ(z)∗ (4.4)

from Theorem A.2 (iv). If (d4 − c
2)2 − λ2c2 6= 0, then by Lemma 4.1 one has

dom (Θ−M(z)) = dom Θ = H1(Γ;C2).

Hence, ran(Am,c0 − z)−1 = domAm,c0 = H1(R2;C2), the explicit form γ(z) =
−4c2Φm,cz (σ · ν)Cm,cz (σ · ν)V ∗Λ from Proposition 3.6, and the mapping properties
in (1.5), (3.10), and (3.11) imply domAm,cη,τ,λ ⊂ H1(R2 \Γ;C2), that is, the assertion

in Theorem 2.3 (i) (a) holds.

Next, we show assertion (b), i.e. that domAm,cη,τ,λ 6⊂ Hs(R2 \ Γ;C2) for all s > 0,

if (d4 − c2)2 − λ2c2 = 0. Note that, due to the surjectivity of (Γ0,Γ1), for all
ϕ ∈ dom Θ there exists f ∈ domS∗ such that Γ0f = ϕ and Γ1f = Θϕ. Hence, for
each ϕ ∈ dom Θ there exists f ∈ domAm,cη,τ,λ such that Γ0f = ϕ. If we assume now

domAm,cη,τ,λ ⊂ Hs(R2 \ Γ;C2) for an s > 0, then by the definition of Γ0 we would

conclude that any ϕ ∈ dom Θ also belongs to Hs(Γ;C2). However, this contradicts
Lemma 4.1, showing that also Theorem 2.3 (i) (b) is true. �

4.3. Essential spectrum of Am,cη,τ,λ. First, we claim that for all combinations
η, τ, λ ∈ R we have

(−∞,−|m|c2] ∪ [|m|c2,+∞) ⊂ σess(A
m,c
η,τ,λ), (4.5)

which can be proved via a suitable singular sequence. To show (4.5), we can assume
that Γ ⊂ [0,+∞) × R. In fact, if this is not the case, then via a suitable rotation
and translation one can transform Am,cη,τ,λ to a unitary equivalent Dirac operator,

which may have different Dirac matrices α1, α2, β ∈ C2×2 instead of σ1, σ2, σ3, see,
e.g., [35, p. 150] or [43, Proposition 4], with a singular potential that is supported
on a curve contained in [0,+∞)× R, so this assumption is not a restriction.

Let now z ∈ (−∞,−|m|c2) ∪ (|m|c2,+∞) be fixed and consider for n ∈ N the
function

fn(x1, x2) :=
1

n
χ

(
1

n
|x− yn|

)
ei
√
z2−m2c4x1/c

(√
z2 −m2c4σ1 +mc2σ3 + zσ0

)
ξ,

where χ : R→ [0, 1] is a C∞-function such that χ(t) = 1 for |t| ≤ 1
2 and χ(t) = 0 for

|t| ≥ 1, the vector ξ ∈ C2 is chosen such that (
√
z2 −m2c4σ1 +mc2σ3 + zσ0)ξ 6= 0,

and we set yn := (0,−n2), n ∈ N. Then fn ∈ domAm,cη,τ,λ and one can show

as in [10, Theorem 5.7 (i)] that ‖(Am,cη,τ,λ − z)fn‖/‖fn‖ → 0 for n → ∞. Since

z ∈ (−∞,−|m|c2) ∪ (|m|c2,+∞) was arbitrary, the inclusion (4.5) follows.



18 J. BEHRNDT, P. EXNER, M. HOLZMANN, AND M. TUŠEK

For m = 0 the inclusion (4.5) implies σess(A
0,c
η,τ,λ) = R, so there is nothing

left to show. Hence we can assume m 6= 0 in the following. In order to analyze
σess(A

m,c
η,τ,λ)∩ (−|m|c2, |m|c2), we use that by Proposition 3.7 and Theorem A.2 (iii)

z ∈ σess(A
m,c
η,τ,λ) ∩ (−|m|c2, |m|c2) if and only if 0 ∈ σess(Θ−M(z)), (4.6)

where M is the Weyl function of the boundary triple in Proposition 3.6. Using the
definition of Θ in (3.23) one verifies for z ∈ (−|m|c2, |m|c2)

Θ−M(z) = Λ[F − 4c2V (σ · ν)Cm,cz (σ · ν)V ∗]Λ

and in the same way for the straight line

ΘΣ −MΣ(z) = ΛΣ[F − 4c2σ2Cm,c,Σz σ2)]ΛΣ.

Since ΛΣ = U−1
x UγΛU−1

γ Ux we obtain

Uγ(Θ−M(z))U−1
γ − Ux(ΘΣ −MΣ(z))U−1

x

= −4c2UγΛU−1
γ

[
UγV (σ · ν)Cm,cz (σ · ν)V ∗U−1

γ − Uxσ2Cm,c,Σz σ2U
−1
x

]
UγΛU−1

γ

and it follows from Proposition 3.2 that this operator can be extended to a compact
operator in L2(R;C2). Since Uγ and Ux are unitary, we conclude that

σess(Θ−M(z)) = σess(Θ
Σ −MΣ(z)),

and hence, by (4.6),

z ∈ σess(A
m,c
η,τ,λ) ∩ (−|m|c2, |m|c2) if and only if 0 ∈ σess(Θ

Σ −MΣ(z)).

Applying Theorem A.2 (iii) and Proposition 3.7 to the Dirac operator Am,c,Ση,τ,λ with

the singular interaction supported on the straight line Σ, we find σess(A
m,c
η,τ,λ) =

σess(A
m,c,Σ
η,τ,λ ), which finally yields the statement in Theorem 2.3 (ii); this follows

in the case η2 − τ2 − λ2 6= −4c2 from [16, Theorem 6.2] noting that Am,c,Ση,τ,λ =

cAmc,1,Ση/c,τ/c,λ/c and Amc,1,Ση/c,τ/c,λ/c = Aη/c,τ/c,λ/c is the operator studied in [16], when

m is replaced by mc; to obtain the result, it is convenient to replace the term k in
[16, Theorem 6.2] by kc. The claim is also true for η2 − τ2 − λ2 = −4c2, which is
excluded in [16], see [34].

Finally, the claim that σ(Am,cη,τ,λ) = σess(A
m,c
η,τ,λ), if Γ = Σ is the straight line, is a

part of the results in [16, 34].

4.4. Krein type resolvent formula and further spectral properties of Am,cη,τ,λ.
In the next proposition we formulate a Birman-Schwinger principle to characterize
discrete eigenvalues of Am,cη,τ,λ. The proof of the following result is the same as the

proof of [13, Proposition 6.5 (ii)] and will be omitted here.

