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Abstract


We consider a two channel model of the form


Hε =


[


Hop 0


0 E0


]


+ ε


[


0 W12


W21 0


]


on H = Hop ⊕ C.


The operator Hop is assumed to have the properties of a Schrödinger


operator in odd dimensions, with a threshold at zero. As the en-


ergy parameter E0 is tuned past the threshold, we consider the sur-


vival probability |〈Ψ0, e
−itHεΨ0〉|2, where Ψ0 is the eigenfunction cor-


responding to eigenvalue E0 for ε = 0. We find non-exponential decay


laws for ε small and E0 close to zero, provided that the resolvent of


Hop is not at least Lipschitz continuous at the threshold zero.
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1 Introduction


In this paper we continue the rigorous study, begun in [13], of the decay laws
for resonances produced by perturbation of unstable bound states. There is
a large body of literature about decay laws for resonances in general, both at
the level of theoretical physics (see e.g. [23], [24], [8], [25], [2], [6], [16], and
reference therein) and at the level of rigorous mathematical physics (see e.g.
[21], [5], [4], [1], [3], [9], [20], [27], [13], [14], [15], and references therein). The
common wisdom, following the computation by Dirac of the decay rate in
second order time-dependent perturbation theory (the famous Fermi golden
rule), or the Wigner-Weisskopf approximation in scattering theory, is that
the decay law is exponential. However it was known for a long time, at least
in the semi-bounded case, that the decay law cannot be purely exponential;
there must be deviations especially at short and long times (see the physics
papers quoted above). So put in more precise terms the question is whether
the decay law is quasi-exponential, i.e. is exponential up to error terms,
which vanish as the perturbation strength parameter tends to zero. Then
the estimation of the error term becomes crucial, and only during the last
decades rigorous results were obtained (see the papers quoted above).


The generic result is that (see the papers quoted above for precise for-
mulations) the decay law is indeed quasi-exponential, if the resolvent of the
unperturbed Hamiltonian, when projected onto the subspace orthogonal to
the considered bound state eigenfunction, is sufficiently smooth in a neigh-
borhood of the unperturbed bound state energy. The problem appears, when
the bound state is situated near a threshold, since in this case the resolvent
might not be smooth and can even blow up, if there is a resonance at the
threshold. At the heuristic level, the fact that this can happen, leads to the
possibility of a non-exponential decay law, which has been mentioned (see
e.g. [16],[18]) (although this possibility for the single resonance case has been
sometimes denied, see [21]).


Having the bound state in the very neighborhood of a threshold is a
non-generic situation. But recent advances in experimental technique have
made it possible to realize this case experimentally for so-called Feshbach
resonances [17], [26]. More precisely, with the aid of a magnetic field it is
possible to tune the energy of the bound state continuously through the
neighborhood of the threshold energy. As a consequence of applying the
magnetic field, the eigenvalue is non-degenerate, and this is the case treated
here.


The problem of the decay law for threshold eigenvalues has been con-
sidered in [13], [14], [15] under the condition that the shift in the energy
due to the perturbation (see (3.1) in [13]) is sufficiently large, such that the
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resonance position is still “far” from the threshold. We proved that in this
case the decay law is still (quasi)-exponential, but the Fermi golden rule (i.e.
the width of the resonance) has to be modified. In this paper we remove
that condition and allow arbitrary location of the resonance by tuning the
unperturbed bound state energy across the threshold. Since this can be done
experimentally for Feshbach resonances, our conditions on the Hamiltonian
are modelled after the Hamiltonians used in Feshbach resonances theory [17],
[26].


The main result is that in some energy windows, which depend upon the
spectral properties of the unperturbed Hamiltonian at threshold, the decay
law is definitely non-exponential for all times. We identify the time scales
on which the survival probability varies significantly, as well as the decay
law. Also we estimate the errors (vanishing as the perturbation strength
parameter tends to zero) giving the first rigorous proof (to the best of our
knowledge) of a non-exponential decay law in the perturbative framework.


The contents of the paper is as follows. Section 2 contains the description
of the problem and the main results. Section 3 contains the proofs. In
Section 4 we display some numerical results on the decay laws obtained. In
Appendix A we state some results on resolvent expansions, which imply that
Assumption 2.3 is satisfied.


2 The problem and the results


We shall develop the theory in a somewhat abstract setting, which is applica-
ble to two channel Schrödinger operators in odd dimensions, as they appear
for example in the theory of Feshbach resonances (see e.g. [17], [26], and
references therein). The general setting is the one in [13]. Consider


H =


[


Hop 0
0 Hcl


]


on H = Hop ⊕ Hcl. In concrete cases Hop = L2(R3) (or L2(R+) in the
spherically symmetric case) and Hop = −∆ + Vop with lim|x|→∞ Vop(x) = 0.
Hop describes the “open” channel. As for the “closed” channel, one starts
again with a Schrödinger operator, but with lim|x|→∞ Vcl(x) = Vcl,∞ > 0. One
assumes that Hcl has bound states below Vcl,∞, which may be embedded in
the continuum spectrum of Hop. Only these bound states are relevant for the
problem at hand. Thus one can retain only one isolated eigenvalue (or a group
of almost degenerate eigenvalues isolated from the rest of the spectrum); the
inclusion of the rest of the spectrum of Hcl merely “renormalizes” the values
of some coefficients, without changing the qualitative picture. In this paper
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we shall consider only non-degenerate eigenvalues, i.e. we shall take Hcl = E0


in Hcl = C, such that


H =


[


Hop 0
0 E0


]


, (2.1)


on


H = Hop ⊕C =


{


Ψ =


[


ψ
β


]


|ψ ∈ Hop, β ∈ C


}


.


Apart from the spectrum of Hop, H has a bound state


Ψ0 =


[


0
1


]


, such that H


[


0
1


]


= E0


[


0
1


]


. (2.2)


The problem is to study the fate of Ψ0, when an interchannel perturbation


εW = ε


[


0 W12


W21 0


]


(2.3)


is added to H , i.e. the total Hamiltonian is


Hε = H + εW. (2.4)


Throughout the paper we assume without loss of generality that ε > 0. For
simplicity we assume that W is a bounded self-adjoint operator on H.


