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Abstract


We prove existence of a ground state and resonances in the standard
model of the non-relativistic quantum electro-dynamics (QED). To this end
we introduce a new canonical transformation of QED Hamiltonians and use
the spectral renormalization group technique with a new choice of Banach
spaces.


I Introduction
Problem and outline of the results. Non-relativistic quantum electro-dynamics
(QED) describes the processes of emission and absorption of radiation by systems
of matter, such as atoms and molecules, as well as other processes arising from in-
teraction of the quantized electro-magnetic �eld with non-relativistic matter. The
mathematical framework of this theory is well established. It is given in terms of
the time-dependent Schrödinger equation,


i∂tψ = HSM
g ψ,


where HSM
g is the standard quantum Hamiltonian given below. Here SM stands


for 'standard model'. This model has been extensively studied in the last decade,
see the book and reviews [60, 2, 44, 46] and references therein for a list of early
contributions.


For a large class of systems and under an ultra-violet cut-off, the operator HSM
g


is self-adjoint (see e.g. [11, 43]). The stability of the system under consideration is
∗Supported by NSERC Grant No. NA7901
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equivalent to the statement of existence of the ground state of HSM
g , i.e. an eigen-


fuction with the smallest possible energy. The physical phenomenon of radiation
is expressed mathematically as emergence of resonances out of excited states of
a particle system due to coupling of this system to the quantum electro-magnetic
�eld. We de�ne the resonances and discuss their properties below.


In this paper we prove existence of the ground state and resonance states of
HSM


g originating from the ground state and from excited states of the particle
system. Our approach provides also an effective way to compute the ground states
and resonance states and their eigenvalues. We do not impose any extra conditions
on HSM


g , except for smallness of the coupling constant g and an ultraviolet cut-off
in the interaction.


The existence (and uniqueness) of the ground state was proven by soft, com-
pactness techniques in [11, 40, 41, 42, 47, 3, 32] and in a constructive way, in [6].
The existence of the resonances was proven so far only for con�ned potentials
(see [9, 10] and, for a book exposition, [33]).


Our proof contains two new ingredients: a new canonical transformation of
the Hamiltonian HSM


g (which we call the generalized Pauli-Fierz transformation,
Section II) and new � momentum anisotropic � Banach spaces for the spectral
renormalization group (RG) which allow us to control the RG �ow for more sin-
gular coupling functions (Section VI). A part of this paper which deals with adapt-
ing and clarifying the RG technique for the present situation is rather technical but
can be used in other problems of non-relativistic QED.


Quantum Hamiltonian. We now describe the standard model of non-relativistic
QED and the corresponding quantum Hamiltonian. We use the units in which the
Planck constant divided by 2π, the speed of light and the electron mass are equal
to 1( ~ = 1, c = 1 and m = 1). In these units the electron charge is equal to−√α,
where α = e2


4π~c ≈ 1
137


is the �ne-structure constant, and the distance, time and
energy are measured in units of ~/mc = 3.86 ·10−11cm, ~/mc2 = 1.29 ·10−21sec
and mc2 = 0.511MeV , respectively (natural units).


We consider the matter system consisting of n charged particles interacting
with quantized electromagnetic �eld. The particles have masses mj and positions
xj , where j = 1, ..., n. We write x = (x1, . . . , xn). The total potential of the
particle system is denoted by V (x). The Hamiltonian operator of the particle
system alone is given by


Hp := −
n∑


j=1


1


2mj


∆xj
+ V (x), (I.1)


where ∆xj
is the Laplacian in the variable xj . This operator acts on a Hilbert space


of the particle system, denoted by Hp, which is either L2(R3n) or a subspace of
this space determined by a symmetry group of the particle system. We assume
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that V (x) is real and s.t. the operator Hp is self-adjoint.
The quantized electromagnetic �eld is described by the quantized vector po-


tential
A(y) =


∫
(eikya(k) + e−ikya∗(k))χ(k)


d3k√
|k| , (I.2)


in the Coulomb gauge (divA(y)). Here χ is an ultraviolet cut-off: χ(k) = 1
(2π)3


√
2


in a neighborhood of k = 0 and it vanishes suf�ciently fast at in�nity The dynam-
ics of the quantized electromagnetic �eld is given through the quantum Hamilto-
nian


Hf =


∫
d3k ω(k)a∗(k) · a(k), (I.3)


where ω(k) = |k| is the dispersion law connecting the energy of the �eld quan-
tum with its wave vector k. Both, A(y) and Hf , act on the Fock space Hf ≡ F .
Thus the Hilbert space of the total system is H := Hp ⊗F .


Above, a∗(k) and a(k) denote the creation and annihilation operators on F .
The families a∗(k) and a(k) are operator-valued generalized, transverse vector
�elds:


a#(k) :=
∑


λ∈{−1,1}
eλ(k)a#


λ (k),


where eλ(k) are polarization vectors, i.e. orthonormal vectors in R3 satisfying
k · eλ(k) = 0, and a#


λ (k) are scalar creation and annihilation operators satisfying
canonical commutation relations. The right side of (I.3) can be understood as a
weak integral. See Supplement A for a brief review of de�nitions of the Fock
space, the creation and annihilation operators and the operator Hf .


The total system is described by the standard Hamiltonian1


HSM
g =


n∑
j=1


1


2mj


(i∇xj
+ gA(xj))


2 + V (x) + Hf (I.4)


acting on the Hilbert space H = Hp ⊗ Hf , which is the tensor product of the
state spaces of the matter system Hp and the quantized electromagnetic �eld Hf .
Here, as was mentioned above, the superindex SM stands for 'standard model'
and, as explained below, g is related to the particle charge, or, more precisely, to
the �ne-structure constant.


Consider (I.4) for an atom or molecule. Then, in the natural units, g =
√


α and
V (x), which is the total Coulomb potential of the particle system, is proportional
to α. Rescaling x → α−1x and k → α2k we arrive at (I.4) with g := α3/2 and
V (x) of the order O(1) (see [11]). After that we relax the restriction on V (x) and
consider the standard generalized n-body potentials (see e.g. [52]):


1For discussion of physics emerging out of this Hamiltonian see [19, 20].
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(V) V (x) =
∑


i Wi(πix), where πi are a linear maps fromR3n toRmi , mi ≤ 3n
and Wi are Kato-Rellich potentials (i.e. Wi(πix) ∈ Lpi(Rmi)+(L∞(R3n))ε


with pi = 2 for mi ≤ 3, pi > 2 for mi = 4 and pi ≥ mi/2 for mi > 4, see
[58, 48]).


Under the assumption (V), the operator HSM
g ψ is self-adjoint. In order to


tackle the resonances we choose the ultraviolet cut-off, χ(k), so that


The function θ → χ(e−θk) has an analytic continuation from the real axis,
R, to the strip {θ ∈ C||Im θ| < π/4} as a L2


⋂
L∞(R3) function,


e.g. χ(k) = e−|k|
2/K2 , and we assume that the potential, V (x), satis�es the condi-


tion:


(DA) The the particle potential V (x) is dilation analytic in the sense that the
operator-function θ → V (eθx)(−∆ + 1)−1 has an analytic continuation
from the real axis, R, to the strip {θ ∈ C||Im θ| < θ0} for some θ0 > 0.


In order not to deal with the problem of center-of-mass motion, which is not
essential in the present context, we assume that either some of the particles (nu-
clei) are in�nitely heavy or the system is placed in a binding, external potential
�eld. This means that the operator Hp has isolated eigenvalues below its essential
spectrum. However, the techniques developed in this paper can be extended to
translationally invariant particle systems (see [22]).


Resonances. We de�ne the resonances for the Hamiltonian HSM
g as follows.


Consider the dilations of particle positions and of photon momenta:


xj → eθxj and k → e−θk,


where θ is a real parameter. Such dilations are represented by the one-parameter
group of unitary operators, Uθ, on the total Hilbert space H := Hp ⊗ F of the
system (see Section III). Now, for θ ∈ R we de�ne the deformation family


HSM
gθ := XθH


SM
g X−1


θ , (I.5)


where Xθ := Uθe
−igF with F , the self-adjoint operator de�ned in Section II.


The transformation HSM
g → e−igF HSM


g eigF is a generalization of the well-known
Pauli-Fierz transformation. Note that the operator-family Xθ has the following
two properties needed in order to establish the desired properties of the reso-
nances: (a) Xθ are unitary for θ ∈ R and (b) Xθ1+θ2 = Uθ1Xθ2 where Uθ are
unitary for θ ∈ R.


It is easy to show (see Section III) that, due to Condition (DA), the family
HSM


gθ has an analytic continuation in θ to the disc D(0, θ0), as a type A family in
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the sense of Kato ([53]). A standard argument shows that the real eigenvalues of
HSM


gθ , Imθ > 0, coincide with eigenvalues of HSM
g and that complex eigenvalues


of HSM
gθ , Imθ > 0, lie in the complex half-plane C−. We show below that the


complex eigenvalues of HSM
gθ , Imθ > 0, are locally independent of θ. We call


such eigenvalues the resonances of HSM
g .


As it is clear from the de�nition, the notion of resonance extends that of eigen-
value and under small perturbations embedded eigenvalues turn generally into res-
onances. Correspondingly, the resonances share two 'physical' manifestations of
eigenvalues, as poles of the resolvent and and frequencies of time-periodic and
spatially localized solutions of the time-dependent Schrödinger equation, but with
a caveat. To explain the �rst property, we use the Combes argument which goes
as follows. By the unitarity of Xθ := Uθe


−igF for real θ,
〈Ψ, (HSM


g − z)−1Φ〉 = 〈Ψθ̄, (H
SM
gθ − z)−1Φθ〉 , (I.6)


where Ψθ = XθΨ, etc., for θ ∈ R and z ∈ C+. Assume now that Ψθ and Φθ


have analytic continuations into a complex neighbourhood of θ = 0. Then the
r.h.s. of (I.6) has an analytic continuation in θ into a complex neighbourhood of
θ = 0. Since (I.6) holds for real θ, it also holds in the above neighbourhood.
Fix θ on the r.h.s. of (I.6), with Imθ > 0. The r.h.s. of (I.6) can be analytically
extended across the real axis into the part of the resolvent set of HSM


gθ which lies
in C− and which is connected to C+. This yields an analytic continuation of the
l.h.s. of (I.6). The real eigenvalues of HSM


gθ give the real poles of the r.h.s. of
(I.6) and therefore they are the eigenvalues of HSM


g . The complex eigenvalues of
HSM


gθ , which are at the resonances of HSM
g , yield the complex poles of the r.h.s.


of (I.6) and therefore they are poles of the meromorphic continuation of the l.h.s.
of (I.6) across the spectrum of HSM


g onto the second Riemann sheet. This pole
structure is observed physically as bumps in the scattering cross-section or poles
in the scattering matrix. There are some subtleties involved which we explain
below.


The second manifestation of resonances eluded to above is as metastable states
(metastable attractors of system's dynamics). Namely, one expects that the ground
state is asymptotically stable and the resonance states are (asymptotically) metastable,
i.e. attractive for very long time intervals. More speci�cally, let z∗, Imz∗ ≤ 0 be
the ground state or resonance eigenvalue. One expects that for an initial con-
dition, ψ0, localized in a small energy interval around ground state or resonance
energy, Rez∗, the solution, ψ, of the time-dependent Schrödinger equation, i∂tψ =
HSM


g ψ, is of the form


e−iHSM
g tψ0 = e−iz∗tφ∗ + Oloc(t


−α) + Ores(g
β), (I.7)


for some α, β > 0 (depending on ψ0). Here φ∗ is either the ground state (if z∗
is the ground state energy) or an excited state of the unperturbed system (if z∗ is
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the resonance), the error term Oloc(t
−α) satis�es ‖(1+ |T |)−νOloc(t


−α)‖ ≤ Ct−α,
where T is the generator of the group Uθ mentioned above, with an appropriate
ν > 0, and the error term Ores(g


β) is absent in the ground state case. The reason
for the latter is that, unlike bound states, there is no 'canonical' notion of the
resonance state.