Proposition 4.2. Let η, τ, λ ∈ R and z /∈ σess(A
m,c
η,τ,λ). Then,

z ∈ σdisc(Am,cη,τ,λ) if and only if − 1 ∈ σp((ησ0 + τσ3 + iλ(σ · ν)σ3)Cm,cz ),

where (ησ0 + τσ3 + iλ(σ · ν)σ3)Cm,cz is viewed as an operator in H−1/2(Γ;C2).

Next, we state a Krein type resolvent formula for Am,cη,τ,λ. Recall that the opera-

tors Am,c0 and Φm,cz are given by (3.1) and (3.8), respectively.
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Proposition 4.3. Let η, τ, λ ∈ R. Then, z ∈ ρ(Am,cη,τ,λ) if and only if the operator

σ0 + (ησ0 + τσ3 + iλ(σ · ν)σ3)Cm,cz admits a bounded inverse from H1/2(Γ;C2) to
H−1/2(Γ;C2) and in this case the resolvent formula

(Am,cη,τ,λ − z)
−1 = (Am,c0 − z)−1

− Φm,cz

(
σ0 + (ησ0 + τσ3 + iλ(σ · ν)σ3)Cm,cz

)−1
(ησ0 + τσ3 + iλ(σ · ν)σ3)(Φm,cz )∗

holds.

Proof. First, one shows with Lemma 3.5 in exactly the same way as in [13, Propo-
sition 6.5 (i)] that for z ∈ ρ(Am,cη,τ,λ) the map σ0 + (ησ0 + τσ3 + iλ(σ · ν)σ3)Cm,cz

admits a bounded inverse from H1/2(Γ;C2) to H−1/2(Γ;C2) and that the claimed
resolvent formula is true.

Conversely, assume that σ0 + (ησ0 + τσ3 + iλ(σ · ν)σ3)Cm,cz admits a bounded
inverse from H1/2(Γ;C2) to H−1/2(Γ;C2). Then, by Proposition 4.2 the operator
Am,cη,τ,λ−z is injective. Furthermore, by the mapping properties of Φm,cz and (Φm,cz )∗

in (3.8), (3.9), and (3.7), respectively, the map

Rz := (Am,c0 − z)−1

− Φm,cz

(
σ0 + (ησ0 + τσ3 + iλ(σ · ν)σ3)Cm,cz

)−1
(ησ0 + τσ3 + iλ(σ · ν)σ3)(Φm,cz )∗

is bounded in L2(R2;C2) and ranRz ⊂ H(σ,R2 \ Γ). Moreover, with the help of
Lemma 3.1 one finds that for any f ∈ L2(R2;C2) the function Rzf satisfies the
transmission condition in domAm,cη,τ,λ and thus, Rzf ∈ domAm,cη,τ,λ. Finally, one

obtains with (3.9) that

((Am,cη,τ,λ − z)Rzf)± = (−ic(σ · ∇) +mc2σ3 − zσ0)
(
(Am,c0 − z)−1f

)
± = f±.

Since Am,cη,τ,λ − z is injective, we see that also the claimed resolvent formula is true.
�

Eventually, two symmetry relations about the eigenvalues of Am,cη,τ,λ, that are
sometimes referred to as isospectral relations, hold. For the proof of the following
result, one can follow the one of [22, Proposition 4.2].

Proposition 4.4. Let η, τ, λ ∈ R and d be given by (2.4). Then, the following
holds:

(i) If d 6= 0, then z ∈ σp(Am,cη,τ,λ) if and only if z ∈ σp(Am,c−4η/d,−4τ/d,−4λ/d).

(ii) z ∈ σp(Am,cη,τ,λ) if and only if −z ∈ σp(Am,c−η,τ,−λ).

5. Proof of Theorems 2.7 and 2.8

Throughout this section we assume that m > 0. First, we follow ideas from [7,
Section 5] and show Theorem 2.7 about the nonrelativistic limit of Am,cη/2,η/2,0 and

the geometrically induced bound states for large c, for which some preparations are
necessary. Recall that Hη, η ∈ R, is the self-adjoint operator associated with the
quadratic form hη defined by (2.5). To state the resolvent formula for Hη, define
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for z ∈ C \ [0,+∞) the single layer potential SL(z) : L2(Γ;C)→ L2(R2;C) acting
as

SL(z)ϕ(x) =
m

π

∫
Γ

K0

(
−i
√

2mz|x− y|
)
ϕ(y)dσ(y), x ∈ R2 \ Γ, ϕ ∈ L2(Γ;C),

(5.1)
and the single layer boundary integral operator S(z) : L2(Γ;C) → L2(Γ;C) given
by

S(z)ϕ(x) =
m

π

∫
Γ

K0

(
−i
√

2mz|x− y|
)
ϕ(y)dσ(y), x ∈ Γ, ϕ ∈ L2(Γ;C). (5.2)

It is well-known that both operators SL(z) and S(z) are well-defined and bounded,
see, e.g., [6, Theorem 2.8 (a)] applied for d = 2 for a reference under the present
assumptions. In the following, we denote by −∆ the free Laplacian defined on
H2(R2;C). Then, one has the following relation of SL(z) and S(z) and the resolvent
of Hη, see [20, Lemma 2.3] or [6, Theorem 2.8]:

Lemma 5.1. Let η ∈ R and Hη be the self-adjoint operator associated with the
quadratic form hη in (2.5). If z ∈ C \ [0,∞) and 0 ∈ ρ(I + ηS(z)), then z ∈ ρ(Hη)
and

(Hη − z)−1 =

(
− 1

2m
∆− z

)−1

− SL(z)
(
I + ηS(z)

)−1
ηSL(z)∗.

In particular, there exists z0 < 0 such that for any z ∈ (−∞, z0) one has 0 ∈
ρ(I + ηS(z)).

In the following proposition we state some preliminary estimates for the conver-
gence of the operators Φm,cz+mc2 and Cm,cz+mc2 given by (3.8) and (3.11), as c → ∞,
which are necessary to compute the desired nonrelativistic limit. In the following
we make use of

P+ :=

(
1 0
0 0

)
∈ C2×2 and e :=

(
1
0

)
∈ C2. (5.3)

Note that P+ = ee>.