More precisely, the quantity to be studied is the so-called survival prob-
ability amplitude


Aε(t) = 〈Ψ0, e
−itHεΨ0〉. (2.5)


The first thing to do is to write down a workable formula for Aε(t). For
this purpose we use the Stone formula to express the compressed evolution
in terms of the compressed resolvent, and then we use the Schur-Livsic-
Feshbach-Grushin (SLFG) partition formula to express the compressed re-
solvent as an inverse (for details, further references, and historical remarks
about the SLFG formula, we send the reader to [13]). More precisely, by
using the Stone formula and the SLFG formula, one arrives at the following
basic formula for Aε(t), which often appears in the physics literature and is
a particular case of the general formula in [13].


Aε(t) = lim
ηց0


1


π


∫ ∞


−∞
e−itx ImF (x+ iη, ε)−1dx (2.6)


with
F (z, ε) = E0 − z − ε2g(z), (2.7)
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where
g(z) = 〈Ψ0,WQ∗(Hop − z)−1QWΨ0〉, (2.8)


and Q is the orthogonal projection on Hop, considered as a map from H to
Hop.


Since we are interested in the form of Aε(t), when E0 is near a threshold
of Hop, we shall assume that 0 is a threshold of Hop and that E0 is close to
zero.


Assumption 2.1. (i) There exists a > 0, such that (−a, 0) ⊂ ρ(Hop) (the
resolvent set) and [0, a] ⊂ σess(Hop).


(ii) |E0| ≤ 1
2
.


From Assumption 2.1 and (2.8) we get the following result.


Proposition 2.2. (i) g(z) is analytic in C \ {(−∞,−a] ∪ [0,∞)}.
(ii) g(z) = g(z).
(iii) g(z) is strictly increasing on (−a, 0).
(iv) Im g(z) > 0 for Im z > 0.


For E0 outside a small (ε-dependent) neighborhood of the origin the sit-
uation is well understood, both at the heuristic level, and at the rigorous
level. Indeed, for negative E0, using the analytic perturbation theory, one
can show that


|Aε(t) − e−itEε | . ε2, (2.9)


where Eε is the perturbed eigenvalue, which coincides with E0 in the limit
ε → 0. As a consequence the survival probability remains close to one
uniformly in time.


Note that in (2.9) we have introduced the notation ., which means less
than or equal to, up to a constant, which is irrelevant for our computations.
We will use this notation throughout the paper.


On heuristic grounds, if E0 is positive, i.e. embedded in the essential
spectrum of Hop, Ψ0 turns into a metastable decaying state, and the main
problem is to compute (up to error terms vanishing in the limit ε → 0)
the “decay law”, i.e. |Aε(t)|2. For eigenvalues embedded in the continuum
spectrum the heuristics for the exponential decay law |Aε(t)|2 ∼= e−2Γ(ε)t runs
as follows. Suppose F (z, ε) is sufficiently smooth, as z approaches the real line
from above, F (x+ i0, ε), for x in a neighborhood of E0. Let F (x+ i0, ε) =
R(x) + iI(x). Then the equation R(x) = 0 has a solution x0(ε) nearby
E0. The idea is that the main contribution to the integral in (2.6) comes
from the neighborhood of x0(ε), and in this neighborhood F (x + i0, ε) ∼=
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x0(ε) − x+ iI(x0(ε)), and then


ImF (x+ iη, ε)−1 ∼= −I(x0(ε))


(x− x0(ε))2 + I(x0(ε)2)
,


i.e. it has a Lorenzian peak shape leading to |Aε(t)|2 ∼= e−2|I(x0(ε)|t. For
mathematical substantiation of this heuristics in the case, where x0(ε) is
sufficiently “far” from the origin (x0(ε) & ε), we send the reader to [13] and
references therein. The problem with the energies near the threshold is that
F (x+ i0, ε) might not be smooth and can even blow up, if the open channel
has a resonance at the threshold.


The aim of this paper is to consider the problem of a non-exponential
decay law, for the case that E0 is near the threshold, at the rigorous math-
ematical physics level. To this end we need assumptions about the behavior
of the function g(z) in the neighborhood of the origin. In stating this as-
sumption we use the notation from [13] to facilitate reference to that paper.


Assumption 2.3. For Reκ ≥ 0 and z ∈ C \ [0,∞) we let


κ = −i
√
z, z = −κ2. (2.10)


Let for a > 0
Da = {z ∈ C r [0,∞) | |z| < a} . (2.11)


Then for z ∈ Da


g(z) =
2


∑


j=−1


κjgj + κ3r(κ), (2.12)


d


dz
g(z) = − 1


2κ


2
∑


j=−1


κj−1gj + κs(κ), (2.13)


sup
z∈Da


{|r(κ)|, |s(κ)|} <∞ (2.14)


As already explained, Assumption 2.3 includes the case, when Hop =
−∆ + Vop in odd dimensions. The expansions for the resolvent of −∆ + Vop


leading to (2.12) are provided in [11], [10], [22], [12], [13], [14]. Taking into
account that (at least formally)


d


dz
g(z) = 〈Ψ0,WQ∗(Hop − z)−2QWΨ0〉


(2.13) can be derived in the same manner. More precisely, it can be shown
that the expansion (2.12) is differentiable, see [11], [22]. Examples of expan-
sions with the corresponding explicit expressions for coefficients gj are given
in the Appendix, with references to the literature.
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We divide the considerations into three cases.
(i) The singular case, in which g−1 6= 0. In the Schrödinger case this corre-
sponds to the situation, when Hop has a resonance at the threshold (see the
Appendix for details). Let us recall that the free particle in one dimension
belongs to this class. From Proposition 2.2(iv) follows that


g−1 > 0. (2.15)


(ii) The regular case, in which g−1 = 0 and g1 6= 0. We note that g−1 = 0
is the generic case for Schrödinger operators in one and three dimensions.
Again from Proposition 2.2(iv) one has


g1 < 0. (2.16)