The asymptotic stability of the ground state is equivalent to the statement of
the local decay. Its proof was completed recently in [27, 29] (see [11, 12] for
complementary results). A statement involving survival probabilities of excited
states which is related to the metastability of the resonances is proven in [1] using
the results of this paper (see [37] for related results and [11, 55, 54] for partial
results).


The dynamical picture of the resonance described above implies that the imag-
inary part is the resonance value, called the resonance width, can be interpreted as
the decay rate probability, and its reciprocal, as the life-time, of the resonance.


Main results. Let ε
(p)
i 's be the isolated eigenvalues of the particle Hamiltonian


Hp, labeled with their multiplicities. In what follows we �x an energy ε
(p)
0 <


ν < inf σess(Hp) below the ionization threshold inf σess(Hp) and denote ε
(p)
gap ≡


ε
(p)
gap(ν) := min{|ε(p)


i − ε
(p)
j ||i 6= j, ε


(p)
i , ε


(p)
j ≤ ν} and j(ν) := max{j : ε


(p)
j ≤ ν}.


We now state the main results of this paper.


Theorem I.1. Assume Condition (V). Fix e
(p)
0 < ν < inf σess(Hp) and let g ¿


min(ε
(p)
gap(ν),


√
ε
(p)
gap(ν) tan(θ0/2) ). Then


(i) The ground state of HSM
g for g = 0 turns into the ground state of HSM


g


and the excited states below the energy level ν turn into resonance and/or bound
states;


(ii) The eigenvalues/resonances, εj , of HSM
g are related to the unperturbed


eigenvalues of HSM
0 as εj = ε


(p)
j + O(g2);


(iii) εj's are independent of θ, provided Imθ ≥ θ0/2.
The statements concerning the excited states are proven under additional Con-


dition (DA).


In particular we have ε0 := inf σ(HSM
g ). Let


Sj := {z ∈ e−θQj | Re(eθ(z−εj)) ≥ 0 and |Im(eθ(z−εj))| ≤ 1


2
|Re(eθ(z−εj))|}.


(I.8)
Information about meromorphic continuation of the matrix elements of the resol-
vent and position of the resonances is given in the next theorem.


Theorem I.2. Assume g ¿ ε
(p)
gap(ν) and Conditions (V) and (DA). Then for a dense


set (de�ned in (I.9) below) of vectors Ψ and Φ, the matrix elements F (z, Ψ, Φ) :=
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〈Ψ, (HSM
g − z)−1Φ〉 of the resolvent of HSM


g have meromorphic continuations
from C+ across the interval (ε0, ν) of the essential spectrum of HSM


g into the do-
main {z ∈ C−| ε0 < Rez < ν}, with the wedges Sj, j ≤ j(ν), deleted. Further-
more, this continuation has poles at εj in the sense that limz→εj


(εj−z)F (z, Ψ, Φ)
is �nite and, for a �nite-dimensional subspace of Ψ's and Φ's, nonzero.


Discussion.
(i) Condition (DA) could be weakened considerably so that it is satis�ed by


the potential of a molecule with �xed nuclei.
(ii) Generically, excited states turn into the resonances, not bound states. A


condition which guarantees that this happens is the Fermi Golden Rule (FGR)
(see [11]). It expresses the fact that the coupling of unperturbed embedded eigen-
values of HSM


0 to the continuous spectrum is effective in the second order of the
perturbation theory. It is generically satis�ed.


(iii) With our labeling the eigenvalues counting their multiplicities the result
(i) of Theorem I.1 implies that the total multiplicity of the eigenvalues and reso-
nances emerging from a given eigenvalue of Hp is equal to the multiplicity of this
eigenvalue;


(iv) With little more work one can establish an explicit restriction on the cou-
pling constant g in terms of the particle energy difference e


(p)
gap and appropriate


norms of the coupling functions.
(v) The second theorem implies the absolute continuity of the spectrum and its


proof gives also the limiting absorption principle in the interval (ε0, ν), but these
results have already been proven by the spectral deformation and commutator
techniques [11, 12, 27].


(vi) The meromorphic continuation in question is constructed in terms of ma-
trix elements of the resolvent of a complex deformation, HSM


g,θ , Imθ > 0, of the
Hamiltonian HSM


g .
(vii) The proof of Theorem I.1 gives fast convergent expressions in the cou-


pling constant g for the ground state energy and resonances.
The existence of the ground state for full vector model was proven by a com-


pactness technique in [11, 3, 40, 41, 42, 32, 46] and in a constructive way, in [6].
A computational algorithm for the ground state energy was designed in [6]. Thus
the main new result of this work is the existence of resonances and an algorithm
for their computation.


The dense set mentioned in the Theorem I.2 is de�ned as


D :=
⋃


n>0,a>0


Ran
(
χN≤nχ|T |≤a


)
. (I.9)


Here N =
∫


d3ka∗(k)a(k) is the photon number operator and T denotes the
self-adjoint generator of the one-parameter group Uθ, θ ∈ R. Since N and T
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commute, this set is dense. We claim that for any ψ ∈ D, the family Uθe
−igF (x)ψ


has an analytic continuation from R to the complex disc D(0, θ0). Indeed, by the
construction in the next section, the family Fθ(x) := UθF (x)U−1


θ has an analytic
continuation fromR to the complex disc D(0, θ0). For θ complex this continuation
is a family of non-self-adjoint operators. However, the exponential e−igFθ(x) is
well de�ned on the dense domain


⋃
n<∞ RanχN≤n. Since


Uθe
igF (x)ψ = eigFθ(x)χN≤nUθχ|T |≤aψ


for some n and a, s.t. χN≤nχ|T |≤aψ = ψ, the family Uθe
−igF (x)ψ has an analytic


continuation in θ from R to D(0, θ0).
Infrared problem. As is shown in Theorem I.1 and is understood in Phyisics


on the basis of formal - but rather non-trivial - perturbation theory, the resonances
arise from the eigenvalues of the free Hamiltonian HSM


0 . To �nd the spectrum
of HSM


0 one veri�es that Hf de�nes a positive, self-adjoint operator on F with
purely absolutely continuous spectrum, except for a simple eigenvalue 0 corre-
sponding to the vacuum eigenvector Ω (see Supplement A). Thus, for g = 0 the
low energy spectrum of the operator HSM


0 consists of branches [ε
(p)
i ,∞) of abso-


lutely continuous spectrum and of the eigenvalues ε
(p)
i 's, sitting at the continuous


spectrum 'thresholds' ε
(p)
i 's. The absence of gaps between the eigenvalues and


thresholds is a consequence of the fact that the photons are massless. This leads
to hard and subtle problems in perturbation theory, known collectively as the in-
frared problem.


This situation is quite different from the one in Quantum Mechanics (Stark
effect or tunneling decay) where the resonances are isolated eigenvalues of com-
plexly deformed Hamiltonians. This makes the proof of their existence and estab-
lishing their properties, e.g. independence of θ (and, in fact, of the transformation
group Xθ), relatively easy. In the non-relativistic QED (and other massless the-
ories), giving meaning of the resonance poles and proving independence of their
location of θ is a rather involved matter (see below).


The point above can be illustrated on the proof of the statement (I.7). To this
end we use the formula


e−iHtf(H) =
1


π


∫ ∞


−∞
dλf(λ)e−iλtIm(H − λ− i0)−1


(see e.g. [58]) connecting the propagator and the resolvent. For the ground
state the absolute continuity of the spectrum outside the ground state energy, or
a stronger property of the limiting absorption principle, suf�ces to establish the
result above. In the resonance case, one uses the fact that the meromorphic contin-
uation of matrix elements of the resolvent (on an appropriate dense set of vectors)
to the second Riemann sheet has poles at resonances and performing a suitable
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deformation of the contour of integration in the formula above (see e.g. [51]).
This works when the resonances are isolated (see [51, 52]). In the present case,
proving (I.7) is a subtle problem.


Resonance poles. Can we make sense of the resonance poles in the present
context? The answer to this question is obtained in [1], where it is shown based
on the results of this paper, that for each Ψ and Φ from a dense set of vectors, the
meromorphic continuation, F (z, Ψ, Φ), of the matrix element 〈Ψ, (HSM


g −z)−1Φ〉
described above is of the following form near the resonance εj of HSM


g :


F (z, Ψ, Φ) = (εj − z)−1p(Ψ, Φ) + r(z, Ψ, Φ) , (I.10)


where p and r(z) are sesquilinear forms in Ψ and Φ with r(z) analytic in z ∈
Q := {z ∈ C−| ε0 < Rez < ν}/⋃


j≤j(ν) Sj and bounded, on the intersection of a
neighbourhood of εj with Q, as


|r(z, Ψ, Φ)| ≤ CΨ,Φ|εj − z|−γ for some γ < 1.


Moreover, p 6= 0 at least for one pair of vectors Ψ and Φ and p = 0 for a dense
set of vectors Ψ and Φ in a �nite co-dimension subspace. The multiplicity of a
resonance is the rank of the residue at the pole. The next important problem is
to connect the ground state and resonance eigenvalues to poles of the scattering
matrix.


Approach. To prove Theorems I.1 and I.2 we apply the spectral renormalza-
tion group (RG) method ([4, 9, 10, 28]) to the Hamiltonians e−igF HSM


g eigF (the
ground state case) and HSM


gθ (the resonance case). Note that the version of RG
needed in this work uses new � anisotropic � Banach spaces of operators, on
which the renormalization group acts. It is described in [28]. Using the RG tech-
nique we describe the spectrum of the operator HSM


gθ in {z ∈ C−| ε0 < Rez < ν}
from which derive Theorems I.1 and I.2.


In the terminology of the Renormalization Group approach the perturbation in
(I.4) is marginal (similar to critical nonlinearities in nonlinear PDEs). This leads
to the presence of the second zero eigenvalue in the spectrum of the linearized RG
�ow (note that there is no spectral gap in the linearized RG �ow). This case is
notoriously hard to treat as one has to understand the dynamics on the implicitly
de�ned central manifold. To avoid it the previous works [9, 10] had either to
assume the non-physical infrared behaviour of the vector potential by replacing
|k|−1/2 in the vector potential (I.2) by |k|−1/2+ε, with ε > 0 or to assume presence
of a strong con�ning external potential so that V (x) ≥ c|x|2 for x large. Our work
shows that in non-relativistic QED one can overcome this problem by suitable
canonical transformation and choice of the Banach space.


Our approach is also applicable to Nelson's model describing interaction of
particles with massless lattice excitations (phonons) described by a quantized,
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massless, Boson �eld and Theorems I.1 and I.2 are still valid if replace there the
operator HSM


g by the Hamiltonian HN
g for this model (see Supplement B). In fact,


we consider a class of generalized particle-�eld operators (introduced in Section
IV) which contains both, operators HPF


g and HN
g .