Proposition 5.2. Let z ∈ C \ [0,∞) and c >
√
|z|
|m| . Then, there exists a constant

K depending on m, z,Γ such that∥∥∥∥∥(Am,c0 − (z +mc2)
)−1 −

(
− 1

2m
∆− z

)−1

P+

∥∥∥∥∥
L2(R2;C2)→L2(R2;C2)

≤ K

c
, (5.4a)

∥∥Φm,cz+mc2e− SL(z)e
∥∥
L2(Γ;C)→L2(R2;C2)

≤ K

c
, (5.4b)∥∥e>(Φm,cz+mc2)∗ − e>SL(z)∗

∥∥
L2(R2;C2)→L2(Γ;C)

≤ K

c
, (5.4c)∥∥e>Cm,cz+mc2e− S(z)

∥∥
L2(Γ;C)→L2(Γ;C)

≤ K

c
. (5.4d)

Proof. First, the estimate in (5.4a) is well-known, see, e.g., [14, Lemma 3.1] for a
proof in the case m = 1

2 . To prove (5.4b), we note first that Φm,cz+mc2e−SL(z)e acts

on ϕ ∈ L2(Γ;C) as

(Φm,cz+mc2e− SL(z)e)ϕ(x) =

∫
Γ

(
k1(x− y) + k2(x− y)

)
ϕ(y)dσ(y), x ∈ R2,
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with

k1(x) :=
1

2π

((
2m+

z

c2

)
K0

(
−i
√

z2

c2 + 2mz|x|
)
− 2mK0

(
−i
√

2mz|x|
))

e,

k2(x) :=
1

2πc

√
z2

c2 + 2mzK1

(
−i
√

z2

c2 + 2mz|x|
)
x1 + ix2

|x|

(
0
1

)
.

(5.5)

In the same way as in the proof of [14, Lemma 3.1] (see the considerations on the
functions t1, t2, t3 there) one finds that there exists constant M1, κ1, R > 0 such
that ∣∣k1(x) + k2(x)

∣∣2 ≤ M2
1

c2
k3(x)k4(x), (5.6)

where

k3(x) :=

{
|x|−3/2, if |x| ≤ R,
e−κ1|x|, if |x| > R,

and

k4(x) :=

{
|x|−1/2, if |x| ≤ R,
e−κ1|x|, if |x| > R.

Clearly, by the translation invariance of the Lebesgue measure we have for any
y ∈ Γ that ∫

R2

|k3(x− y)|dx =

∫
R2

|k3(x)|dx

and thus,

M2 := sup
y∈Γ

∫
R2

|k3(x− y)|dx =

∫
R2

|k3(x)|dx <∞. (5.7)

Next, recall that γ is the arc-length parametrization of Γ defined in (2.1) and choose
for a fixed x ∈ R2 a number t = t(x) ∈ R such that |x− γ(t)| = mins∈R |x− γ(s)|.
Then, taking (2.2) into account, we see that

C1

2
|t(x)− s| ≤ 1

2
|γ(t(x))− γ(s)| ≤ |x− γ(s)|.

This implies BR(x)∩Γ ⊂ {γ(s) : |t(x)−s| ≤ 2R
C1
}, where BR(x) is the ball of radius

R around x, and

M3 := sup
x∈R2

∫
Γ

|k4(x− y)|dσ(y) = sup
x∈R2

∫
R
|k4(x− γ(s))|ds

= sup
x∈R2

(∫
γ−1(BR(x)∩Γ)

|x− γ(s)|−1/2ds+

∫
γ−1(Γ\BR(x))

e−κ1|x−γ(s)|ds

)

≤ sup
x∈R2

(∫ t(x)+2R/C1

t(x)−2R/C1

|x− γ(s)|−1/2ds+

∫
R
e−κ1|x−γ(s)|ds

)

≤ sup
x∈R2

M4

(∫ t(x)+2R/C1

t(x)−2R/C1

|t(x)− s|−1/2ds+

∫
R
e−κ2|t(x)−s|ds

)
< +∞,

(5.8)

where M4, κ2 > 0 are suitable constants. Using (5.6)–(5.8) in the Schur test, see,
e.g., [47, Theorem 6.24] or [36, Example III 2.4], we get∥∥Φm,cz+mc2e− SL(z)e

∥∥
L2(Γ;C)→L2(R2;C2)

≤ M1

c

√
M2M3,
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which is exactly (5.4b). By taking adjoints this also implies (5.4c).

It remains to prove (5.4d). Note that for ϕ ∈ L2(Γ;C) one has(
e>Cm,cz+mc2e− S(z)

)
ϕ(x) =

∫
Γ

e>k1(x− y)ϕ(y)dσ(y), x ∈ Γ,

where k1 is given by (5.5). The function e>k1 can be further decomposed in e>k1 =
k5 + k6 with

k5(x) :=
1

2π

(
2m+

z

c2

)(
K0

(
−i
√

z2

c2 + 2mz|x|
)
−K0

(
−i
√

2mz|x|
))

,

k6(x) :=
z

c2
K0

(
−i
√

2mz|x|
)
.

With the same argument as in [14, equation (3.11)] one sees that

|k5(x)| ≤ M5

c

{
1, if |x| ≤ R,
e−κ3|x|, if |x| > R,

while for k6 one gets with the asymptotics for the Bessel function K0 in [1, Sec-
tions 9.6 and 9.7] that

|k6(x)| ≤ M5

c

{
| log |x||+ 1, if |x| ≤ R,
e−κ3|x|, if |x| > R,

where M5, κ3 > 0 are suitable constants. Note that for a fixed y = γ(s) ∈ Γ, s ∈ R,
we have BR(γ(s))∩Γ ⊂ {γ(t) : |t−s| ≤ R

C1
} by (2.2). Hence, one obtains as in (5.8)

with constants M6,M7,M8, κ4 > 0 that

sup
x∈Γ

∫
Γ

|k1(x− y)|dσ(y) = sup
y∈Γ

∫
Γ

|k1(x− y)|dσ(x) = sup
y∈Γ

∫
R
|k1(γ(s)− y)|ds

≤ sup
y∈Γ

M5

c

(∫
γ−1(BR(x)∩Γ)

(∣∣ log |γ(s)− y|
∣∣+ 1

)
ds+

∫
γ−1(Γ\BR(x))

e−κ3|γ(s)−y|ds

)

≤ sup
y=γ(t)∈Γ

M6

c

(∫ t+R/C1

t−R/C1

(
|γ(s)− γ(t)|−1/2 + 1

)
ds+

∫
R
e−κ3|γ(s)−γ(t)|ds

)

≤ sup
y=γ(t)∈Γ

M7

c

(∫ t+R/C1

t−R/C1

(
|s− t|−1/2 + 1

)
ds+

∫
R
e−κ4|s−t|ds

)

≤ M8

c
< +∞.

This yields, together with the Schur test, the claim in (5.4d). �

Using the result from Proposition 5.2 it is not difficult to prove that the nonrel-
ativistic limit of Am,cη/2,η/2,0 is Hη. Recall that the matrix P+ is defined in (5.3).