Let us remark that the behavior Im g(x+ i0) ∼ x1/2 as x→ 0 is nothing but
the famous Wigner threshold law [26], [19].
(iii) The smooth case, in which g−1 = g1 = 0. This case occurs for free
Schrödinger operators in odd dimensions larger that three, and in the spher-
ical symmetric case for partial waves ℓ ≥ 1. Notice that in this case d


dz
g(z)


is uniformly bounded in Da.
In the first two cases we shall approximate


F (z, ε) = H(z, ε) + error term, (2.17)


compute the survival probability amplitude from H(z, ε), and estimate the
error term. The main result is that for energies of order ∼ ε4/3 in the singular
case, and ∼ ε4 in the regular case, the decay law is not exponential for
any significant time interval. Moreover, we shall derive explicit formulae for
the survival probability amplitude in terms of the expansion coefficients of
g(z). As noted above (see the Appendix), these coefficients can be computed
explicitly in a number of interesting cases.


For the smooth case the results in [13] imply that the decay law is always
exponential for a significant time interval, or equivalently, for sufficiently
small ε, substantiating an heuristic argument in [16].


2.1 The singular case: g−1 > 0.


In this case we choose


Hs(z, ε) = E − z − ε2g−1κ
−1, (2.18)


where
E = E0 − ε2g0. (2.19)
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We use the notation


F (x, ε) = lim
ηց0


F (x+ iη, ε) and Hs(x, ε) = lim
ηց0


Hs(x+ iη, ε), (2.20)


whenever these limits exist.


Proposition 2.4. For E ≥ −a/2 and ε sufficiently small the equations


F (x, ε) = 0 and Hs(x, ε) = 0 (2.21)


on (−a, 0) and (−∞, 0) have unique solutions xb and x̃b, respectively, and we


have that


|xb − x̃b| . ε2 min
{


|x̃b|1/2, |xb|1/2
}


. (2.22)


The main estimation in the singular case is contained in the following
Theorem.


Theorem 2.5. Suppose E ∈ [−a/2, (c/2)ε4/5]. Then for all t ≥ 0 and


sufficiently small ε we have


∣


∣


∣
Aε(t) −


2v(f)3/2


2v(f)3/2 + 1
e−itxb − 1


π


∫ ∞


0


y1/2


y(f − y)2 + 1
e−isydy


∣


∣


∣
. ε4/5, (2.23)


where


s = (ε2g−1)
2/3t and f = (ε2g−1)


−2/3E, (2.24)


and v(f) is the (unique) solution of


f + v − 1


v1/2
= 0 (2.25)


on (0,∞).


The only quantity in (2.23), which is not expressed in terms of the
“model” function Hs(z, ε), and then not explicitly computable, is xb. So
a natural question is to estimate also the error when replacing xb by x̃b in
(2.23), which amounts to estimate |e−itxb − e−itx̃b |. While |e−itxb − e−itx̃b |
cannot be small uniformly for t ≥ 0, it is however small on not too long time
scales. More precisely, we have the following result. Note that tx̃b = −sv(f),
see (3.19).


Corollary 2.6. Suppose −ε4/3 . E . ε4/5. Then for all t > 0 and suffi-


ciently small ε we have


∣


∣


∣
Aε(t) −


2v(f)3/2


2v(f)3/2 + 1
eisv(f) − 1


π


∫ ∞


0


y1/2


y(f − y)2 + 1
e−isydy


∣


∣


∣
. ε4/5 + sε4/3.


(2.26)
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2.2 The regular case: g−1 = 0, g1 < 0.


As the model function we take


Hr(z, ε) = E0 − z − ε2(g0 − ig1


√
z − g2z) = b(Ẽ − z + ig̃1


√
z), (2.27)


where


b = 1 − ε2g2, Ẽ =
E0 − ε2g0


b
, and g̃1 =


g1


b
. (2.28)


In what follows ε is assumed to be sufficiently small, such that b is close to
one.


We use the notation from (2.20) for Hr(z, ε), too.


Proposition 2.7. (i) For Ẽ ≥ 0 and ε sufficiently small we have that


F (x, ε) > 0 on (−a, 0), and Hr(x, ε) > 0 on (−∞, 0).
(ii) For −a/2 ≤ Ẽ < 0 and ε sufficiently small the equations


F (x, ε) = 0, and Hr(x, ε) = 0 (2.29)


on (−a, 0) and (−∞, 0) have unique solutions xb and x̃b, respectively, and we


have that


|xb − x̃b| . ε2 min
{


|x̃b|3/2, |xb|3/2
}


. (2.30)


The analogue of Theorem 2.5 can be stated as follows.


Theorem 2.8. Suppose Ẽ ∈ [−a/2, (c/2)ε3/4]. Then for all t ≥ 0, and for


sufficiently small ε, we have


(i) For Ẽ ≥ 0 we have


∣


∣


∣
Aε(t) −


1


π


∫ ∞


0


y1/2


(f̃ − y)2 + y
e−is̃ydy


∣


∣


∣
. ε4/3, (2.31)


where


s̃ = (ε2g̃1)
2t and f̃ = (ε2g̃1)


−2Ẽ. (2.32)


(ii) For Ẽ ≤ 0 we have


∣


∣


∣


∣


∣


Aε(t) −
√


1 + 4|f̃ | − 1
√


1 + 4|f̃ |
e−itxb − 1


π


∫ ∞


0


y1/2


(f̃ − y)2 + y
e−is̃ydy


∣


∣


∣


∣


∣


. ε4/3. (2.33)


As in the singular case one can replace xb by x̃b in Theorem 2.8 at the
price of an error term, which is small on relevant time scales. We let ṽ(f̃)
denote the unique positive solution to the equation f̃ + v + v1/2 = 0. We


have ṽ(f̃) = 1
4
(
√


1 + 4|f̃ | − 1)2 and x̃b = −(ε2g̃1)
2ṽ(f̃).