Organization of the paper. The paper is organized as follows. In Section II
we introduce the generalized Pauli-Fierz transformation (e−igF HSM


g eigF =: HPF
g


) and in Section III, the complex deformation of quantum Hamiltonians. In Sec-
tion IV we introduce a class of generalized particle-�eld Hamiltonians and show
that the Hamiltonian HPF


g obtained in Section II and the Hamiltonian HN
g as well


as their dilation deformations belong to this class. In the rest of the paper we study
the Hamiltonians from the class introduced and derive Theorems I.1 and I.2 from
the results about these Hamiltonians. In Section V we introduce an isospectral
Feshbach-Schur map and use it to map the generalized particle-�eld Hamiltonians
into Hamiltonians acting only on the �eld Hilbert space - Fock space (elimination
of particle and high photon energy degrees of freedom). The image of this map is
shown in Section VII to belong to a certain neighbourhood in the Banach spaces
introduced in Section VI. The latter spaces are an anisotropic - in the momentum
representation - modi�cation of the Banach spaces used in [4, 9, 10]. In Section
VIII we use the results of [28] on the spectral renormalzation group (cf. [4, 9, 10])
to describe the spectrum of generalized particle-�eld Hamiltonians. Finally, in
Section IX we prove Theorems I.1 and I.2. In Appendix A we recall some prop-
erties of the Feshbach-Schur map and in Appendix B we prove the main result
of Section VI. The results of both appendices are close certain results from [4].
Some basic facts about Fock spaces and creation and annihilation operators on
them are collected in Supplement A and in Supplement B we describe the Nelson
Hamiltonians and their dilation deformations.


II Generalized Pauli-Fierz transformation
In order to simplify notation from now on we assume that the number of particles
is 1, n = 1. We also set the particle mass to 1, m = 1. The generalizations to an
arbitrary number of particles is straightforward. We de�ne the generalized Pauli-
Fierz transformation mentioned in the introduction: with F (x) introduced below
we let


HPF
g := e−igF (x)HSM


g eigF (x). (II.1)
We call the resulting Hamiltonian the generalized Pauli-Fierz Hamiltonian. Here
F (x) is the self-adjoint operator on the state space H given by


F (x) =
∑


λ


∫
(f̄x,λ(k)aλ(k) + fx,λ(k)a∗λ(k))


d3k√
|k| , (II.2)
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with the coupling function fx,λ(k) chosen as fx,λ(k) := e−ikx χ(k)
|k| ϕ(|k| 12 ελ(k) ·x).


The function ϕ is assumed to be C2, bounded and satisfying ϕ′(0) = 1. We assume
that ϕ has a bounded analytic continuation into the wedge {z ∈ C| | arg(z)| <
θ0}. We compute


HPF
g =


1


2
(p− gA1(x))2 + Vg(x) + Hf + gG(x) (II.3)


where A1(x) = A(x)−∇F (x), Vg(x) := V (x) + 2g2
∑


λ


∫ |k||fx,λ(k)|2d3k and


G(x) := −i
∑


λ


∫
|k|(f̄x,λ(k)aλ(k)− fx,λ(k)a∗λ(k))


d3k√
|k| . (II.4)


(The terms gG and Vg−V come from the commutator expansion e−igF (x)Hfe
igF (x)


= −ig[F, Hf ]− g2[F, [F, Hf ]].) Observe that the operator-family A1(x) is of the
form


A1(x) =
∑


λ


∫
(eikxaλ(k) + e−ikxa∗λ(k))χλ,x(k)


d3k√
|k| , (II.5)


where the coupling function χλ,x(k) := eλ(k)e−ikx χ(k)√
|k| −∇xfx,λ(k) satis�es the


estimates
|χλ,x(k)| ≤ const min(1,


√
|k|〈x〉), (II.6)


with 〈x〉 := (1 + |x|2)1/2, and
∫


d3k


|k| |χλ,x(k)|2 < ∞. (II.7)


The fact that the operators A1 and E have better infra-red behavior than the origi-
nal vector potential A, is used in proving, with a help of a renormalization group,
the existence of the ground state and resonances for the Hamiltonian HSM


g .
We mention for further references that the operator (I.13) can be written as


HPF
g = HPF


0 + IPF
g , (II.8)


where HPF
0 = H0 +2g2


∑
λ


∫ |k||fx,λ(k)|2d3k + g2
∑


λ


∫ |χλ(k)|2
|k| d3k, with H0 :=


Hp + Hf and IPF
g is de�ned by this relation. Note that the operator IPF


g contains
linear and quadratic terms in the creation and annihilation operators and that the
operator HPF


0 is of the form HPF
0 = HPF


p + Hf where


HPF
p := Hp + 2g2


∑


λ


∫
|k||fx,λ(k)|2d3k + g2


∑


λ


∫ |χλ(k)|2
|k| d3k (II.9)


with Hp given in (I.1).
Since the operator F (x) in (II.1) is self-adjoint, the operators HSM


g and HPF
g


have the same eigenvalues with closely related eigenfunctions and the same es-
sential spectra.
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III Complex Deformation and Resonances
In this section we de�ne complex transformation of the Hamiltonian under con-
sideration which underpins the proof of the resonance part of Theorem I.1 and
the proof of Theorem I.2. Let uθ be the dilatation transformation on the one-
photon space, i.e., uθ: f(k) → e−3θ/2f(e−θk). De�ne the dilatation transforma-
tion, Ufθ, on the Fock space, Hf ≡ F , by second quantizing uθ: Ufθ := eiTθ


where T :=
∫


a∗(k)ta(k)dk and t is the generator of the group uθ (see Supple-
ment for the careful de�nition of the above integral). This gives, in particular,


Ufθa
∗(f)U−1


fθ = a∗(uθf) . (III.1)


Denote by Upθ the standard dilation group on the particle space: Upθ : ψ(x) →
e


3
2
θψ(eθx) (remember that we assumed that the number of particles is 1). We


de�ne the dilation transformation on the total space H = Hp ⊗Hf by


Uθ = Upθ ⊗ Ufθ. (III.2)


For θ ∈ R the above operators are unitary and we can de�ne the family of
Hamiltonians originating from the Hamiltonian HSM


g as


HSM
gθ := Uθe


−igF (x)HSM
g eigF (x)U−1


θ . (III.3)


Under Condition (DA), there is a Type-A ([53]) family HSM
gθ of operators analytic


in the domain |Imθ| < θ0, which is equal to (III.3) for θ ∈ R and s.t. HSM∗
gθ =


HSM
gθ


,
HSM


gθ = UReθH
SM
giImθU


−1
Reθ. (III.4)


Indeed, using the decomposition HPF
g = HPF


p + Hf + IPF
g (see (II.8)-(II.9)), we


write for θ ∈ R
HSM


gθ = HSM
pθ ⊗ 1f + e−θ1p ⊗Hf + ISM


gθ , (III.5)


where HSM
pθ := UpθH


PF
p U−1


pθ and ISM
gθ := UθI


PF
g U−1


θ . It is not hard to compute
that HSM


pθ = −e−2θ 1
2
∆ + Vg(e


θx), where


Vg(x) := V (x) + 2g2
∑


λ


∫
|k||fx,λ(k)|2d3k + g2


∑


λ


∫ |χλ(k)|2
|k| d3k (III.6)


with V given in (I.1). Furthermore, using (III.1) and the de�nitions of the inter-
action IPF


g , we see that ISM
gθ is obtained from IPF


g by the replacement a#(k) →
e−


3θ
2 a#(k) and, in the coupling functions only,


k → e−θk and x → eθx. (III.7)







ResonQED, June 19, 2008 13


By Condition (DA), the family (III.5) is well de�ned for all θ satisfying |Imθ| < θ0


and has all the properties mentioned after Eqn (III.3). Hence, for these θ, it gives
the required analytic continuation of (III.3). We call HSM


gθ with Imθ > 0 the
complex deformation of HSM


g .
Recall that we de�ne the the resonances of HSM


g are the complex eigenvalues
of HSM


gθ with Imθ > 0. Thus to �nd resonances (and eigenvalues) of HSM
g we


have to locate complex (and real) eigenvalues of HSM
gθ for some θ with Imθ > 0.


In Sections V - VIII we prove the following result


Theorem III.1. Assume Conditions (V) and (DA) holds. Fix e
(p)
0 < ν < inf σess(Hp)


and let g ¿ ε
(p)
gap(ν). Then the operators HSM


gθ , with Imθ > 0, have eigenvalues
εj, j ≤ j(ν), s.t. εj = ε


(p)
j + O(g2) and εj are independent of θ. The essential


spectrum of HSM
gθ , Imθ > 0, is a subset of the set


⋃
j≤j(ν) Sj, where the sets Sj


are given in (I.8).


Theorem III.1, together with the discussion in paragraphs containing Eqns
(I.9)- (I.6) implies Theorems I.1 and I.2 (for the ground state part of Theorem I.1
it contains unnecessary Condition (DA)).


Furthermore, one can show that the eigenvalues εj, j ≤ j(ν), have the prop-
erties


(i) If the FGR condition is satis�ed, then Imεj = −g2γj +O(g4), where γj are
given by the Fermi Golden Rule formula;


(ii) εj can be computed explicitly in terms of fast convergent expressions in
the coupling constat g.


IV Generalized Particle-Field Hamiltonians
It is convenient to consider a more general class of Hamiltonians which contains,
in particular, both, the generalized Pauli-Fierz and Nelson Hamiltonians and their
complex dilation transformations. We consider Hamiltonians of the form


Hg = H0g + Ig, (IV.1)


where g > 0 is coupling constant, H0g := Hpg + Hf , with Hpg := −κ∆ +
Vg(x), κ ∈ C, κ 6= 0, and Ig := g


∑
1≤m+n≤2 Wm,n. We assume that Vg(x) is


∆−bounded with the relative bound less than |κ|/2, more precisely, that it obeys
the bound


‖Vgψ‖ ≤ |κ|
2
‖∆ψ‖+ ‖ψ‖, (IV.2)


uniformly in g ≤ 1, where we set the constant in front of the second term on the
r.h.s. to 1. This constant plays no role in our analysis. Moreover, we assume that
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the operators Wm,n are of the form


Wm,n :=


∫


R3(m+n)


m+n∏
1


(
dkj


|kj|1/2
)


m∏
1


a∗(kj)


×wm,n


[
k1, ..., km+n


] m+n∏
m+1


a(kj) , (IV.3)


where wm,n[k], k := (k1, ..., km+n), the coupling functions, are operator-functions
on the particle space Hp obeying


sup
g≤1


‖wm,n‖(0)
µ < ∞, (IV.4)


for some µ ≥ 0 and δ0 > 0 (the latter parameter is not displayed, see the next
equation). Here the norm ‖wm,n‖(0)


µ is de�ned by


‖wm,n‖(0)
µ := sup


|δ|≤δ0


sup
k∈R3(m+n)


∥∥ e−δ〈x〉wm,n[k]eδ〈x〉〈p〉−(2−m−n)


[min(〈x〉m+n
∏m+n


1 (|kj|1/2), 1)]µ


∥∥
part


. (IV.5)


Here ‖ · ‖part is the operator norm on the particle Hilbert space Hp. We observe
that for g suf�ciently small


D(Hg) = D(H0) ⊂ D(Ig).


We denote by GHµ the class of (generalized particle-�eld) Hamiltonians sat-
isfying the restrictions (IV.1) - (IV.5). We also denote by GHmn


µ the class of
operators of the form (IV.3) - (IV.5).


Clearly, both, the Pauli-Fierz and Nelson, Hamiltonians belong to GHµ with
µ = 1/2 for the generalized Pauli-Fierz Hamiltonian and µ > 0 for the Nelson
Hamiltonian and with κ = 1/2. Indeed, for the Nelson model, (XIII.1)- (XIII.5),
Vg = V obeys (IV.2) and wm,n are 0 for m + n = 2 and multiplication operators
by the bounded functions κ(k)e−ikx and κ(k)eikx for m + n = 1. For the QED
case (the generalized Pauli-Fierz Hamiltonian, (II.3)) Vg is given by (III.6) and
Ig := p · A1(x) + 1


2
g : A1(x)2 : +G(x), where the operator G(x) is de�ned in


(II.4). From these expressions we see that Vg satis�es (IV.2) and wm,n obey the
conditions formulated above.