Proof of Theorem 2.7. First, we prove the result about the nonrelativistic limit. Let
z0 be as in Lemma 5.1, z < z0, and c be sufficiently large so that z+mc2 ∈ ρ(Am,c0 ).
Note that (5.4d) implies that∥∥(I + ηS(z))− (I + ηe>Cm,cz+mc2e)

∥∥
L2(Γ;C)→L2(Γ;C)

≤ K

c
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and hence, for sufficiently large c > 0 the operator I + ηe>Cm,cz+mc2e is boundedly

invertible in L2(Γ;C), as I + ηS(z) has this property by Lemma 5.1. Applying [36,
Theorem IV 1.16] and (5.4d) yields∥∥(I + ηS(z))−1 − (I + ηe>Cm,cz+mc2e)

−1
∥∥
L2(Γ;C)→L2(Γ;C)

≤ K

c
. (5.9)

Since I + ηe>Cm,cz+mc2e is boundedly invertible, also

σ0 + ηee>Cm,cz+mc2 = σ0 +
(η

2
σ0 +

η

2
σ3

)
Cm,cz+mc2

is boundedly invertible in L2(Γ;C2). Thus, it follows from Proposition 4.3 that
z ∈ ρ(Am,cη/2,η/2,0) and(

Am,cη/2,η/2,0 − (z +mc2)
)−1

=
(
Am,c0 − (z +mc2)

)−1

− Φm,cz+mc2

(
σ0 + ηee>Cm,cz+mc2

)−1
ηee>(Φm,cz+mc2)∗

=
(
Am,c0 − (z +mc2)

)−1

− Φm,cz+mc2e
(
I + ηe>Cm,cz+mc2e

)−1
ηe>(Φm,cz+mc2)∗.

Using Proposition 5.2 and (5.9) in this equation, one finds

lim
c→+∞

(
Am,cη/2,η/2,0 − (z +mc2)

)−1
=

(
− 1

2m
∆− z

)−1

P+

− SL(z)e
(
I + ηS(z)

)−1
ηe>SL(z)∗

and that the order of convergence is 1
c . Since ee> = P+, we see with Lemma 5.1

that the last expression is (Hη − z)−1P+.

To show σdisc(Am,cη/2,η/2,0) 6= ∅ in the case η < 0 and Γ is not the straight line,

we follow closely the proof of [7, Proposition 5.5] and transfer the result from [28]
about the spectrum of Hη to Am,cη/2,η/2,0. Note first that, due to the assumption

η < 0 and Γ is not the straight line, σdisc(HηP+) 6= ∅, see [28, Theorem 5.2]. Now
fix some z < z0. We remark that (Hη − z)−1P+ is the resolvent of a self-adjoint
relation (multivalued operator) in L2(R2;C2), whose operator part is HηP+. Since
(Am,cη/2,η/2,0−(z−+mc2))−1 converges in the operator norm to (Hη−z)−1P+, as c→
+∞, it follows in the same way as in [44, Theorem VIII.23 (b)] or [46, Satz 9.24 b)]
that the spectral measures of Am,cη/2,η/2,0−mc

2 converge to the spectral measures of

HηP+. Thus, one finds with [46, Satz 2.58 a)] that also σdisc(Am,cη/2,η/2,0) 6= ∅. �

Remark 5.3. One can show, in a similar way as in Theorem 2.7, that Am,cη,τ,λ con-
verges in the nonrelativistic limit to Hη+τ . Hence, as long as Γ is not the straight
line and η + τ < 0, one concludes as above that σdisc(Am,cη,τ,λ) 6= ∅ in this situation.
However, since the coefficients of the Lorentz scalar and the anomalous magnetic
interactions should be scaled differently to obtain a nonrelativistic limit modelling
the same physics, we prefer to state the simpler result on Am,cη/2,η/2,0 in this section.

Next, we prove Theorem 2.8. Recall that Γ̃ω is the broken line defined in (2.6)
and that the essential spectrum of Am,c0,τ,0 was identified in Corollary 2.5.
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Proof of Theorem 2.8. In the following we denote by Ω̃± the two disjoint domains

with joint boundary Γ̃ω, which are chosen such that (1, 0) ∈ Ω̃+, and we denote by

ν̃ the unit normal vector field at Γ̃ω that is pointing outwards of Ω̃+. We will make
use of the operator

S̃m,cτ f :=
(
− ic(σ · ∇) +mc2σ3

)
f+ ⊕

(
− ic(σ · ∇) +mc2σ3

)
f−,

dom S̃m,cτ :=

{
f = f+ ⊕ f− ∈ H1(Ω̃+;C2)⊕H(Ω̃−;C2) :

− ic(σ · ν̃)(f+|Γ̃ω
− f−|Γ̃ω

) =
τ

2
σ3(f+|Γ̃ω

+ f−|Γ̃ω
)

}
.

Note that S̃m,cτ = cS̃mc,1τ/c = cSτ/c, where Sτ is the operator considered in [30],

when m is replaced by mc. Hence, by [30, Section 2] the operator S̃m,cτ is closed

and symmetric, but it has deficiency indices dim ker((S̃m,cτ )∗ ∓ i) = 1, i.e. S̃m,cτ is
symmetric, but not self-adjoint.

Next, fix L0 > 0 such that Γ∩ ([L0,+∞)×R) = Γ̃ω ∩ ([L0,+∞)×R), i.e. Γ and

Γ̃ω coincide for x ≥ L0. Consider for L > L0 and c1, . . . , cN ∈ C the function

f(x, y) :=

N∑
n=1

cnun(x)v(y)w(x, y)

with

un(x) := sin

(
2nπ

L
x

)
χ[L,2L](x),

where χ[L,2L] denotes the indicator function for [L, 2L],

v(y) :=

{
1, |y| ≤ 2r,

e−γ(|y|−2r), |y| > 2r,

where r := L tan(ω) and γ := − 4mc2τ
4c2+τ2 > 0, and

w(x, y) :=



(
1

0

)
, (x, y) ∈ Ω+,(

4c2+τ2

4c2−τ2

4cτ
4c2−τ2 e

iω

)
, (x, y) ∈ Ω− ∧ y > 0,(

4c2+τ2

4c2−τ2

− 4cτ
4c2−τ2 e

−iω

)
, (x, y) ∈ Ω− ∧ y < 0.

As in the proof of [30, Proposition 6.3] one sees that, when varying the coefficients
c1, . . . , cN , the functions f span an N dimensional space and since each f is sup-

ported in [L, 2L]×R, we find that f ∈ dom S̃m,cτ ∩domAm,c0,τ,0 and S̃m,cτ f = Am,c0,τ,0f .

Recall that by the scaling property S̃m,cτ = cSτ/c one has to replace m and τ in
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the formulas in [30] by mc and τ/c, respectively. Hence, one gets with [30, equa-
tion (6.3)]

‖Am,c0,τ,0f‖2L2(R2;C2) −
(
mc2

τ2 − 4c2

τ2 + 4c2

)2

‖f‖2L2(R2;C2)

= ‖S̃m,cτ f‖2L2(R2;C2) −
(
mc2

τ2 − 4c2

τ2 + 4c2

)2

‖f‖2L2(R2;C2)

= c2

(
‖Sτ/cf‖2L2(R2;C2) −

(
mc

τ2 − 4c2

τ2 + 4c2

)2

‖f‖2L2(R2;C2)

)

< c2
N∑
n=1

|cn|2
{

tan(ω)

[
3 +

(4c2 + τ2)2 + 16c2τ2

(4c2 − τ2)2

]
(2N2π2 +m2c2L2)

+
4mc2Lτ

4c2 + τ2
− N2π2[(4c2 + τ2)2 + 16τ2c2](4c2 + τ2)

2mc2Lτ(4c2 − τ2)2

}
.