9







Corollary 2.9. Suppose −ε4 . E < 0. Then for all t > 0 and sufficiently


small ε we have


∣


∣


∣


∣


∣


Aε(t) −
√


1 + 4|f̃ | − 1
√


1 + 4|f̃ |
eis̃ṽ(f̃) − 1


π


∫ ∞


0


y1/2


(f − y)2 + y
e−is̃ydy


∣


∣


∣


∣


∣


. ε4/3 + s̃ε4.


(2.34)


2.3 The smooth case: g−1 = g1 = 0.


In this case Assumption 2.3 implies that g(z) is uniformly Lipschitz contin-
uous in Da, so that one can apply [13, Theorem 4.1] to obtain the following
result. See also the recent paper [28], where the analytical continuation ap-
proach is used.


Theorem 2.10. Suppose E0 ∈ [−a/2, a/2]. Write F (x+ i0, ε) = R(x, ε) +
iI(x, ε). Then for ε sufficiently small there exists a unique solution to R(x, ε) =
0 in the interval (−a, a), denoted by x0(ε). Let Γ(ε) = I(x0(ε), ε).


Then for ε sufficiently small, and for all t > 0, the following result holds


true:


|Aε(t) − e−it(x0(ε)−iΓ(ε))| . ε2|ln ε|. (2.35)


2.4 Some examples of non-exponential decay laws


The integrals


Is(f, s) =
1


π


∫ ∞


0


y1/2


y(f − y)2 + 1
e−isydy (2.36)


and


Ir(f̃ , s̃) =
1


π


∫ ∞


0


y1/2


(f̃ − y)2 + y
e−is̃ydy (2.37)


give the decay laws in the singular and regular cases, respectively. These
integrals can be expressed in closed form in terms of special functions, at
least in some cases. As an example we mention that one can obtain


Ir(0, s̃) = eis̃(1 − Φ(
√
is̃)). (2.38)


Here Φ denotes the error function. See [7, Formula 3.446.1] and use the
Lebesgue dominated convergence theorem.


Thus one may use the properties of the error function to study some
asymptotics. Postponing this detailed study to a future publication here we
give the results of the direct numerical integration of (2.36) and (2.37) for a
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few values of f and f̃ . The details of the computations and the figures are
collected in Section 4. The main conclusions are as follows.


(a) For values of f , f̃ of order one (say |f |, |f̃ | ≤ 5), the decay law is
definitely non-exponential. In particular for negative values one sees the
interference between the bound state contribution and the continuum con-
tribution. See Figure 1, Figure 4, and Figure 5.


(b) As f, f̃ → ∞ the decay law quickly becomes exponential (at f = 30
it is hard to distinguish between the numerical result and an exponential),
see Figure 2. For f̃ = 30 the exponential decay takes place very rapidly, the
values become very small, and a different behavior is observed, see Figure 6.
Note that in Figure 2 we consider values of s up to 20, whereas in Figure 6
we stop at s̃ = 5.


(c) As f, f̃ → −∞ the survival probability amplitude reaches the bound
state form. For f = −30, see Figure 3, and for f̃ = −30, see Figure 7.
Note the vertical scale on these two figures. They show that the bound state
behavior is observed almost instantaneously in the regular case, whereas
in the singular case oscillations persist, although with a rapidly decaying
amplitude.


It follows that as E0 passes through the threshold, the non-exponential
decay takes place in a window of energies (see (2.24) and (2.32)) with width
of order ε4/3 in the singular case and ε4 in the regular case.


Comparing the various results illustrated in the Figures, it is remarkable
that such a variety of different decay laws are described by the integrals
(2.36) and (2.37).


3 The proofs


Proof of Proposition 2.4. The existence and uniqueness of the solutions fol-
low from the fact that for sufficiently small ε both functions are positive at
x = −a, tend to −∞ as x ր 0 and their derivatives are smaller than −1.
Suppose now that F (xb, ε) = 0. Then from (2.12) it follows that


|Hs(xb, ε)| = |Hs(xb, ε) − F (xb, ε)| . ε2|xb|1/2. (3.1)


Since on (−a, 0) d
dx
Hs(x, ε) ≤ −1, the estimate (3.1) implies


|xb − x̃b| . ε2|xb|1/2.


Repeating the argument with Hs(x, ε) replaced by F (x, ε), one obtains also
that


|xb − x̃b| . ε2|x̃b|1/2


and the proof is finished.
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Proof of Theorem 2.5. Since the proof is somewhat complicated, we divide
it into a number of steps. Let I(ε) =


[


−a, cε4/5
]


, I+(ε) =
[


0, cε4/5
]


, and


Ã(t) = lim
ηց0


1


π


∫


I(ε)


dx e−itx ImF (x+ iη, ε)−1. (3.2)


We will use the notation introduced in (2.20), and the notation


d


dx
F (x, ε) = F ′(x, ε),


provided the derivative exists. From Proposition 2.4, the residue theorem,
and the fact that due to Assumption 2.3 one can take the limit η ց 0, one
obtains:


Ã(t) = − 1


F ′(xb, ε)
e−itxb +


1


π


∫


I+(ε)


dx e−itx ImF (x, ε)−1, (3.3)


Now


∣


∣


∣
Ã(t) +


e−itxb


H ′
s(x̃b, ε)


− 1


π


∫ ∞


0


dx e−itx ImHs(x, ε)
−1


∣


∣


∣


≤ 1


π


∫


I+(ε)


dx
|F (x, ε) −Hs(x, ε)|
|F (x, ε)||Hs(x, ε)|


+
1


π


∫ ∞


cε4/5


dx
ImHs(x, ε)


|Hs(x, ε)|2
(3.4)


+
∣


∣


∣


1


F ′(xb, ε)
− 1


H ′
s(x̃b, ε)


∣


∣


∣
. (3.5)


We now estimate the terms (3.4) and(3.5). We begin with the error
coming from the replacement of F (x, ε) by Hs(x, ε) in the integral on I+(ε).


|F (x, ε)| ≥ 1
2
|Hs(x, ε)| + 1


2
ImHs(x, ε) − ε2x3/2|r(κ)| − x1/2|g1|


= 1
2
|Hs(x, ε)| + ε2x−1/2(1


2
g−1 − x2|r(κ)| − x|g1|), (3.6)


so that for sufficiently small ε and for x ∈ I+(ε) we have


|F (x, ε)| ≥ 1
2
|Hs(x, ε)|. (3.7)


Accordingly


∫


I+(ε)


dx
|F (x, ε) −Hs(x, ε)|
|F (x, ε)||Hs(x, ε)|


. ε2


∫


I+(ε)


dx
x1/2


(x− E)2 + ε4x−1


. ε2+ 4
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∫ ∞


0


dx
1


(x− E)2 + ε4− 4


5


. ε4/5. (3.8)
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We now estimate the integral


1


π


∫ ∞


cε4/5


dx
|ImHs(x, ε)|
|Hs(x, ε)|2


.