Dilation deformed Pauli-Fierz and Nelson Hamiltonian also �t this framework.
Let HSM


gθ be a complex deformation of the QED Hamiltonian HSM
g , i.e. the di-


lation transformation of the generalized Pauli-Fierz Hamiltonian HPF
g . Then the


operator Hg := eθHSM
gθ satis�es the restrictions imposed above with µ = 1/2 and


κ = e−Reθ/2. For the Nelson model we have and µ > 0.
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V Elimination of Particle and High-Photon Energy
Degrees of Freedom


In this section we map the operator families Hg − λ, where the operator Hg =
Hg0 + Ig ∈ GHµ (see Section IV), into families of operators acting on the Fock
space only (elimination of the particle degrees of freedom). We will study proper-
ties of the latter operators in Sections VII and VIII after we introduce appropriate
Banach spaces in Section VI.


Fix 1 ≤ j ≤ j(µ) and consider an eigenvalue λj ∈ σd(Hpg) and de�ne
δj := dist(λj, σ(Hpg)/{λj}+ [0,∞)). (V.1)


We assume δj > 0 and we de�ne the set


Qj := {λ ∈ C | Re(λ− λj) ≤ 1


3
δj and |Im(λ− λj)| ≤ 1


3
δj}. (V.2)


Let Ppj be the orthogonal projection onto the eigenspace of Hpg corresponding
to λj and, as usual, P pj = 1 − Ppj . We de�ne Hδ


pg := e−ϕHpge
ϕ and P δ


pj :=
e−ϕPpj eϕ with ϕ = δ〈x〉. We use the following parameter to measure the size of
the resolvent of Hδ


pg:


κ−1
j := sup


0≤δ≤δ0


sup
λ∈Qj


‖(Hδ
pg − λ)−1P


δ


pj‖, (V.3)


for δ0 > 0 suf�ciently small. Note that if the operator Hpg is normal, as in the
case of the problem of the ground state, where Hpg is self-adjoint, then κj can be
easily estimated for δ0 suf�ciently small. If the operator Hpg is not normal, then
getting an explicit upper bound on its resolvent requires some work. This will be
done in the proof of Theorem III.1 given in Section IX.


Our goal now is to de�ne the renormalization map on the class generalized
particle-�eld Hamiltonians GHµ. This map is a composition of three maps which
we introduce now. First of these is the smooth Feshbach-Schur map (SFM)2, or
decimation, map, Fπ, which is de�ned as follows. We introduce a pair of almost
projections


π ≡ πj ≡ π[Hf ] := Ppj ⊗ χHf≤ρ (V.4)
and π ≡ π[Hf ] which form a partition of unity π2 + π2 = 1. Note that π and π
commute with H0g introduced in Section IV. Next, for Hg = H0g + Ig ∈ GHµ,
we de�ne


Hπ̄ := H0g + π̄Igπ̄ . (V.5)
2In [9, 10, 4] this map is called the Feshbach map. As was pointed out to us by F. Klopp and


B. Simon, the invertibility procedure at the heart of this map was introduced by I. Schur in 1917;
it appeared implicitly in an independent work of H. Feshbach on the theory of nuclear reactions,
in 1958, see [31] for further extensions and historical remarks
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Finally, on the operators Hg − λ s.t. Hg = H0g + Ig ∈ GHµ and


Hπ̄ − λ is (bounded) invertible on Ran π̄, (V.6)


we de�ne smooth Feshbach-Schur map, Fπ, as


Fπ(Hg − λ) := H0g − λ + πIgπ − πIgπ̄(Hπ̄ − λ)−1π̄Igπ . (V.7)


Observe that the last two operators on the r.h.s. are bounded since, for any operator
Ig as described in Section IV,


Igπ and πIg extend to bounded operators on H.


Properties of the smooth Feshbach-Schur maps, used in this paper, are described
in Appendix A. For more details see [4, 31].


Next, we introduce the scaling transformation Sρ : B[H] → B[H], which acts
on the particle component of H := Hp ⊗Hf by identity and on the �eld one, by


Sρ(1) := 1 , Sρ(a
#(k)) := ρ−d/2 a#(ρ−1k) , (V.8)


where a#(k) is either a(k) or a∗(k) and k ∈ R3.
Now, on Hamiltonians acting on H := Hp ⊗ Hf which are in the domain of


the decimation map Fπ we de�ne the renormalization map Rρj as


Rρj = ρ−1Sρ ◦ Fπ, (V.9)


where recall π ≡ πj . The parameter ρ here is the same as the one in (V.4). It gives
a photon energy scale and it is restricted below.


To simplify the notation we assume that the eigenvalue λj of the operator Hpg


is simple (otherwise we would have to deal with matrix-valued operators on Hf ).
We have


Theorem V.1. Let Hg be a Hamiltonian of the class GHµ de�ned in Section IV
with µ ≥ 0. We assume that δj > 0. Then for g ¿ ρ ≤ κj and λ ∈ Qj


Hg − λ ∈ D(Rρj). (V.10)


Furthermore,Rρj(Hg−λ) = Ppj⊗ Hλj +(H0g−λ)(P̄pj⊗ 1) where the family of
operators Hλj , acting on F , is s.t. Hλj −Hf is bounded and analytic in λ ∈ Qj .


A proof of Theorem V.1 is similar to that of related results of [9, 10, 11]. We
begin with


Proposition V.2. Let g ¿ ρ ≤ κj and λ ∈ Qj . Then the operators Hπ − λ are
invertible on Ranπ and we have the estimate


‖π(Hπ − λ)−1π‖ ≤ 4ρ−1. (V.11)
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Proof. First we show that for λ ∈ Qj the operator H0g − λ is invertible on Ranπ
and the following estimate holds for n = 0, 1


‖(|p|2 + Hf + 1
)n


R0(λ)‖ ≤ Cρ−1 (V.12)


where R0(λ) := (H0g − λ)−1π. If the operator Hpg is self-adjoint then the es-
timates above are straightforward. In the non-self-adjoint case we proceed as
follows.


Write π = Ppj⊗χHf≥ρ+P pj⊗1, where, as usual, P pj = 1−Ppj . Since H0g =
λj + Hf on Ran(Ppj ⊗ χHf≥ρ), the operator H0g − λ is invertible on Ran(Ppj ⊗
χHf≥ρ) for λ ∈ Qj and


‖(H0g − λ)−1(Ppj ⊗ χHf≥ρ)‖ ≤ 2ρ−1 . (V.13)


Next, σ(H0g|Ran(P pj⊗1)) = σ(Hpg|RanP pj
) + σ(Hf ) = σ(Hpg)/{λj} + R̄+.


Now, by the de�nition of Qj we have infs≥0 dist(λj − s,Qj) ≤ δj/2. This and
the de�nition of δj give


dist(σ(H0g|Ran(P pj⊗1)), Qj) ≥ δj/2. (V.14)


Therefore, for λ ∈ Qj, the operator H0g − λ is invertible on Ran(P pj ⊗ 1). Since
the operator (H0g − λ)−1(P pj ⊗ 1) is analytic in a neighbourhood of Qj we have
that supλ∈Qj


‖(H0g − λ)−1(P pj ⊗ 1)‖ < ∞.
We claim that


sup
λ∈Qj


‖(H0g − λ)−1(P pj ⊗ 1)‖ ≤ Cκ−1
j (V.15)


where κj is de�ned in (V.3). Indeed, since the operator Hf is self-adjoint with the
known spectrum, [0,∞), and since Qj = Qj − [0,∞), we can write, using the
spectral theory,


l.h.s. of (V.15) = sup
λ∈Qj


‖(Hpg − λ)−1P pj‖. (V.16)


Now, our claim follows from the de�nition (V.3) of κj .
Since ρ ≤ κj , the inequalities (V.13) and (V.15) imply


‖R0(λ)‖ ≤ 4ρ−1 (V.17)


which implies (V.12) with n = 0 and C = 4.
The estimate (V.17) and the relation H0gR0(λ) = Ranπ + λR0(λ) imply the


inequality ‖H0gR0(λ)‖ ≤ 2 + 4|e(p)
0 |/ρ. Finally, since by (IV.2), ‖|p|2ψ‖ ≤


2‖H0gψ‖+ 2‖ψ‖, we have (V.12) with n = 1.
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The inequality (V.12) implies the estimates
∥∥〈p〉2−n(Hf + 1)n/2(H0g − λ)−1π̄


∥∥ ≤ Cρ−1, (V.18)


for n = 1, 2.
Now, we claim that


∥∥Ig(H0g − λ)−1π̄
∥∥ ≤ Cgρ−1 . (V.19)


Indeed, let f(k) be an operator-valued function on Hp. Then we have the follow-
ing standard estimates


∥∥a(f)ψ
∥∥ ≤ ( ∫ ‖f(k)‖2


part


|k| d3k
) 1


2
∥∥H


1/2
f ψ


∥∥ (V.20)


(cf. Eqn (VI.10) with m + n = 1) and
∥∥a∗(f)ψ


∥∥2
=


∫
‖f(k)‖2


partd
3k


∥∥ψ
∥∥2


+
∥∥a(f)ψ


∥∥2
. (V.21)


Eqn (V.19) follows from the estimates Eqn (V.18), (V.20) and (V.21), the pull-
through formula


a(k) f [Hf ] = f [Hf + |k|] a(k), (V.22)
and from the conditions on the operator Ig imposed in Section IV. For instance,
for the term W0,1 we have


∥∥W1,0ψ
∥∥ ≤


∫


|k|≤1


∥∥w1,0(k)〈p〉−1a∗(k)〈p〉ψ
∥∥ d3k√


|k|


≤ ( ∫


|k|≤1


‖w1,0(k)〈p〉−1‖2
part


|k| d3k
) 1


2
∥∥〈p〉ψ


∥∥


+
( ∫


|k|≤1


‖w1,0(k)〈p〉−1‖2
part


|k|2 d3k
) 1


2
∥∥H


1/2
f 〈p〉ψ


∥∥


≤ ‖w1,0‖(0)
µ


∥∥〈p〉(Hf + 1)1/2ψ
∥∥ (V.23)


for any µ > −1/2. This together with Eqn (V.12) implies
∥∥W1,0(H0g−λ)−1π̄


∥∥ ≤
C‖w1,0‖(0)


µ ρ−1. Now, the term W0,2 is estimated as follows:


∥∥W0,2ψ
∥∥ ≤


∫


|k1|≤1


∫


|k2|≤1


∥∥w0,2(k1, k2)a(k1)a(k2)ψ
∥∥ d3k1√


|k1|
d3k2√
|k2|


≤
∫


|k1|≤1


( ∫


|k2|≤1


‖w0,2(k1, k2)‖2
part


|k2| d3k2


) 1
2
∥∥H


1/2
f a(k1)ψ


∥∥ d3k1√
|k1|
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≤
∫


|k1|≤1


( ∫


|k2|≤1


‖w0,2(k1, k2)‖2
part


|k2| d3k2


) 1
2
∥∥(Hf + |k1|)1/2a(k1)ψ


∥∥ d3k1√
|k1|


=


∫


|k1|≤1


( ∫


|k2|≤1


‖w0,2(k1, k2)‖2
part


|k2| d3k2


) 1
2
∥∥a(k1)H


1/2
f ψ


∥∥ d3k1√
|k1|


≤ ( ∫


|k1|≤1


∫


|k2|≤1


‖w0,2(k1, k2)‖2
part


|k1||k2| d3k1d
3k2


) 1
2
∥∥Hfψ


∥∥


≤ ‖w0,2‖(0)
µ


∥∥Hfψ
∥∥ (V.24)


for any µ > −1.
Eqn (V.19) implies that the series


∞∑
n=0


(H0g − λ)−1
(
πIgR0(λ)


)n (V.25)


converges absolutely on the invariant subspace Ranπ, and is equal to (Hτ0π −λ)−1,
provided g ¿ ρ. Estimating this series using (V.19) gives the desired estimate
(V.11).