Since we consider m > 0 and τ < 0, the sum of the second and the third term in the
curly brackets is negative, when L is sufficiently large. For these values of L, one
can choose ω? = ω?(L) such that the right hand side of the last displayed formula
is negative for any ω < ω?. As the space of all f ’s has dimension N , we find with
the min-max principle that (Am,c0,τ,0)2 has at least N discrete eigenvalues below the

bottom of its essential spectrum
(
mc2 τ

2−4c2

τ2+4c2

)2
; cf. Corollary 2.5. Therefore, by

the spectral theorem, Am,c0,τ,0 has at least N discrete eigenvalues in the gap of its
essential spectrum. This finishes the proof of this proposition. �
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Appendix A. Boundary triples

In this section we briefly recall some notions related to the theory of (ordinary)
boundary triples. Boundary triples are an abstract tool in the extension and spec-
tral theory of symmetric and self-adjoint operators and they are particularly useful
to handle boundary value and transmission problems. Here, we only state the def-
initions and results needed in the main part of the paper, for proofs and further
results we refer to [9, 21, 25, 26].

Throughout this section H is a complex Hilbert space and S is a densely defined
closed symmetric operator in H.

Definition A.1. Let G be a complex Hilbert space and Γ0,Γ1 : domS∗ → G be
linear mappings. Then {G,Γ0,Γ1} is called a boundary triple for S∗, if the following
conditions are fulfilled:
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(i) For all f, g ∈ domS∗ the abstract Green’s identity

(S∗f, g)H − (f, S∗g)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G

holds.
(ii) The map (Γ0,Γ1) : domS∗ → G × G is surjective.

We note that a boundary triple for S∗ exists if and only if S admits self-
adjoint extensions. In the following we always assume that this is the case and
that {G,Γ0,Γ1} is a boundary triple associated with S∗. Then, the extension
B0 := S∗ � ker Γ0 of S is self-adjoint and one has the direct sum decomposition

domS∗ = domB0+̇ ker(S∗ − z) = ker Γ0+̇ ker(S∗ − z), z ∈ ρ(B0).

Hence, the following mappings are well defined: The γ-field

ρ(B0) 3 z 7→ γ(z) :=
(
Γ0 � ker(S∗ − z)

)−1
,

whose values γ(z), z ∈ ρ(B0), are bounded and everywhere defined operators from
G to H, and the Weyl function

ρ(B0) 3 z 7→M(z) := Γ1

(
Γ0 � ker(S∗ − z)

)−1
,

whose values M(z), z ∈ ρ(B0), are bounded and everywhere defined operators in
G. We remark that

γ(z)∗ = Γ1(B0 − z)−1, z ∈ ρ(B0). (A.1)

In the following we discuss how the self-adjointness of certain extensions of S
can be shown and how their spectral properties can be analyzed with the help of a
boundary triple. Let Θ be a linear operator in G. Then we define in H the linear
operator BΘ as the restriction of S∗ onto

domBΘ :=
{
f ∈ domS∗ : Γ1f = ΘΓ0f

}
. (A.2)

Note that in the above definition the equation Γ1f = ΘΓ0f contains the condition
Γ0f ∈ dom Θ. We remark that for the description of all closed extensions of S
via (A.2) it is necessary to extend the class of parameters Θ to the class of closed
linear relations in G; cf. [9, Chapter 2.2]. The following theorem shows that several
properties of BΘ are encoded in the parameter Θ.

Theorem A.2. Let {G,Γ0,Γ1} be a boundary triple for S∗ with associated γ-field
γ and Weyl function M . Let Θ be a linear operator in G and let BΘ be defined
by (A.2). Then BΘ is self-adjoint in H if and only if Θ is self-adjoint in G. If Θ
is self-adjoint, then the following holds for all z ∈ ρ(B0):

(i) z ∈ σ(BΘ) if and only if 0 ∈ σ(Θ−M(z)).
(ii) z ∈ σp(BΘ) if and only if 0 ∈ σp(Θ−M(z)).
(iii) z ∈ σess(BΘ) if and only if 0 ∈ σess(Θ−M(z)).
(iv) For z ∈ ρ(BΘ) one has

(BΘ − z)−1 = (B0 − z)−1 + γ(z)
(
Θ−M(z)

)−1
γ(z)∗.

Finally, we shortly recall an efficient way how a boundary triple can be con-
structed, see [40, 41] or also [21, Section 1.4.2]. Let B be a self-adjoint operator in
a Hilbert space H, G be another Hilbert space, and assume that T : domB → G is
surjective, continuous (when domB is endowed with the graph norm of B), and that
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ker T is dense in H. Then, S := B � ker T is a densely defined closed symmetric
operator in H.

To proceed, define for z ∈ ρ(B) the operator

Gz :=
(
T (B − z)−1

)∗
. (A.3)

It can be shown that Gz is bounded and injective. Moreover, one has ranGz =
ker(S∗ − z) and that for any z ∈ ρ(B) the direct sum decomposition

domS∗ = domB+̇ ker(S∗ − z) = domB+̇ ranGz
holds. Hence, for any f ∈ domS∗ there exist fz ∈ domB and ξ ∈ G such that
f = fz + Gzξ; it can be shown that ξ is independent of the choice of z ∈ ρ(B).
Then, the following result holds:

Proposition A.3. Let ζ ∈ ρ(B) be fixed and define the mappings Γ0,Γ1 : domS∗ →
G acting on f = fζ + Gζξ = fζ + Gζξ with fζ , fζ ∈ domB, ξ ∈ G, as

Γ0f = ξ and Γ1f =
1

2
T (fζ + fζ).

Then, {G,Γ0,Γ1} is a boundary triple for S∗. Moreover, the values of the γ-field and
Weyl function are given by γ(z) = Gz and M(z) = T (Gz − 1

2 (Gζ + Gζ)), z ∈ ρ(B).

Appendix B. Proof of Proposition 3.2

First, we provide an abstract result about the compactness of integral operators
under suitable assumptions on the integral kernel that will be used several times in
the proof of Proposition 3.2.