Since by assumption E ≤ (c/2)ε4/5 and x ≥ cε4/5 one has (x−E) ≥ x/2 and
then


∫ ∞


cε4/5


dx
|ImHs(x, ε)|
|Hs(x, ε)|2


. ε2


∫ ∞


cε4/5


dx
x−1/2


(x− E)2


. ε2


∫ ∞


cε4/5


dx x−5/2 . ε4/5. (3.9)


The estimation of
∣


∣


∣


1


F ′(xb, ε)
− 1


H ′
s(x̃b, ε)


∣


∣


∣


is a bit more complex, so we state it as a lemma.


Lemma 3.1.
∣


∣


∣


1


F ′(xb, ε)
− 1


H ′
s(x̃b, ε)


∣


∣


∣
. ε4/3. (3.10)


Proof. We estimate the l.h.s. of (3.10) in two steps, splitting the estimate as
shown here.


∣


∣


∣


1


F ′(xb, ε)
− 1


H ′
s(x̃b, ε)


∣


∣


∣
≤


∣


∣


∣


1


F ′(xb, ε)
− 1


H ′
s(xb, ε)


∣


∣


∣
(3.11)


+
∣


∣


∣


1


H ′
s(xb, ε)


− 1


H ′
s(x̃b, ε)


∣


∣


∣
. (3.12)


Consider the term on the r.h.s. of (3.11). From Assumption (2.3) it follows
that for x ∈ [−a, 0) we have |F ′(x, ε) −H ′


s(x, ε)| . ε2|x|−1/2, which together
with |F ′(x, ε)| ≥ 1 gives


∣


∣


∣


1


F ′(xb, ε)
− 1


H ′
s(xb, ε)


∣


∣


∣
.


ε2|xb|−1/2


1 + ε2|xb|−3/2
= ε4/3 y


1 + y3
, (3.13)


where y = ε2/3|xb|−1/2. Since the function y/(1 + y3) is uniformly bounded
on (0,∞), one obtains


∣


∣


∣


1


F ′(xb, ε)
− 1


H ′
s(xb, ε)


∣


∣


∣
. ε4/3. (3.14)


Consider now the term (3.12). From Taylor’s theorem we get (with a slight
abuse of notation)


∣


∣


∣


1


H ′
s(xb, ε)


− 1


H ′
s(x̃b, ε)


∣


∣


∣
.


|H ′′
s (u, ε)|


|H ′
s(u, ε)|2


|x̃b − xb|, (3.15)
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where u lies between xb and x̃b. Now from Proposition 2.4


|xb − x̃b| . ε2 min
{


|x̃b|1/2, |xb|1/2
}


≤ ε2|u|1/2,


and then
|H ′′


s (u, ε)|
|H ′


s(u, ε)|2
|x̃b − xb| .


ε4|u|−2


1 + ε4|u|−3
= ε4/3 y2


1 + y3
, (3.16)


where y = ε4/3|u|−1. Since the function y2/(1 + y3) is uniformly bounded on
(0,∞), one obtains from (3.15) and (3.16) the estimate


∣


∣


∣


1


H ′
s(xb, ε)


− 1


H ′
s(x̃b, ε)


∣


∣


∣
. ε4/3. (3.17)


Putting together (3.14) and (3.17), one obtains (3.10) and the proof of the
lemma is finished.


From (3.5), (3.10), (3.9), and Lemma 3.1, one obtains (uniformly for
t > 0) the estimate


∣


∣


∣
Ã(t) +


e−itxb


H ′
s(x̃b, ε)


+
1


π


∫ ∞


0


dx e−itx ImHs(x, ε)


|Hs(x, ε)|2
∣


∣


∣
. ε4/5 (3.18)


The approximant of Ã(t) in (3.18) has a nice form in scaled parameters.
Using the change of variables x = (ε2g−1)


2/3y, the integral takes the form


−
∫ ∞


0


dx e−itx ImHs(x, ε)


|Hs(x, ε)|2
=


∫ ∞


0


y1/2


y(f − y)2 + 1
e−isydy,


where s = (ε2g−1)
2/3t. Furthermore, if


|x̃b| = (ε2g−1)
2/3v(f) (3.19)


then v(f) is the (unique) solution of


f + v − 1


v1/2
= 0 (3.20)


on (0,∞), and
1


H ′
s(x̃b, ε)


= − 2v(f)3/2


2v(f)3/2 + 1
.


Accordingly, (3.18) can be rewritten as


∣


∣


∣
Ã(t) − 2v(f)3/2


2v(f)3/2 + 1
e−itxb − 1


π


∫ ∞


0


y1/2


y(f − y)2 + 1
e−isydy


∣


∣


∣
. ε4/5. (3.21)


By comparing (2.23) with (3.21) one sees that in order to finish the proof of
the theorem we are left with the estimation of |Ã(t) − Aε(t)|.
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Lemma 3.2.
|Ã(t) − Aε(t)| . ε4/5.