Proof of Theorem V.1. The last proposition together with the fact that the op-
erators πIg and Igπ are bounded yields Eqn (V.6). The second part of the theorem
follows from the de�nition of the Feshbach-Schur map, (V.7), the proposition and
the Neumann series argument.


Note that K := Rρj(Hg−λ) |Ran(P̄pj⊗ 1)= (H0g−λ) |Ran(P̄pj⊗ 1) and therefore
σ(K) = σ(Hpg)/{λj}+ [0,∞)− λ. Hence for any λ ∈ Qj we have


min{|µ− λ| | µ ∈ σ(Hpg)/{λj}+ [0,∞)}


≥ δj − |λ− λj| ≥ 1


2
δj. (V.26)


Therefore 0 /∈ σ(K). This, the relation σ(Rρj(Hg − λ)) = σ(Hλj) ∪ σ(K) and
Theorem X.1 of Appendix A imply


Corollary V.3. Let λ ∈ Qj. Then λ ∈ σ(Hg) if and only if 0 ∈ σ(Hλj). Similar
statement holds also for point and essential spectra.


This corollary shows that to describe the spectrum of the operator Hg in the
domain Qj it suf�ces to describe the spectrum of the operators Hλj which act on
the smaller space F . In the next section we introduce a convenient Banach space
which contains the operators Hλj for λ ∈ Qj.


Furthermore to prove bounds on resolvent in terms of bounds on H−1
λj one uses


the relation


Rρj(Hg − λ)−1 = H−1
λj (Ppj ⊗ 1) + (H0g − λ)−1(P̄pj ⊗ 1). (V.27)
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VI A Banach Space of Hamiltonians
We construct a Banach space of Hamiltonians on which the renormalization trans-
formation will be de�ned. In order not to complicate notation unnecessarily we
will think about the creation- and annihilation operators used below as scalar op-
erators, neglecting the helicity of photons. We explain at the end of Supplement
A how to reinterpret the corresponding expression for the photon creation- and
annihilation operators.


Let Bd
1 denote the unit ball in R3d, I := [0, 1] and m,n ≥ 0. Given functions


wm,n : I×Bm+n
1 → C,m+n > 0, we consider monomials, Wm,n ≡ Wm,n[wm,n],


in the creation- and annihilation operators de�ned as follows:
Wm,n[wm,n] :=∫


Bm+n
1


dk(m,n)


|k(m,n)|1/2
a∗(k(m)) wm,n


[
Hf ; k(m,n)


]
a(k̃(n)) . (VI.1)


Furthermore for w0,0 : [0,∞) → C we de�ne using the operator calculus W0,0 :=
w0,0[Hf ] ( m = n = 0). Here we are using the notation


k(m) := (k1, . . . , km) ∈ R3m , a#(k(m)) :=
∏m


i=1 a#(ki), (VI.2)
k(m,n) := (k(m), k̃(n)) , dk(m,n) :=


∏m
i=1 d3ki


∏n
i=1 d3k̃i , (VI.3)


|k(m,n)| := |k(m)| · |k̃(n)| , |k(m)| := |k1| · · · |km|, (VI.4)
where a#(k) stand for a(k) either or a∗(k). The notation Wm,n[wm,n] stresses the
dependence of Wm,n on wm,n. Note that W0,0[w0,0] := w0,0[Hf ].


We assume that, for every m and n with m + n > 0 and for s ≥ 1, the
function wm,n[r, , k(m,n)] is s times continuously differentiable in r ∈ I , for almost
every k(m,n) ∈ Bm+n


1 , and weakly differentiable in k(m,n) ∈ Bm+n
1 , for almost


every r in I . As a function of k(m,n), it is totally symmetric w. r. t. the variables
k(m) = (k1, . . . , km) and k̃(n) = (k̃1, . . . , k̃n) and obeys the norm bound


‖wm,n‖µ,s :=
s∑


n=0


‖∂n
r wm,n‖µ < ∞ , (VI.5)


where µ ≥ 0, s ≥ 0 and
‖wm,n‖µ := max


j
sup


r∈I,k(m,n)∈Bm+n
1


∣∣|kj|−µwm,n[r; k(m,n)]
∣∣. (VI.6)


Here and in what follows kj ∈ R3 is the j−th 3− vector in k(m,n) over which we
take the supremum. For m + n = 0 the variable r ranges over [0,∞) and we
assume that the following norm is �nite:


‖w0,0‖µ,s := |w0,0(0)|+
∑


1≤n≤s


sup
r∈[0,∞)


|∂n
r w0,0(r)|. (VI.7)
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(This norm is independent of µ, but we keep this index for notational conve-
nience.) The Banach space of functions wm,n of this type is denoted by Wµ,s


m,n.
We �x three numbers µ ≥ 0, 0 < ξ < 1 and s ≥ 1 and de�ne the Banach


space
Wµ,s ≡ Wµ,s


ξ :=
⊕


m+n≥0


Wµ,s
m,n , (VI.8)


with the norm
∥∥w


∥∥
µ,s,ξ


:=
∑


m+n≥0


ξ−(m+n) ‖wm,n‖µ,s < ∞ . (VI.9)


Clearly, Wµ′,s′
ξ′ ⊂ Wµ,s


ξ if µ′ ≥ µ, s′ ≥ s and ξ′ ≤ ξ.
Let χ1(r) ≡ χr≤1 be a smooth cut-off function s.t. χ1 = 1 for r ≤ 9/10, = 0


for r ≥ 1 and 0 ≤ χ1(r) ≤ 1 and sup |∂n
r χ1(r)| ≤ 30 ∀r and for n = 1, 2. We


denote χρ(r) ≡ χr≤ρ := χ1(r/ρ) ≡ χr/ρ≤1 and χρ ≡ χHf≤ρ.
The following basic bound, proven in [2], links the norm de�ned in (VI.6) to


the operator norm on B[F ].
Theorem VI.1. Fix m,n ∈ N0 such that m + n ≥ 1. Suppose that wm,n ∈ W0,1


m,n,
and let Wm,n ≡ Wm,n[wm,n] be as de�ned in (VI.1). Then for all λ > 0


∥∥(Hf + λ)−m/2 Wm,n (Hf + λ)−n/2
∥∥ ≤ ‖wm,n‖0 , (VI.10)


and therefore
∥∥χρ Wm,n χρ


∥∥ ≤ ρ(m+n)(1+µ)


√
m! n!


‖wm,n‖0 , (VI.11)


where ‖ · ‖ denotes the operator norm on B[F ].
Theorem VI.1 says that the �niteness of ‖wm,n‖0 insures that Wm,n de�nes a


bounded operator on B[F ].
With a sequence w := (wm,n)m+n≥0 in Wµ,s we associate an operator by


setting
H(w) := W0,0[w] +


∑
m+n≥1


χ1Wm,n[w]χ1 (VI.12)


where we write Wm,n[w] := Wm,n[wm,n]. The r.h.s. of (VI.12) are said to be in
generalized normal (or Wick-ordered) form of the operator H(w). Theorem VI.1
shows that the series in (VI.12) converges in the operator norm and obeys the
estimate ∥∥ H(w)−W0,0(w)


∥∥ ≤ ξ
∥∥ w1


∥∥
µ,0,ξ


, (VI.13)
for arbitrary w = (wm,n)m+n≥0 ∈ Wµ,0 and any µ > −1/2. Here w1 =
(wm,n)m+n≥1. Hence the linear map


H : w → H(w) (VI.14)
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takes Wµ,0 into the set of closed operators on Fock space F . The following result
is proven in [2].


Theorem VI.2. For any µ ≥ 0 and 0 < ξ < 1, the map H : w → H(w), given in
(VI.12), is injective.


Furthermore, we de�ne the Banach space


Wµ,s
1 :=


⊕
m+n≥1


Wµ,s
m,n , (VI.15)


to be the set of all sequences w1 := (wm,n)m+n≥1 obeying


‖w1‖µ,s,ξ :=
∑


m+n≥1


ξ−(m+n) ‖wm,n‖µ,s < ∞ . (VI.16)


We de�ne the spaces Wµ,s
op := H(Wµ,s), Wµ,s


1,op := H(Wµ,s
1 ) and Wµ,s


mn,op :=
H(Wµ,s


mn). Sometimes we display the parameter ξ as in Wµ,s
op,ξ := H(Wµ,s


ξ ). The-
orem VI.2 implies that Wµ,s


op := H(Wµ,s) is a Banach space under the norm∥∥ H(w)
∥∥


µ,s,ξ
:=


∥∥ w
∥∥


µ,s,ξ
. Similarly, the spaces Wµ,s


1,op and Wµ,s
mn,op are also Ba-


nach spaces in the corresponding norms.
In this paper we need and consider only the case s = 1. However, we keep the


more general notation for convenience of references elsewhere.


VII The operator Rρj(Hg − λ)


In this section we give a detailed description of the family of operators Hλj :=
Rρj(Hg − λ) |Ran(Ppj⊗ 1) (see Theorem V.1). Here, recall, that Ppj denotes the
projection on the particle eigenspace corresponding to the eigenvalue λj . We
de�ne the following polydisc in Wµ,s


op :


Dµ,s(α, β, γ) :=
{


H(w) ∈ Wµ,s
op


∣∣∣ |w0,0(0)| ≤ α , (VII.1)


sup
r∈[0,∞)


|∂rw0,0(r)− 1| ≤ β , ‖w1‖µ,s,ξ ≤ γ
}


,


for α, β, γ > 0. Recall that w1 := (wm,n)m+n≥1. In what follows we �x the
parameter ξ in (VII.1) as ξ = 1/4.


Theorem VII.1. Let Hg be a Hamiltonian of the class GHµ de�ned in Section IV
with µ ≥ 0. We assume that δj > 0. Then for g ¿ ρ ≤ min(κj, 1/2) and λ ∈ Qj ,


Hλj − ρ−1(λj − λ) ∈ Dµ,s(α, β, γ), (VII.2)


where α = O(g2ρµ−2), β = O(g2ρµ−1), γ = O(gρµ).
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Note that if ψ
(p)
j is an eigenfunction of Hpg with the eigenvalue λj and Ψj :=


ψ
(p)
j ⊗ Ω, then we have


λj − λ = 〈Hg − λ〉Ψj
.


The proof of Theorem VII.1 follows exactly the same lines as the proof of
Theorem IV.3 of [28]. It is similar to the proofs of related results of [9, 10, 11].
Since it is technically rather involved, it is delegated to Appendix B.


VIII Spectrum of Hg


In this section we describe the spectrum of the operator Hg ∈ GHµ de�ned in
Section IV. We begin with some de�nitions. Recall that D(λ, r) := {z ∈ C||z −
λ| ≤ r}, a disc in the complex plane. DenoteD := Dµ,1(α, β, γ) with α, β, γ ¿ 1
and let Ds := Dµ,1(0, β, γ) (the subindex s stands for 'stable', not to be confused
with the smoothness index s which in this section is taken to be 1). For H ∈ D
we denote Hu := 〈H〉Ω and Hs := H − 〈H〉Ω 1 (the unstable- and stable-central-
space components of H , respectively). Note that if H ∈ D, then Hs ∈ Ds.