Lemma B.1. Let k : R2 → C be continuous in R2 and differentiable on the set
{(s, t) ∈ R2 : s 6= t}. Assume that there exist constants R,C, κ > 0 and α ∈ [0, 1)
such that for p ∈ {0, 1} and all (s, t) ∈ R2 with s 6= t

max

{∣∣∣∣ ∂p∂sp k(s, t)

∣∣∣∣ , ∣∣∣∣ ∂p∂sp k(t, s)

∣∣∣∣} ≤ C

|s− t|−α, |s|, |t| ≤ 3R,

e−κ|s−t|, |s− t| > 2R,

0, s, t > R or s, t < −R,
(B.1)

holds. Then, for any r ∈ [−1, 0] the mapping

Ku(s) =

∫
R
k(s, t)u(t)dt, u ∈ C∞0 (R;C), s ∈ R,

can be extended to a compact operator K : Hr(R;C)→ Hr+1(R;C).

Proof. Define for p ∈ {0, 1} the function kp(s, t) := ∂p

∂sp k(s, t), s 6= t, and the
integral operator Kp

Kp : L2(R;C)→ L2(R;C), Kpu(s) :=

∫
R
kp(s, t)u(t)dt.

The proof is split into several steps: In Step 1 we show that kp ∈ L2(R2;C), which
implies that Kp is a Hilbert-Schmidt operator in L2(R;C) and hence, it is well-
defined and compact. In Step 2 we verify that for any u ∈ L2(R;C) the function
Ku = K0u is weakly differentiable and that d

dsK0u = K1u. Using this, it is proved

in Step 3 that K gives rise to a compact operator from L2(R;C) to H1(R;C).
Then, in Step 4 it is argued that K admits a compact extension from H−1(R;C)
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to L2(R;C). Finally, in Step 5 an interpolation argument is used to deduce that
also for any r ∈ (−1, 0) the map K has a compact extension from Hr(R;C) to
Hr+1(R;C).

Step 1. We claim that kp ∈ L2(R2;C). For two intervals I1 and I2 set

I(I1, I2) :=

∫
I1×I2

|kp(s, t)|2dsdt.

Then

‖kp‖2L2(R2;C) = I((−∞,−R],R) + I((−R,R),R) + I([R,+∞),R). (B.2)

We further decompose

I((−∞,−R],R) = I((−∞,−R], (−∞,−R]) + I((−∞,−3R], (−R,R))

+ I((−3R,−R], (−R,R)) + I((−∞,−R], [R,+∞)).
(B.3)

By (B.1) we have

I((−∞,−R], (−∞,−R]) = 0 (B.4)

and also

I((−∞,−R], [R,+∞)) ≤ C2

∫ −R
−∞

∫ +∞

R

e2κ(t−s)dsdt < +∞. (B.5)

In the same way one finds that I((−∞,−3R], (−R,R)) < +∞. Eventually, taking
the properties of k from (B.1) for |s|, |t| ≤ 3R into account, one gets for bounded
intervals I1, I2 ⊂ [−3R, 3R] that

I(I1, I2) < +∞. (B.6)

Using (B.4)–(B.6) in (B.3) one concludes that I((−∞,−R],R) < +∞. In exactly
the same way one gets that I([R,+∞),R) < +∞. Finally, employing again similar
estimates as in (B.5)–(B.6) one finds that

I((−R,R),R) = I((−R,R), (−∞,−3R]) + I((−R,R), (−3R, 3R))

+ I((−R,R), [3R,+∞)) < +∞.

Hence, we get from (B.2) that kp ∈ L2(R2;C) showing that Kp is a Hilbert-Schmidt
operator and thus, compact in L2(R;C).

Step 2. Let u ∈ C∞0 (R;C) be fixed. We claim that K0u ∈ H1(R;C) and
d
dsK0u = K1u. Taking the result from Step 1 into account, it suffices to prove the
latter identity for the weak derivative. Let ϕ ∈ C∞0 (R;C). By (B.1) one has for
any fixed t ∈ R that ϕ′k(·, t) ∈ L1(R;C). Hence, we can apply Fubini’s theorem
and the dominated convergence theorem and get∫

R
ϕ′(s)K0u(s)ds =

∫
R

∫
R
ϕ′(s)k(s, t)ds u(t)dt

=

∫
R

lim
ε↘0

∫
R\(t−ε,t+ε)

ϕ′(s)k(s, t)ds u(t)dt.

Next, we use integration by parts, which is allowed, as for a fixed t the map s 7→
k(s, t) is differentiable in R \ (t − ε, t + ε). Using the continuity of k and ϕ, the
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dominated convergence theorem, which is applicable, since for any fixed t ∈ R one
has ϕ ∂

∂sk(·, t) ∈ L1(R;C) due to (B.1), and Fubini’s theorem we find that∫
R
ϕ′(s)K0u(s)ds =

∫
R

lim
ε↘0

[
−ϕ(s)k(s, t)

∣∣∣t+ε
t−ε
−
∫
R\(t−ε,t+ε)

ϕ(s)
∂

∂s
k(s, t)ds

]
u(t)dt

= −
∫
R

∫
R
ϕ(s)

∂

∂s
k(s, t)ds u(t)dt = −

∫
R
ϕ(s)K1u(s)ds.

This shows the claim about the weak derivative of K0u. Note that by density and
continuity d

dsK0u = K1u also holds for u ∈ L2(R;C).

Step 3. We show the claim of the lemma for r = 0, i.e. that the mapping

K : L2(R;C)→ H1(R;C), Ku(s) :=

∫
R
k(s, t)u(t)dt,

is compact. First, note that K is well-defined by the results in Step 1 & 2. Next,
consider the map

D : H1(R;C)→ L2(R;C), Df = f + f ′.

With the help of the Fourier transform it is not difficult to see that D is bijective.
Using the results from Step 1 & 2 we find that DK = K0 +K1 and the right hand
side defines a compact operator in L2(R;C). Therefore, K = D−1(K0 + K1) is
compact as an operator from L2(R;C) to H1(R;C).

Step 4. We claim that K admits a compact extension K̃ : H−1(R;C)→ L2(R;C).

Due to the assumptions on the function k(t, s) in (B.1) it follows as in Step 1–3
that the map

L : L2(R;C)→ H1(R;C), Lu(s) :=

∫
R
k(t, s)u(t)dt,

is compact. Hence, also the anti-dual operator

K̃ := L′ : H−1(R;C)→ L2(R;C)

is compact. We claim that K̃ is an extension of K. To see this, we note that
Lu = K∗0u holds for any u ∈ L2(R;C), and compute for u, v ∈ L2(R;C)(
K̃u, v

)
L2(R;C)

=
(
u,Lv

)
H−1(R;C)×H1(R;C)

=
(
u,Lv

)
L2(R;C)

=
(
K0u, v

)
L2(R;C)

=
(
Ku, v

)
L2(R;C)

;

in the latter computation we used the symbol (·, ·)H−1(R;C)×H1(R;C) for the sesquilin-

ear duality product in H−1(R;C)×H1(R;C). Since this is true for all v ∈ L2(R;C),

we conclude that K̃u = Ku, which shows that K̃ is a compact extension of K.