Proof. We shall use the “Hunziker trick”, see [9], which in our case amounts
to observe that since ImF (x+ iη, ε)−1 > 0 for η > 0, one has


|Ã(t) − Aε(t)| ≤ |Ã(0) −Aε(0)| = |Ã(0) − 1|. (3.22)


Now the key observation is that


2v(f)3/2


2v(f)3/2 + 1
+


1


π


∫ ∞


0


y1/2


y(f − y)2 + 1
dy = 1, (3.23)


and then from (3.21)
|Ã(0) − 1| . ε4/5,


which together with (3.22) will finish the proof of the lemma.
It remains to verify (3.23) using the residue theorem. Let h(ζ) = f − ζ −


i 1√
ζ
. The function 1/h(ζ) is analytic in C \ [0,∞) with the exception of a


simple pole at ζ = −v(f) with residue


1


h′(v(f))
= − 2v(f)3/2


2v(f)3/2 + 1
.


Now
1


π


∫ ∞


0


y1/2


y(f − y)2 + 1
dy = lim


R→∞
lim
ηց0


1


2πi


∫


ΓR,η


1


h(ζ)
dζ, (3.24)


where the contour is chosen as follows. ΓR,η consists of two circular arcs and


two line segments. The line segments connect iη with R
√


1 + η2+iη and −iη
with R


√


1 + η2−iη. The small circular arc has radius η and connects iη with
−iη, traversing the left half plane. The large circle with radius R connects
the points R


√


1 + η2 + iη and R
√


1 + η2 − iη and is positively oriented.
In order to apply the residue theorem one has to compute


lim
R→∞


1


2πi


∫


|ζ|=R


1


h(ζ)
dζ = − lim


R→∞


1


2πi


∫


|ζ|=R


1


ζ


1


1 − f
ζ


+ i
ζ
√


ζ


dζ = −1. (3.25)


Applying the residue theorem to 1/h(ζ) and using (3.24) and (3.25), one
obtains (3.23).


Now from (3.23) and (3.21) written at t = 0 one has


|Ã(0) − 1| =
∣


∣


∣
Ã(t) − 2v(f)3/2


2v(f)3/2 + 1
− 1


π


∫ ∞


0


y1/2


y(f − y)2 + 1
dy


∣


∣


∣
. ε4/5


which together with (3.22) finishes the proof of the lemma.
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To finish the proof of the Theorem we note that from (3.21) and Lemma 3.2
follows that


∣


∣


∣
Aε(t)−


2v(f)3/2


2v(f)3/2 + 1
e−itxb − 1


π


∫ ∞


0


y1/2


y(f − y)2 + 1
e−isydy


∣


∣


∣


≤
∣


∣


∣
Ã(t) − 2v(f)3/2


2v(f)3/2 + 1
e−itxb − 1


π


∫ ∞


0


y1/2


y(f − y)2 + 1
e−isydy


∣


∣


∣


+ |Ã(t) −Aε(t)| . ε4/3,


and the proof of Theorem 2.5 is finished.


Proof of Corollary 2.6. From Proposition 2.4 follows that


|e−itxb − e−itx̃b | ≤ t|xb − x̃b| ≤ ε2|x̃b|1/2t.


Now (3.20) implies that v(f) is a decreasing function of f , so that for E &


−ε4/3 we have
0 < v(f) . 1.


Combining this result with (3.19) we get


ε2|x̃b|1/2t . ε8/3t ∼= ε4/3s,


and the proof is finished.


Proof of Proposition 2.7. Part (i) follows, since F (x, ε) on (−a, 0) andHr(x, ε)
on (−∞, 0) are continuous and strictly decreasing, and since F (0, ε) = Hr(0, ε) =
Ẽ ≥ 0.


Consider now part (ii). For sufficiently small ε we have that F (−a, ε) > 0
and Hr(−a, ε) > 0, and then one follows the proof of Proposition 2.4 with
the change that now


|Hr(x, ε) − F (x, ε)| . ε2|x|3/2. (3.26)


Proof of Theorem 2.8. The proof follows the pattern of the proof of Theo-
rem 2.5. Let us start with part (i). Let


I+(ε) = [0, cε4/3]


and


Ã(t) = lim
ηց0


1


π


∫


I(ε)


dx e−itx ImF (x+ iη, ε)−1


=
1


π


∫


I+(ε)


dx e−itx ImF (x, ε)−1. (3.27)
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As in the singular case we estimate


∣


∣


∣
Ã(t) +


1


π


∫ ∞


0


dx e−itx ImHr(x, ε)


|Hr(x, ε)|2
∣


∣


∣


≤ 1


π


∫


I+(ε)


dx
|F (x, ε) −Hr(x, ε)|
|F (x, ε)||Hr(x, ε)|


+
1


π


∫ ∞


cε4/3


dx
|ImHr(x, ε)|
|Hr(x, ε)|2


, (3.28)


using the convention in (2.20) also for Hr. Again, for sufficiently small ε one
has


|F (x, ε)| ≥ 1
2
|Hr(x, ε)| &


√


(x− Ẽ)2 + ε4x, (3.29)


and then from Assumption 2.3 follows that


∫


I+(ε)


dx
|F (x, ε) −Hr(x, ε)|
|F (x, ε)||Hr(x, ε)|


. ε2


∫


I+(ε)


dx
x3/2


(x− Ẽ)2 + ε4x
. (3.30)


The r.h.s. of (3.30) is estimated in the next lemma.


Lemma 3.3.


ε2


∫


I+(ε)


dx
x3/2


(x− Ẽ)2 + ε4x
. ε4/3 (3.31)


Proof. Consider first the case Ẽ > 1
2
ε4. One has


(x− Ẽ)2 + ε4x = (x− Ẽ + 1
2
ε4)2 + ε4Ẽ − 1


4
ε8.