Recall that a complex vector-function f in an open setD in a complex Banach
spaceW is said to be analytic iff it is locally bounded and G�ateaux-differentiable.
One can show that f is analytic iff ∀ξ ∈ W , f(H + τξ) is analytic in the complex
variable τ for |τ | suf�ciently small (see [13, 38]). Furthermore if f is analytic in
D and g is an analytic vector-function from an open set Ω in C into D, then the
composite function f ◦ g is analytic on Ω.


Our analysis uses the following result from [28]:


Theorem VIII.1. For α, β and γ suf�ciently small there is an analytic map e :
Ds → D(0, 4α) s.t. e(H) ∈ R for H = H∗ and for any H ∈ Ds, σ(H) ⊂
e(H) + S, where


S := {w ∈ C|Rew ≥ 0, |Imw| ≤ 1


3
Rew}. (VIII.1)


Moreover, the number e(H) is an eigenvalue of the operator H .


Let Hg be in the class GHµ de�ned in Section IV with µ > 0 and let Hzj be
the operator obtained from Hg according to Theorem V.1. By Corollary V.3, for
z ∈ Qj, we have that z ∈ σ(Hg) if and only if 0 ∈ σ(Hzj) and similarly for point
and essential spectra. By Theorem VII.1, ∀z ∈ Qj, Hzj ∈ Dµ,1(α, β, δ) with
α = O(g2ρ−1), β = O(g2) and γ = O(gρµ). Since by our assumption g ¿ 1, we
can choose ρ (under the restriction g ¿ ρ ≤ min(κj, 1/2)) so that


g2ρ−1, gρµ ¿ 1. (VIII.2)
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In this case the condition of Theorem VIII.1 is satis�ed for Hzjs ∈ Ds. Therefore
it is in the domain of the map e : Ds → C described in Theorem VIII.1 above and
we can de�ne


ϕj(z) := Ej(z) + e(Hzjs), (VIII.3)
where Ej(z) := Hzju = 〈Ω, HzjΩ〉 and z ∈ Qj . Let Γρ be the unitary dilatation
on F de�ned by


Γρ = Uf (− ln ρ) (VIII.4)
where Uf (− ln ρ) is de�ned in Section III. Our goal is to prove the following


Theorem VIII.2. Let the Hamiltonian Hg be in the class GHµ de�ned in Section
IV with µ > 0 and let g ¿ κj . Then:


(i) The equation ϕj(ε) = 0 has a unique solution ej ∈ Qj and this solution
obeys the estimate |ej − λj| ≤ 15α;


(ii) ej is an eigenvalue of Hg and


σ(Hg) ∩Qj ⊂ {z ∈ Qj | Re(z − ej) ≥ 0 (VIII.5)


and |Im(z − ej)| ≤ 1


2
|Re(z − ej)|};


(iii) If ψj is an eigenfunction of the operator Hejj corresponding to the eigen-
value 0, then the vector


Ψj := Qπ


(
Hg − ej


)
Γ∗ρψj 6= 0, (VIII.6)


where π and Qπ


(
H


)
are de�ned in Eqns (V.4) and (X.1), respectively, is an


eigenfunction of the operator Hg corresponding to the eigenvalue ej .


Proof. In this proof we omit the subindex j. (i) Since e : Ds → D(0, 4α) is an
analytic map, z → Hzs is an analytic vector-function and z → E(z) is an analytic
function on Qint, by Theorem V.1, we conclude that the function ϕ is analytic on
Qint. Here Qint is the interior of the set Q.


Furthermore, the de�nitions (VIII.3) and ∆0E(z) := E(z) − ρ−1(λ − z) (re-
member that in this proof λ = λj) imply that ϕ(λ) = ∆0E(λ) + e(Hλs).


We have, by Theorem VII.1, that |∆0E(λ)| ≤ α. Hence |ϕ(λ)| ≤ 5α. Fur-
thermore since Q is inside a square in C of side δ/3, we have, by the Cauchy
formula, that


|∂m
z ∆0E(z)| ≤ α(3/δ)m for m = 0, 1. (VIII.7)


(remember that in this proof δ = δj). Similarly we have:


|∂ze(H(z)s)| ≤ 4α(3/δ)−1. (VIII.8)
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The last two inequalities and the equation ∆0E(z) := E(z)− ρ−1(λ− z) give


|∂zϕ(z) + 1| ≤ 15α/δ. (VIII.9)


Hence by inverse function theorem, for α suf�ciently small the equation ϕ(z) = 0
has a unique solution, e, in Q and this solution satis�es the bound |e− λ| ≤ 15α.


(ii) By Theorem VIII.1, ϕ(z) is an eigenvalue of the operator Hz = E(z) +
Hzs. Hence 0 is an eigenvalue of the operator He. By Corollary V.3, z is an
eigenvalue of Hg ↔ 0 is an eigenvalue of Hz. Hence e is an eigenvalue of the
operator Hg.


Next, by Corollary V.3, we have for any z ∈ Q


z ∈ σ(Hg) ↔ 0 ∈ σ(Hz). (VIII.10)


Due to Theorem VIII.1 we have that σ(Hz) = E(z)+σ(Hzs) ⊂ E(z)+e(Hzs)+
S = ϕ(z) + S, where the set S is de�ned in (VIII.1). This together with (VIII.10)
gives z ∈ σ(Hg) ∩Q ↔ ϕ(z) ∈ −S or


σ(Hg) ∩Q = ϕ−1(−S). (VIII.11)


Now the second part of the proof will follow if we show that ϕ−1(−S) is a
subset of the r.h.s. of (VIII.5). Denote µ := z − e and let


|Imµ| > 1


2
|Reµ|. (VIII.12)


Let w := −ϕ(z). Since ϕ(e) = 0 we have by the mean-value theorem


ϕ(z) = ∂zϕ(z)(z − e) (VIII.13)


for some z ∈ Qj . This gives


|Imw| = |Reϕ′Imµ + Imϕ′Reµ|. (VIII.14)


Now, the de�nitions (VIII.3) and ∆0E(z) := E(z)− ρ−1(λ− z) (remember that
in this proof λ = λj) imply that


∂zϕ(z) = −1 + ∂z∆0E(z) + ∂ze(Hzs). (VIII.15)


This and Eqns (VIII.7) and (VIII.8) give (below ϕ′(z) = ∂zϕ(z))


|Reϕ′(z)| ≥ 1−O(α) and |Imϕ′(z)| ≤ O(α). (VIII.16)


Relations (VIII.14) and (VIII.16) imply the estimate


|Imw| ≥ (1−O(α))|Imµ| −O(α)|Reµ|
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which together with (VIII.12) gives


|Imw| ≥ 1


4
(1−O(α))|Imµ|+ 3


8
(1−O(α))|Reµ|. (VIII.17)


Similarly, we obtain


|Rew| = |Reϕ′Reµ− Imϕ′Imµ| (VIII.18)
≤ (1 + O(α))|Reµ|+ O(α)|Imµ|.


The last two relations imply |Imw| > 1
3
|Rew| and therefore w 6∈ S or what is the


same z 6∈ ϕ−1(−S).
Now let Reµ < 0. Then Eqns (VIII.15)-(??) imply that Rew = −Reϕ′Reµ


+Imϕ′Imµ = (−1+O(α))|Reµ|+O(αImµ). Thus, Rew = (−1+O(α))|Reµ|,
provided |Imµ| ≤ |Reµ|. Hence also in this case we have z 6∈ ϕ−1(−S). Thus we
conclude that ϕ−1(−S) is a subset of the set on the r.h.s. of (VIII.5), as claimed.


(iii) Finally, the last part of the theorem follows from Theorem X.1(iii) of
Appendix A. Theorem VIII.2 is proven.


IX Proof of Theorems I.1 and I.2
We begin with the proof of existence of the ground state. Let Hg be a Hamilto-
nian from the class GHµ, µ > 0 de�ned in Section IV. We assume that Hg is
self-adjoint. Special cases of such Hamiltonians Hg are the Pauli-Fierz and Nel-
son Hamiltonians, HPF


g and HN
g , given in (II.8) and (XIII.1), respectively. Then


the operator Hg, g ¿ κ0, clearly satis�es the conditions of Theorem VIII.2 with
j = 0. Moreover, the particle Hamiltonian Hpg entering Hg is self-adjoint which
implies that the constant κ0, de�ned in (V.3), is κ0 = dist(σ(Hpg|RanP p0


), Qj) ≥
δ0/2. Here, recall, δ0 := dist(λ0, σ(Hpg)/{λ0}), where λ0 is the smallest eigen-
values of the operator Hpg. This implies the existence of the ground state for
Hg, g ¿ δ0.


Now, HPF
p = Hp+O(g2) (see (II.9)) and HN


p = Hp+O(g2) (see the paragraph
after (XIII.2)). Hence, if Hg is either HPF


g or HN
g , then λj = ε


(p)
j + O(g2) and


δ0 = ε
(p)
gap(ε


(p)
0 )+O(g2), where, recall, where λj are the eigenvalues of the operator


Hpg labeled in order of their increase and counting their multiplicities, ε
(p)
j are the


eigenvalues of the operator Hp given in (I.1) and


ε(p)
gap(ν) := min{|ε(p)


i − ε
(p)
j ||i 6= j, ε


(p)
i , ε


(p)
j ≤ ν}.


Consequently, it suf�ces to assume that g ¿ ε
(p)
gap(ε


(p)
0 ). Since HPF


g is unitary
equivalent to HSM


g , this proves the part of the statement of Theorem I.1 concerning
the ground state.
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Note that the energy of the found ground state solves the equation ϕ0(ε) = 0
(see (VIII.3) for the de�nition of ϕj(ε)).


Now we prove Theorem III.1 which implies the part of the statement of The-
orem I.1 concerning the excited states and Theorem I.2. Let Hg := eθH#


gθ where
H#


gθ is the complex deformation of the Hamiltonian H#
g , which is either the Pauli-


Fierz Hamiltonian, HPF
g , or the Nelson Hamiltonian, HN


g , de�ned in (III.5) and
in (XIII.8), respectively. Then the Hamiltonian Hg belongs to the class GHµ de-
�ned in Section IV with µ > 0. We will assume 0 < Imθ ≤ min(θ0, π/4), where
θ0 is de�ned in Condition (DA) in Section I, and Reθ = 0 and we will assume
g ¿ min(κj, ε


(p)
gap(ν)).


Let H#
p and H#


pθ be the particle Hamiltonians entering H#
g and H#


gθ, respec-
tively. We show that


δj = dist(λj, σ(Hpg)/{λj}+ R+) > 0


for the particle Hamiltonian Hpg := eθH#
pθ, entering Hg, provided j ≤ j(ν), with


ν < inf σess(Hp), and g ¿ ε
(p)
gap(ν). Here, recall, λj are the eigenvalues of the


operator Hpg := eθH#
pθ, j(ν) := max{j : ε


(p)
j ≤ ν} and ε


(p)
gap(ν) is de�ned above.