Step 5. By the results in Step 3 & 4 the claim of the lemma is true for r = −1
and r = 0. By interpolation, one can apply, e.g., [24, Theorem 10] with X0 =
H−1(R;C), X1 = L2(R;C), and W = H−2(R;C), it follows that also for r ∈ (−1, 0)
the map K gives rise to a compact operator from Hr(R;C) to Hr+1(R;C). �

Proof of Proposition 3.2. Define the operator

K := UγV (σ · ν)Cm,cz (σ · ν)V ∗U−1
γ − Uxσ2Cm,c,Σz σ2U

−1
x .
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The map K is an integral operator and we will do a fine analysis of the integral
kernel of K, so that we can apply Lemma B.1 for r = − 1

2 to each of the entries of
the 2× 2 block operator matrix K to conclude the claimed result.

Recall that γ is given by (2.1). We use for y = (y1, y2) ∈ R2 the notation y =
y1 + iy2, implying that |y|R2 = |y|C. Furthermore, for s ∈ R one has t(γ(s)) = γ̇(s)
and ν(γ(s)) = γ̇2(s)− iγ̇1(s) = −iγ̇(s), and thus

V (γ(s)) =

(
1 0

0 γ̇(s)

)
and σ · ν(γ(s)) =

(
0 iγ̇(s)

−iγ̇(s) 0

)
.

Therefore, by using the definition of Uγ , Ux, and Cm,cz we see for u ∈ L2(R;C2) that

Ku(s) = lim
ε↘0

∫
R\B(s,ε)

k(s, t)u(t)dt, (B.7)

where

k(s, t) :=

(
0 iγ̇(s)
−i 0

)
Gm,cz

(
γ(s)− γ(t)

)( 0 i
−iγ̇(t) 0

)
− σ2G

m,c
z (s− t, 0)σ2.

Define the number ζ(z) := −i
√

z2

c2 − (mc)2 and note that

σ · (γ(s)− γ(t))

|γ(s)− γ(t)|
=

1

|γ(s)− γ(t)|

(
0 γ(s)− γ(t)

γ(s)− γ(t) 0

)
= |γ(s)− γ(t)|

(
0 1

γ(s)−γ(t)
1

γ(s)−γ(t)
0

)
.

Then, by the definition of Gm,cz in (3.2), the function k can be further decomposed
as k(s, t) = k1(s, t) + k2(s, t) + k3(s, t) with

k1(s, t) :=
1

2πc
γ̇(s)

(
γ̇(t)− γ̇(s))

(
z
c −mc 0

0 0

)
K0 (ζ(z)|γ(s)− γ(t)|) ,

k2(s, t) :=
1

2πc

(z
c
σ0 −mcσ3

) (
K0 (ζ(z)|γ(s)− γ(t)|)−K0 (ζ(z)|s− t|)

)
,

k3(s, t) :=
iζ(z)

2πc

(
K1 (ζ(z)|s− t|) |s− t|

(
0 1

s−t
1
s−t 0

)

−K1 (ζ(z)|γ(s)− γ(t)|) |γ(s)− γ(t)|

(
0 γ̇(s)

γ(s)−γ(t)
γ̇(t)

γ(s)−γ(t) 0

))
.

Denote the corresponding integral operators by Kj , j ∈ {1, 2, 3}, i.e.

Kjϕ(s) = lim
ε↘0

∫
R\B(s,ε)

kj(s, t)ϕ(t)dt, s ∈ R, ϕ ∈ C∞0 (R;C2).

We show that the kernels kj satisfy the assumptions in Lemma B.1 implying that
each of these operators is not strongly singular (i.e. the limit for ε ↘ 0 can be
removed) and has the claimed mapping properties.

Let M > 0 be the number specified in the definition of γ in (2.1). First, we
note that, due to the asymptotic properties of the modified Bessel functions and
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their derivatives for large arguments [1, Sections 9.6 and 9.7] and (2.2), there exist
constants M1, κ1 > 0 such that for j ∈ {1, 2, 3} and p ∈ {0, 1}

max

{∣∣∣∣∂pkj(s, t)∂sp

∣∣∣∣ ,
∣∣∣∣∣∂pkj(t, s)∂sp

∣∣∣∣∣
}
≤M1e

κ1|s−t|, |s− t| ≥M. (B.8)

Next, taking the power series representation of K0 from [1, equation 9.6.13] into
account, there exist a constant M2 and holomorphic functions g1, g2 such that

K0(ξ) = − log ξ+M2+g1(ξ2)+ξ2g2(ξ2) log ξ = − log ξ+g3(ξ), ξ ∈ C\{0}, (B.9)

with the C1-smooth function g3(ξ) := M2 + g1(ξ2) + ξ2g2(ξ2) log ξ; cf. the proof of
[11, Lemma 3.2] for a similar consideration. We will often use that the function

log
(
ζ(z)|γ(s)− γ(t)|

)
− log

(
ζ(z)|s− t|

)
= log

∣∣∣∣γ(s)− γ(t)

s− t

∣∣∣∣ (B.10)

is C∞-smooth. For s 6= t, this follows from the injectivity and the smoothness of
γ, and for s = t from a Taylor series expansion of γ and (2.2).

In the following, the properties of K1 and its kernel k1 are further analyzed.
With (B.9) and (B.10) it is not difficult to see that k1 can be written as

k1(s, t) =
1

2πc
γ̇(s)

(
γ̇(t)− γ̇(s)

)( z
c −mc 0

0 0

)
·
(
− log

(
ζ(z)|s− t|

)
− log

∣∣∣∣γ(s)− γ(t)

s− t

∣∣∣∣+ g3

(
ζ(z)|γ(s)− γ(t)|

))
.

Since γ is smooth, the function (γ̇(t) − γ̇(s)) log(ζ(z)|s − t|) is continuous in R2,

differentiable for s 6= t, and its first derivatives are bounded by M̃1

∣∣ log |s− t|
∣∣+M̃2

for some constants M̃1, M̃2 > 0. Hence, k1 is continuous in R2 and differentiable
for s 6= t, for p ∈ {0, 1} one has

max

{∣∣∣∣∂pk1(s, t)

∂sp

∣∣∣∣ ,
∣∣∣∣∣∂pk1(t, s)

∂sp

∣∣∣∣∣
}
≤M3

∣∣ log |s− t|
∣∣+M4, |s|, |t| ≤ 2M, (B.11)

where M3,M4 are positive constants, and k1(s, t) = 0, if s, t < −M or s, t >
M , as in that case γ̇(s) = γ̇(t). Since k1 fulfils (B.8), this function satisfies the
assumptions in Lemma B.1 and thus, K1 : H−1/2(R;C2)→ H1/2(R;C2) is compact.