Then, since ε4Ẽ − 1
4
ε8 ≥ 1


2
ε4Ẽ, we get


ε2


∫


I+(ε)


x3/2


(x− Ẽ)2 + ε4x
dx . ε8/3


∫


I+(ε)


x


(x− Ẽ + 1
2
ε4)2 + 1


2
ε4Ẽ


dx


= ε8/3


∫


I+(ε)


x− Ẽ + 1
2
ε4


(x− Ẽ + 1
2
ε4)2 + 1


2
ε4Ẽ


dx


+ ε8/3(Ẽ − 1
2
ε4)


∫


I+(ε)


1


(x− Ẽ + 1
2
ε4)2 + 1


2
ε4Ẽ


dx


. ε8/3|ln ε4 1
2
Ẽ| + ε8/3Ẽ1/2 1


ε2
. ε4/3


which proves the lemma for Ẽ > 1
2
ε4. In the last step we used that Ẽ . ε4/3.
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Consider now the opposite case, i.e. Ẽ ≤ 1
2
ε4. Using the fact that for


x > ε4 we have x− Ẽ ≥ 1
2
x one has


ε2


[


∫ ε4


0


+


∫ cε4/3


ε4


]


x3/2


(x− Ẽ)2 + ε4x
dx


.
1


ε2


∫ ε4


0


x1/2dx+ ε2


∫ cε4/3


ε4


1


x1/2
dx . ε4 + ε8/3, (3.32)


which gives the required estimate for Ẽ ≤ 1
2
ε4.


We turn now to the second term in the r.h.s. of (3.28). Since by assump-
tion Ẽ ≤ 1


2
cε4/3, for x > 1


2
cε4/3 one has x− Ẽ ≥ 1


2
x, and then


∫ ∞


cε4/3


dx
|ImHr(x, ε)|
|Hr(x, ε)|2


. ε2


∫ ∞


cε4/3


x1/2


(x− Ẽ)2 + ε4x
dx


. ε2


∫ ∞


cε4/3


1


x1/2(x+ ε4)
dx . ε4/3 (3.33)


In the last step the change of variable x = ε4u2 has been used. Plugging
(3.30), (3.31), and (3.33) into (3.28), one obtains


∣


∣


∣
Ã(t) +


1


π


∫ ∞


0


dxe−itx ImHr(x, ε)


|Hr(x, ε)|2
∣


∣


∣
. ε4/3. (3.34)


Using the change of variables x = ε4|g̃1|2y, and recalling that g1 < 0, (3.34)
is rewritten as


∣


∣


∣
Ã(t) − 1


πb


∫ ∞


0


dxe−iuy y1/2


(f̃ − y)2 + y


∣


∣


∣
. ε4/3. (3.35)


where u and f̃ are given by (2.32). Since |b− 1| . ε2 from (3.34) and (3.35),
one obtains


∣


∣


∣
Ã(t) − 1


π


∫ ∞


0


dxe−iuy y1/2


(f̃ − y)2 + y


∣


∣


∣
. ε4/3. (3.36)


To obtain the estimate for Aε from (3.36) by using the Hunziker trick we
need the analogue of (3.23) for the regular case, viz.


Lemma 3.4. (i) Let f̃ ≥ 0. Then


1


π


∫ ∞


0


dx
y1/2


(f̃ − y)2 + y
= 1. (3.37)
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(ii) Let f̃ < 0. Then ṽ(f̃) = 1
4
(
√


1 + 4|f̃ | − 1)2 is the unique positive


solution of the equation f̃ + v + v1/2 and


√


1 + 4|f̃ | − 1
√


1 + 4|f̃ |
+


1


π


∫ ∞


0


y1/2


(f̃ − y)2 + y
dy = 1. (3.38)


Proof. One applies the argument leading to (3.23) to the function h(ζ) =
f̃ − ζ − ζ1/2. The difference between (i) and (ii) is that in the second case
h(ζ) has a pole at ṽ(f̃) with residue


−
√


1 + 4|f̃ | − 1
√


1 + 4|f̃ |
.


From this point onwards the proof of Theorem 2.8 coincide with the proof
of Theorem 2.5.


Proof of Corollary 2.9. The proof of Corollary 2.9 is the same (using Propo-
sition 2.7 instead of Proposition 2.4) as the proof of Corollary 2.6. Details
are omitted.


4 Some numerical results


In this section we display a number of results obtained by evaluating nu-
merically the expressions approximating Aε(t). The computations have been
performed using the numerical integration facilities in the computer algebra
program Maple.


4.1 The singular case


The expression we evaluate is the following, see (2.26).


∣


∣


∣


2v(f)3/2


2v(f)3/2 + 1
eisv(f) +


1


π


∫ ∞


0


y1/2


y(f − y)2 + 1
e−isydy


∣


∣


∣


2


. (4.1)


Here v(f) solves the equation


f + v − 1


v1/2
= 0.


The plots in the figures show this quantity as a function of the scaled time
parameter s for various values of the scaled energy parameter f . In the left
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Figure 1: Singular case. On the left the values of the parameter are f = 0,
0.5, 1, 2, 3, 4, from top to bottom. On the right the values of the parameter
are f = −4, −3, −2, −1, −0.5, from top to bottom.


hand part of Figure 1 the results are plotted for f = 0, 0.5, 1, 2, 3, 4. In the
right hand part the results are plotted for the values f = −0.5, −1, −2, −3,
−4.


For the value f = 30 we plot both the value and the logarithm of the
value of the quantity in (4.1). The result is shown in Figure 2.


For f = −30 the quantity (4.1) is plotted in Figure 3. Note the vertical
scale.


4.2 The regular case


For positive energy we plot the quantity
∣


∣


∣


1


π


∫ ∞


0


y1/2


(f̃ − y)2 + y
e−is̃ydy


∣


∣


∣


2


. (4.2)


The plots in the figures show this quantity as a function of the scaled time
parameter s̃ for various values of the scaled energy parameter f̃ . In the left
hand part of Figure 4 the results are plotted for f̃ = 0, 0.5, 1, 2, 3, 4, using a
linear vertical scale, and in the right hand part using a logarithmic vertical
scale.


For negative values of the energy we plot the quantity
∣


∣


∣


∣


∣


√


1 + 4|f̃ | − 1
√


1 + 4|f̃ |
eis̃ṽ(f̃) +


1


π


∫ ∞


0


y1/2


(f − y)2 + y
e−is̃ydy


∣


∣


∣


∣


∣


2


. (4.3)
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Figure 2: Singular case with the value f = 30. In the left part the vertical
scale is linear, in the right part it is logarithmic.
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Figure 3: Singular case. Value of the parameter is f = −30. Note the vertical
scale
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Figure 4: Regular case. The values of the parameter are f̃ = 0, 0.5, 1, 2, 3,
4, from top to bottom. Left hand part uses a linear vertical scale, right hand
part a logarithmic vertical scale.