To do this we note �rst that, since H#
p = Hp + O(g2), we have ν < inf σess(H


#
p )


for g suf�ciently small. Furthermore, since we have chosen Reθ = 0, we have
that δj = dist(ε#


j , σ(H#
pθ)/{ε#


j } + e−θR+), where ε#
i = e−θλi are eigenvalues of


the operator H#
pθ. By the de�nition of the operator H#


pθ = −1
2
e−2θ∆ + Vgθ and the


Balslev-Combes-Simon theorem (remember that Vgθ = Vθ + O(g2) and that Vθ


is ∆−compact, by Condition (V), which implies the ∆−compactness of V in the
one particle case, and Condition (DA), which implies the ∆−compactness of Vθ


in the one particle case, of Section I) we have that it has no complex eigenvalues
in the domain {Rez ≤ ν} and therefore its eigenvalues ε#


j , j ≤ j(ν), coincide
with the eigenvalues of the operator H#


p which are ≤ ν. Hence we have that


δj = min(dist(ε#
j , σ(H#


p )/{ε#
j }), (ε#


j−1 − ε#
j ) tan(Imθ))


and therefore δj > 0.
Thus, for any j ≤ j(ν), the operator Hg(:= eθH#


gθ), g ¿ min(κj, ε
(p)
gap(ν)),


satis�es the conditions of Theorem VIII.2. This implies that the spectrum of H#
gθ


near εj = e−θλj is of the form


σ(H#
gθ) ∩ e−θQj ⊂ {z ∈ e−θQj | Re(eθ(z − εj)) ≥ 0 (IX.1)


and | Im(eθ(z − εj)) |≤ 1


2
| Re(eθ(z − εj)) |},
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where εj ∈ e−θQj is an eigenvalue of H#
gθ. Moreover, eθεj is the unique solution


to the equation ϕj(ε) = 0 and εj → ε#
j as g → 0.


Let ϕj(ε, θ) ≡ ϕj(ε) be the function constructed in (VIII.3) for the operator
Hg := eθH#


gθ. It is not hard to see that ϕj(ε, θ) is analytic in θ. Since by Theorem
VIII.2 eθεj is a unique solution to the equation ϕj(ε, θ) = 0 we conclude that εj


is analytic in (a fractional power of) θ. On the other hand, by Eqn (III.4), εj is
independent of Reθ. Hence it is independent of θ.


The eigenvalue ε0 is always real and therefore is the eigenvalue also of H#
g .


This is the ground state energy of H#
g . For j > 0 the eigenvalue εj can be either


complex or real, i.e. either a resonance or an eigenvalue of H#
g . (If the (FGR)


condition is satis�ed then Imεj < 0 for j 6= 0 and, in fact, Imεj = −γjg
2 +O(g4)


for some γj > 0 independent of g, see [11]). In the degenerate case, the total
multiplicity of the resonances and eigenvalues arising from ε#


j is equal to the
multiplicity of ε#


j .
Thus we have proven all the statements of Theorem III.1, but under the stronger


assumption g ¿ min(κj, ε
(p)
gap(ν)). Now we relax this assumption.


De�ne δ#
j := dist(ε#


j , σ(H#
p )/{ε#


j }). The following proposition states that
the restrictions g ¿ δ#


j and |Imθ| ¿ δ#
j imply the restriction g ¿ κj . Recall that


κj and δj are de�ned in Eqns (V.3) and (V.1), respectively.


Proposition IX.1. Assume that |Imθ| ¿ δ#
j . Then there is a numerical constant


c > 0 s.t. κj ≥ cδ#
j tan(Imθ).


Proof. Observe �rst that this proposition concerns entirely the particle Hamilto-
nian Hpg := eθH#


pθ. In its proof we omit the subindices p and g.
First we estimate δj in terms of δ#


j . We assume Reθ = 0. By the de�nitions
of δj and of H := eθH#


θ we have δj = dist(ε#
j , σ(H#


θ )/{ε#
j } + e−θR+). Since


σ(H#
θ ) = {ε#


i }
⋃


e−2θR+, this gives


δj = min[dist(ε#
j , σ(H#)/{ε#


j }), dist(ε#
j , ε#


j−1 + e−θR+)]


which can be rewritten as


δj = min(δ#
j , (ε#


j − ε#
j−1) tan(Imθ)). (IX.2)


This, in particular, gives δ#
j ≥ δj ≥ δ#


j tan(Imθ).
Now we estimate the norm on the r.h.s. of Eqn (V.3). We begin with the case


of δ = 0. In what follows λ ∈ Qj is �xed. First, we write P j = P<j +P>j , where
P<j :=


∑
i<j Pi and P>j := 1−∑


i≤j
Pi. Here, recall, Pi are the eigenprojections


of H := eθH#
θ corresponding to the eigenvalues λi. Since (H − λ)−1P<j =
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∑
i<j(λi−λ)−1Pi, we have ‖(H−λ)−1P<j‖ ≤ C(mini<j |λi−λ|)−1. To estimate


the r.h.s. of the above inequality we write for λ ∈ Qj


min
i<j


|λi − λ| ≥ min
i<j


|Im(λi − λ)|


≥ min
i<j


|Im(λi − λj)| − |Im(λj − λ)|.


By the de�nitions of δj and Qj (see Eqns (V.1) and (V.2)) and by Eqn (IX.2),
we have |Im(λj − λ)| ≤ 1


3
δj ≤ 1


3
(ε#


j − ε#
j−1) tan(Imθ)). On the other hand,


|Im(λi − λj)| = (ε#
j − ε#


i ) sin(Imθ). Hence


min
i<j


|λi − λ| ≥ (ε#
j − ε#


j−1)(sin(Imθ)− 1


3
tan(Imθ)).


For 0 < Imθ ≤ π/3, this gives mini<j |λi − λ| ≥ 1
3
δ#
j sin(Imθ) for any λ ∈ Qj .


This, together with the estimate derived above, yields


‖(H − λ)−1P<j‖ ≤ C(δ#
j sin(Imθ))−1. (IX.3)


To estimate (H − λ)−1P>j we write it as the contour integral


(H − λ)−1P>j =
1


2πi
e−θ


∮


Γ


(
H#


θ − z
)−1


(z − e−θλ)−1dz, (IX.4)


where the contour Γ is de�ned as Γ := µ + iR, where µ := 1
4
ε#
j + 3


4
ε#
j+1.


Next, expanding e2θVg(e
θx) in θ, we have H#


θ = e−2θH# + O(θ). Hence for
|Imθ| ¿ infz∈Γ dist(z, σ(H#


θ )) and Reθ = 0, this gives


‖(H#
θ − z)−1‖ ≤ 2‖(e−2θH# − z)−1‖ ≤ 2/dist(z, σ(e−2θH#)).


Again, by H#
θ = e−2θH# + O(θ) and the condition |θ| ¿ infz∈Γ dist(z, σ(H#


θ )),
the spectrum of e−2θH# is at the distance¿ infz∈Γ dist(z, σ(H#


θ )) from the spec-
trum of H#


θ . Using these estimates and using Eqn (IX.4), we obtain


‖(H − λ)−1P>j‖ ≤ 1


π


∮


Γ


[dist(z, σ(H#
θ ))]−1|z − e−θλ|−1dz. (IX.5)


We estimate the integrand on the r.h.s. of the above inequality. We have for
λ ∈ Qj


|eθz − λ| ≥ sup
s≥0


(|eθz + s− λj| − |λj − s− λ|).
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For z ∈ Γ, we have infs≥0 |eθz+s−λj| = |z−ε#
j | = [(3


4
(ε#


j+1−ε#
j ))2+(Imz)2]1/2.


Moreover, the the de�nition of Qj and (IX.2) imply that supλ∈Qj
infs≥0 |λj − s−


λ| ≤ 1
2
δj ≤ 1


2
δ#
j . Combining the last three estimates we obtain


inf
λ∈Qj


|eθz − λ| ≥ 1


8
(δ#


j + |Imz|). (IX.6)


Next, we have for z ∈ Γ, dist(z, σ(H#
θ )) = [(ε#


j+1 − (1
4
ε#
j + 3


4
ε#
j+1))


2 +


(Imz)2]1/2 = [(1
4
(ε#


j+1 − ε#
j ))2 + (Imz)2]1/2, which gives


dist(z, σ(H#
θ )) ≥ 1


8
(δ#


j + |Imz|). (IX.7)


If |Imθ| ¿ δ#
j , then estimates (IX.5) - (IX.7) give


‖(H − λ)−1P>j‖ ≤ C(δ#
j )−1. (IX.8)


This together with the estimate (IX.3) yields


‖(H − λ)−1‖ ≤ C(δ#
j sin(Imθ))−1.


This gives the desired estimate of the norm on the r.h.s. of (V.3) for δ = 0.
Now we explain how to modify the above estimate in order to bound the norm


on the r.h.s. of (V.3) for δ > 0. First we recall the de�nitions Hδ := e−ϕHeϕ and
P δ


j := e−ϕPj eϕ with ϕ = δ〈x〉. By a standard result, for δ suf�ciently small,


σ(Hδ)
⋂
{Rez ≤ ν} = σ(H)


⋂
{Rez ≤ ν}.


This and the boundedness of P δ
j show that the estimate (IX.3) remains valid if we


replace the operators H and P<j by the operators Hδ and P δ
<j .


Now to prove the estimate (IX.8) with the operator H replaced by the operator
Hδ we use in addition to the estimates above the estimate


∥∥Rδ(z)
∥∥ ≤ 2


∥∥R(z)
∥∥


for z ∈ Γ which is proven as follows. By an explicit computation, Hδ = H + W ,
where


W := eθ(−∇ϕ · ∇ −∇ · ∇ϕ− |∇ϕ|2).
Hence for small δ (recall that ϕ(x) := δ〈x〉) the operator Hδ is a relatively small
perturbation of the operator H. In particular, for z ∈ Γ,


∥∥R(z)W
∥∥ ≤ Cδ ≤ 1/2


and Rϕ(z) := [1 − R(z)W ]−1R(z), where R(z) = (Hpg − z)−1 and Rδ(z) =
(Hδ


pg−z)−1. Using the last two relations we estimate
∥∥Rδ(z)


∥∥ ≤ 2
∥∥R(z)


∥∥ for z ∈
Γ. This, as was mentioned above, implies the estimate (IX.8) with the operators
H and P>j replaced by the operators Hδ and P δ


>j . This completes the proof of the
proposition.
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Since ε#
j = ε


(p)
j + O(g2), we have that δ#


j ≥ ε
(p)
gap(ν)−O(g2) for j ≤ j(ν) :=


max{j : ε
(p)
j ≤ ν}. Therefore the restriction g ¿ min(κj, ε


(p)
gap(ν)), used above,


is implied by the restriction
g ¿ ε(p)


gap(ν),


imposed in Theorem III.1. As was mentioned in Section III, Theorem III.1 and
the Combes argument presented in the paragraph containing Eqn (I.6) imply The-
orems I.1 and I.2, provided we choose θ to be g-independent and satisfying 0 <


Imθ ¿ ε
(p)
gap(ν). This completes the proof of Theorem I.1. ¤


X Appendix A. The Smooth Feshbach-Schur Map
In this appendix, we describe properties of the isospectral smooth Feshbach-Schur
map introduced in Section V.


In what follows Hg = H0g + Ig ∈ GHµ and we use the de�nitions of Section
V.


We de�ne the following maps entering some identities below:


Qπ(Hg − λ) := π − π̄ (Hπ̄ − λ)−1π̄Igπ , (X.1)
Q#


π (Hg − λ) := π − πIgπ̄ (Hπ̄ − λ)−1π̄ . (X.2)


Note that Qπ(Hg − λ) ∈ B(Ran π,H) and Q#
π (Hg − λ) ∈ B(H, Ran π).


The following theorem, proven in [4] (see [31] for some extensions), states
that the smooth Feshbach-Schur map of Hg − λ is isospectral to Hg − λ.