Next, K2 and its kernel k2 are considered. With (B.9) and (B.10) one finds that
k2 ∈ C1(R2;C2). In particular, this shows for a constant M5 > 0 that

max

{∣∣∣∣∂pk2(s, t)

∂sp

∣∣∣∣ ,
∣∣∣∣∣∂pk2(t, s)

∂sp

∣∣∣∣∣
}
≤M5, |s|, |t| ≤ 2M.

Finally, since for s, t ≥M

|γ(s)− γ(t)| =
∣∣∣∣(a+

c+

)
(s− t)

∣∣∣∣ = |s− t| (B.12)

holds, we get that k2(s, t) = 0, if s, t ≥M . A similar consideration can be done also
for s, t ≤ −M . With (B.8) one sees that k2 satisfies (B.1) and hence, by Lemma B.1
the map K2 : H−1/2(R;C2)→ H1/2(R;C2) is compact.
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It remains to analyze K3 and its kernel k3. By the power series representation
of K1 in [1, equation 9.6.11] there exist holomorphic functions g4, g5 such that

K1(ξ) =
1

ξ
+ ξg4(ξ2) log ξ + ξg5(ξ2), ξ ∈ C \ {0}; (B.13)

cf. the proof of [11, Lemma 3.2] for a similar consideration. Hence, we can further
decompose k3(s, t) as k3(s, t) = k4(s, t) + k5(s, t) + k6(s, t) with

k4(s, t) :=
i

2πc

(
0 1

s−t
1
s−t 0

)
− i

2πc

 0 γ̇(s)

γ(s)−γ(t)
γ̇(t)

γ(s)−γ(t) 0

 ,

k5(s, t) :=
iζ(z)2

2πc

(
g4(ζ(z)2|s− t|2) log(ζ(z)|s− t|)

(
0 s− t

s− t 0

)
− g4(ζ(z)2|γ(s)− γ(t)|2) log(ζ(z)|γ(s)− γ(t)|)

·
(

0 γ̇(s)(γ(s)− γ(t))

γ̇(t)(γ(s)− γ(t)) 0

))
,

k6(s, t) :=
iζ(z)2

2πc

(
g5(ζ(z)2|s− t|2)

(
0 s− t

s− t 0

)
− g5(ζ(z)2|γ(s)− γ(t)|2)

(
0 γ̇(s)(γ(s)− γ(t))

γ̇(t)(γ(s)− γ(t)) 0

))
.

Since g5 is analytic, we observe that k6 can be extended to a C∞-smooth function
in R2. The same is also true for k4. Indeed, employing the fundamental theorem
of calculus twice, we get

1

s− t
− γ̇(t)

γ(s)− γ(t)
=
γ(s)− γ(t)− γ̇(t)(s− t)

(s− t)(γ(s)− γ(t))

=

∫ 1

0
γ̇(t+ ξ(s− t))(s− t)dξ − γ̇(t)(s− t)

(s− t)(γ(s)− γ(t))

=

∫ 1

0

∫ 1

0

γ̈(t+ ζξ(s− t))ξdζdξ · s− t
γ(s)− γ(t)

.

The first factor in the last line is a smooth function everywhere in R2, and due
to (2.2) the same is true also for the second factor. Therefore, k4 can be extended
to a C∞-function at s = t.

Next, we analyze the properties of k5(s, t) for s, t being close to each other.
In a very similar way as in the consideration of k1 one gets that k5 is continuous
everywhere in R2 and that there exist constants M6,M7 > 0 such that for p ∈ {0, 1}

max

{∣∣∣∣∂pk5(s, t)

∂sp

∣∣∣∣ ,
∣∣∣∣∣∂pk5(t, s)

∂sp

∣∣∣∣∣
}
≤M6

∣∣ log |s− t|
∣∣+M7, |s|, |t| ≤ 2M,

holds; cf. (B.11). Since k4 and k6 are smooth functions and k3 = k4 + k5 + k6, we
conclude that there exist constants M8,M9 > 0 such that for p ∈ {0, 1}

max

{∣∣∣∣∂pk3(s, t)

∂sp

∣∣∣∣ ,
∣∣∣∣∣∂pk3(t, s)

∂sp

∣∣∣∣∣
}
≤M8

∣∣ log |s− t|
∣∣+M9, |s|, |t| ≤ 2M, (B.14)

is satisfied.



33

Finally, we show that k3(s, t) = 0 for s, t > M or s, t < −M . Note that for
s, t ≥M we have (B.12) and

γ̇(t)

γ(s)− γ(t)
=

a+ + ic+
a+(s− t) + ic+(s− t)

=
1

s− t
.

Similar identities are also true for s, t ≤ −M . Hence, we conclude from the defini-
tion of k3 that k3(s, t) = 0 for s, t > M or s, t < −M . Combining this with (B.8)
and (B.14), it follows from Lemma B.1 that also K3 : H−1/2(R;C2)→ H1/2(R;C2)
is compact. Together with the mapping properties of K1 and K2 shown above this
yields that

K = K1 +K2 +K3 : H−1/2(R;C2)→ H1/2(R;C2)

is a compact operator. The proof of Proposition 3.2 is complete. �
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[18] B. Benhellal: Spectral properties of the Dirac operator coupled with δ-shell interactions. Lett.
Math. Phys. 112(6) (2022) 52 (52 pages).

[19] T. Ourmières-Bonafos, F. Pizzichillo: Dirac Operators and Shell Interactions: A Survey.

In: Michelangeli, A. (eds) Mathematical Challenges of Zero-Range Physics, Springer INdAM
Series, vol 42, Springer, 2021.



34 J. BEHRNDT, P. EXNER, M. HOLZMANN, AND M. TUŠEK
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[32] F. Gesztesy, P. Šeba: New analytically solvable models of relativistic point interactions. Lett.

Math. Phys. 13(4) (1987) 345–358.
[33] L. Grafakos: Modern Fourier Analysis. Graduate Texts in Mathematics 250, Springer-Verlag

New York, 2014.

[34] M. J. Gruber, M. Leitner: Spontaneous edge currents for the Dirac equation in two space
dimensions. Lett. Math. Phys. 75 (2006) 25–37.

[35] J. Jost: Riemannian Geometry and Geometric Analysis. Universitext, Springer-Verlag,

Berlin, 2005.
[36] T. Kato. Perturbation Theory for Linear Operators. Classics in Mathematics. Springer-

Verlag, Berlin, 1995. Reprint of the 1980 edition.

[37] T. Ourmières-Bonafos, L. Vega: A strategy for self-adjointness of Dirac operators: applica-
tion to the MIT bag model and δ-shell interactions. Publ. Mat. 62 (2018) 397–437.

[38] K. Pankrashkin: Variational proof of the existence of eigenvalues for star graphs, in “Func-

tional Analysis and Operator Theory for Quantum Physics. The Pavel Exner Anniversary
Volume”, EMS Series of Congress Reports, ed. J. Dittrich, H. Kovařik and A. Laptev, EMS
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