Here ṽ(f̃) = 1
4
(
√


1 + 4|f̃ |−1)2. The plots are shown in Figure 5 for f̃ = −0.5,
−1, −2, −3, and −4.


For the value f̃ = 30 we have plotted the quantity (4.2) on both a linear
and a logarithmic scale in Figure 6.


For f̃ = −30 the quantity (4.3) is plotted in Figure 7. Note the vertical
scale.
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Figure 5: Regular case. The values are f̃ = −4, −3, −2, −1, −0.5, from top
to bottom.
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Figure 6: Regular case. The value of the parameter is f̃ = 30. Left hand
plot uses a linear vertical scale, right hand plot uses a logarithmic vertical
scale.
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Figure 7: Regular case. Value of the parameter is f̃ = −30. Note the vertical
scale


A Appendix


In this Appendix we give some examples of Schrödinger operators satisfying
Assumption 2.3. We use results from some of our papers, [13], [14], [10], [11].
In order to verify (2.13) in Assumption 2.3 we use differentiability results for
the asymptotic expansions of the resolvent, as given in [11], [10], [22]. We
also mention [29], which contains further results on resolvent expansions in
the odd dimensional case, and in particular differentiability properties of the
expansions. Below we concentrate on the results on the expansion coefficients
gj in (2.12).


A.1 Schrödinger operators on the half line


We refer to [13] and [14] for the details concerning the results presented here.
As our first example we take


Hop = − d2


dr2
+ V (r) on Hop = L2([0,∞)),


with the Dirichlet boundary condition at r = 0. We will assume that V is
real-valued and satisfies


|V (r)| . (1 + r)−β for r ∈ [0,∞).


In the first case to be discussed we assume β > 11. We say that Hop has a
zero resonance, if there exists a solution Ψc 6= 0 to HopΨ = 0 (in the sense
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of distributions), such that Ψc ∈ L∞([0,∞)). It is known that for V mul-
tiplicative the equation HopΨ = 0 has no solutions belonging to L2([0,∞)).
See for example [14, Lemma 3.7]. We assume that Ψc as been normalized as
in [14].


It follows from [14] that Assumption 2.3 is satisfied, if we assume that W
is self-adjoint and satisfies


|W12(r)| + |W21(r)| . (1 + r)−γ (A.1)


for γ > 13/4. Furthermore, we have (using 〈·, ·〉 to denote the pairing between
dual spaces as well as the inner product)


g−1 = |〈W12,Ψc〉|2.


Thus if this integral is nonzero, we are in the singular case.
If we assume that HopΨ = 0 has no nonzero solution in L∞([0,∞)), then


we have that g−1 = 0. In that case it suffices to assume β > 7. Furthermore,
it suffices to assume γ > 9/4. Let us define GD


0 to be the operator given by
the integral kernel


GD
0 (r, r′) = min{r, r′}.


Then we have that


g1 = −|〈W12, (I +GD
0 V )−1r〉|2


Thus if this expression is nonzero, then we are in the regular case. If it equals
zero, then we are in the smooth case.


For higher angular momenta ℓ ≥ 1 we can take


Hop = − d2


dr2
+
ℓ(ℓ+ 1)


r2
+ V (r) on Hop = L2([0,∞)),


and in this case no boundary condition is needed at zero. We assume that
V decays sufficiently fast at infinity. If zero is not an eigenvalue of Hop, then
we are in the smooth case. For V (r) = 0 the details including verification of
Assumption 2.3 are in [13]. For general V they have not yet been published.
The computations are similar to those in [14].


A.2 Schrödinger operators on Rm, m odd


As our next example we take


Hop = −∆ + V (x) on Hop = L2(Rm),


25







where we assume that m is odd. Consider first m ≥ 5. It follows from the
results in [10] that Assumption 2.3 is satisfied, if V and W decay sufficiently
fast, and if zero is not an eigenvalue of Hop. Furthermore, under this as-
sumption and for m ≥ 5 we are always in the smooth case, i.e. g−1 = 0 and
g1 = 0.


Next we consider m = 3. We say that Hop has a resonance at zero, if
there is a solution Ψc to (−∆ + V (x))Ψ = 0 in the sense of distributions
satisfying


Ψc(x) =
c


|x| + ψ(x) with c 6= 0 and ψ ∈ L2(R3).


Assume that V is real-valued and satisfies


|V (x)| . (1 + |x|)−β


for some β > 9 and furthermore that W is self-adjoint and satisfies


|W12(x)| + |W21(x)| . (1 + |x|)−γ


for some γ > 5/2.
Assume first that zero is a resonance forHop, but zero in not an eigenvalue.


Then the conditions in Assumption 2.3 are satisfied, see [13], [11]. We have
that


g−1 = |〈W12,Ψc〉|2,
see [13, Theorem 5.3]. We assume that Ψc is normalized, as described in [13].
If 〈W12,Ψc〉 6= 0, then we are in the singular case. If 〈W12,Ψc〉 = 0, then we
may be in the regular case or the smooth case, depending on whether the
coefficient g1 in this case is non-zero or not. This coefficient is computable,
but rather complicated. The expression can be derived from [11].


Next we assume that zero is neither a resonance nor an eigenvalue for
Hop. Also in this case Assumption 2.3 is satisfied, as a consequence of results
in [13], [11]. We have that g−1 = 0 and


g1 = − 1


4π
|〈W 12, (I +G0


0V )−11〉|2,


where G0
0 denotes the integral operator with the kernel


G0
0(x,y) =


1


4π|x − y| .


If 〈W 12, (I +G0
0V )−11〉 6= 0, then we are in the regular case. Otherwise we


are in the smooth case.
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The case m = 1 can also be treated. In this case zero cannot be an
eigenvalue of Hop for a multiplicative potential V . If zero is not a resonance,
then we are either in the regular case, or in the smooth case. If zero is a
resonance, the results are similar to the ones stated above in the case m = 3.
We refer to [13, Theorem 5.6].
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