Theorem X.1. Let Hg = H0g+Ig satisfy (V.6). Then, as was mentioned in Section
V, the smooth Feshbach-Schur map Fπ is de�ned on Hg−λ and has the following
properties:


(i) λ ∈ ρ(Hg) ⇔ 0 ∈ ρ(Fπ(Hg − λ)), i.e. Hg − λ is bounded invertible on H
if and only if Fπ(Hg − λ) is bounded invertible on Ran χ;


(ii) If ψ ∈ H \ {0} solves Hgψ = λψ then ϕ := χψ ∈ Ran π \ {0} solves
Fχ(Hg − λ) ϕ = 0;


(iii) If ϕ ∈ Ran χ \ {0} solves Fπ(Hg − λ) ϕ = 0 then ψ := Qπ(Hg − λ)ϕ ∈
H \ {0} solves Hgψ = λψ;


(iv) The multiplicity of the spectral value {0} is conserved in the sense that
dim Ker(Hg − λ) = dim KerFπ(Hg − λ);







ResonQED, June 19, 2008 32


(v) If one of the inverses, (Hg−λ)−1 or Fτ,π(Hg−λ)−1, exists then so does the
other and these inverses are related by


(Hg−λ)−1 = Qπ(Hg−λ)Fπ(Hg−λ)−1 Qπ(Hg−λ)# + π̄ (Hπ̄−λ)−1π̄ ,
(X.3)


and
Fπ(Hg − λ)−1 = π (Hg − λ)−1 π + π̄ (H0g − λ)−1π̄ .


XI Appendix B. Proof of Theorem VII.1
In this Appendix we prove Theorem VII.1. As was mentioned in Section VII,
the proof follows exactly the same lines as the proof of Theorem IV.3 of [28].
It is similar to the proofs of related results of [9, 10, 11]. We begin with some
preliminary results.


Recall the notation Hg = H0g + Ig (see (IV.1)). According to the de�nition
(Eqn (V.7)) of the smooth Feshbach-Schur map, Fπ, we have that


Fπ


(
Hg − λ


)
= H0g − λ + πIgπ (XI.1)


− π Ig π̄
(
H0g − λ + π̄Igπ̄


)−1
π̄ Ig π .


Here, recall, π ≡ π[Hf ] is de�ned in (V.4) and π̄ ≡ π̄[Hf ] := 1 − π[Hf ]. Note
that, due to Eqn (V.19), the Neumann series expansion in π̄Igπ̄ of the resolvent in
(XI.1) is norm convergent and yields


Fπ


(
Hg − λ


)
= H0g − λ +


∞∑
L=1


(−1)L−1 πIg


(
(H0g − λ)−1π̄2 Ig


)L−1


π . (XI.2)


To write the Neumann series on the right side of (XI.2) in the generalized
normal form we use Wick's theorem, which we formulate now.


We begin with some notation. Recall the de�nition of the spaces GHmn
µ in


Section IV. For Wm,n ∈ GHmn
µ of the form (IV.3), we denote Wm,n ≡ Wm,n[w],


where w := (wm,n)1≤m+n≤2 with wm,n satisfying (IV.4) (not to confuse with the
de�nitions of Section VI). We introduce the operator families


Wm,n
p,q


[
w


∣∣ k(m,n)


]
:=


∫


Bp+q
1


dx(p,q)


|x(p,q)|1/2
a∗(x(p)) (XI.3)


×wm+p,n+q


[
k(m), x(p) , k̃(n), x̃(q)


]
a(x̃(q)),


for m + n ≥ 0 and a.e. k(m,n) ∈ Bm+n
1 . Here we use the notation for x(p,q), x(p),


x̃(q), etc. similar to the one introduced in Eqs. (III.2)�(III.4). For m = 0 and/or
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n = 0, the variables k(0) and/or k̃(0) are dropped out. Denote by Sm the group of
permutations of m elements. De�ne the symmetrization operation as


w(sym)
m,n [ k(m,n)] (XI.4)


:=
1


m! n!


∑
π∈Sm


∑
π̃∈Sn


wm,n[ kπ(1), . . . , kπ(m) ; k̃π̃(1), . . . , k̃π̃(n) ].


Finally, below we will use the notation


Σ[k(m)] := |k1|+ . . . + |km|, (XI.5)
k(M,N) = (k


(1)
(m1,n1), . . . , k


(L)
(mL,nL)) , k


(`)
(m`,n`)


= (k
(`)
(m`)


, k̃
(`)
(n`)


) , (XI.6)


r` := Σ[k̃
(1)
(n1)] + . . . + Σ[k̃


(`−1)
(n`−1)] + Σ[k


(`+1)
(m`+1)


] + . . . + Σ[k
(L)
(mL)] , (XI.7)


r̃` := Σ[k̃
(1)
(n1)] + . . . + Σ[k̃


(`)
(n`)


] + Σ[k
(`+1)
(m`+1)


] + . . . + Σ[k
(L)
(mL)], (XI.8)


with r` = 0 if n1 = . . . n`−1 = m`+1 = . . . mL = 0 and similarly for r̃` and
m1 + . . . + mL = M, n1 + . . . + nL = N .


Theorem XI.1 (Wick Ordering). Let Wm,n ∈ GHmn
µ , m + n ≥ 1 and Fj ≡


Fj[Hf ], j = 0 . . . L, where Fj[r] are operators on the particle space which are Cs


functions of r and satisfy the estimates ‖〈p〉−2+nFj[r]〈p〉−n‖ ≤ C for n = 0, 1, 2.
Write W :=


∑
m+n≥1 Wm,n with Wm,n := Wm,n[wm,n]. Then


F0 W F1 W · · ·W FL−1 W FL = Ppj ⊗ W̃ , (XI.9)


where W̃ := W̃ [w̃], w̃ := (w̃
(sym)
M,N )M+N≥0 with w̃


(sym)
M,N given by the symmetriza-


tion w. r. t. k(M) and k̃(N), of the coupling functions


w̃M,N [r; k(M,N)] =
∑


m1+...+mL=M,
n1+...+nL=N


∑
p1,q1,...,pL,qL:


m`+p`+n`+q`≥1


L∏


`=1


{(
m` + p`


p`


)(
n` + q`


q`


)}


F0[r + r̃0]


〈
ψ


(p)
j ⊗ Ω


∣∣∣∣ W̃1


[
k


(1)
(m1,n1)


]
F1[Hf + r + r̃1] W̃2


[
k


(2)
(m2,n2)


]


· · ·FL−1[Hf + r + r̃L−1] W̃L


[
k


(L)
(mL,nL)


]
ψ


(p)
j ⊗ Ω


〉
FL[r + r̃L] , (XI.10)


with


W̃`


[
k(m`,n`)


]
:= Wm`,n`


p`,q`
[w


∣∣ k(m`,n`)]. (XI.11)
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The proof of this theorem mimics the proof of [10, Theorem A.4].
Next, we mention some properties of the scaling transformation. It is easy to


check that Sρ(Hf ) = ρHf , and hence


Sρ(χρ) = χ1 and ρ−1Sρ


(
Hf


)
= Hf , (XI.12)


which means that the operator Hf is a �xed point of ρ−1Sρ. Further note that
E · 1 is expanded under the scaling map, ρ−1Sρ(E · 1) = ρ−1E · 1, at a rate ρ−1.
Furthermore,


ρ−1Sρ


(
Wm,n[w]


)
= Wm,n


[
sρ(w)


]
(XI.13)


where the map sρ is de�ned by sρ(w) := (sρ(wm,n))m+n≥0 and, for all (m,n) ∈
N2


0,
sρ(wm,n)


[
k(m,n)


]
= ρm+n−1 wm,n


[
ρ k(m,n)


]
. (XI.14)


As a direct consequence of Theorem XI.1 and Eqs. (V.7), (XI.13)�(XI.14) and
(XI.2), we have


Theorem XI.2. Let λ ∈ Qj so that Hg − λ ∈ dom(Rρ). Then Rρ(Hg −
λ) |Ran(Ppj⊗ 1) −ρ−1


0 (λj − λ) = H(ŵ) where the sequence ŵ is described as
follows: ŵ = (ŵ


(sym)
M,N )M+N≥0 with ŵ


(sym)
M,N , the symmetrization w. r. t. k(M) and


k̃(N) (as in Eq. (XI.4)) of the kernels


ŵM,N [ r; k(M,N)] = ρM+N−1


∞∑
L=1


(−1)L−1 × (XI.15)


∑
m1+...+mL=M,
n1+...+nL=N


∑
p1,q1,...,pL,qL:


m`+p`+n`+q`≥1


L∏


`=1


{(
m` + p`


p`


)(
n` + q`


q`


)}
Vm,p,n,q[r; k(M,N)],


for M + N ≥ 1, and


ŵ0,0[ r] = r + ρ−1


∞∑
L=2


(−1)L−1
∑


p1,q1,...,pL,qL:
p`+q`≥1


L∏


`=1


V0,p,0,q[r], (XI.16)


for M = N = 0. Here m, p, n, q := (m1, p1, n1, q1, . . . , mL, pL, nL, qL) ∈ N4L
0 ,


and


Vm,p,n,q[r; k(M,N)] := 〈ψ(p)
j ⊗ Ω, gLF0[Hf + r] (XI.17)


×
L∏


`=1


{
W̃`


[
ρk


(`)
(m`,n`)


]
F`[Hf + r]


}
ψ


(p)
j ⊗ Ω〉 .
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with M := m1 + . . . + mL, N := n1 + . . . + nL, F`[r] := Ppj ⊗ χ1[r + r̃`], for
` = 0, L, and


F`[r] := π̄[ρ(r + r̃`)]
2
(
Hpg + ρ(r + r̃`)− λ


)−1
, (XI.18)


for ` = 1, . . . , L − 1. Here the notation introduced in Eqs. (XI.3)�(XI.8) and
(XI.11) is used.


We remark that Theorem XI.2 determines ŵ only as a sequence of integral
kernels that de�ne an operator in B[F ]. Now we show that ŵ ∈ Wµ,s, i.e.
‖ŵ‖µ,s,ξ < ∞. In what follows we use the notation introduced in Eqs. (XI.3)�
(XI.8) and (XI.11). To estimate ŵ, we start with the following preparatory lemma


Lemma XI.3. Let λ ∈ Qj . For �xed L ∈ N and m, p, n, q ∈ N4L
0 , we have


Vm,p,n,q ∈ Wµ,s
M,N and


∥∥Vm,p,n,q‖µ,s ≤ ρµ+1Ls
(Cg


ρ


)L
L∏


`=1


∥∥wm`+p`,n`+q`


∥∥(0)


µ
. (XI.19)


Proof. First we derive the estimate (XI.19) for µ = 0. Recall that the operators
W̃` might be unbounded. To begin with, we estimate


∣∣Vm,p,n,q[r; k(M,N)]
∣∣ ≤ gL


∥∥F0[Hf + r]
∥∥


L∏


`=1


A` , (XI.20)


where A` :=
∥∥∥W̃`


[
ρk


(`)
(m`,n`)


]
F`[Hf + r]


∥∥∥. We use the resolvents and cut-off func-
tions hidden in the operators F`[Hf + r] in order to bound the creation and anni-
hilation operators whenever they are present in W̃`.


Recall that the operator F`[Hf + r] we estimate below depends on λ, see
(XI.18). Now, we claim that for λ ∈ Qj


∥∥(|p|2 + ρHf + 1)F`[Hf + r]
∥∥ ≤ Cρ−1 (XI.21)


for ` = 1, ..., L − 1 and
∥∥(|p|2 + Hf + 1)FL[Hf + r]


∥∥ ≤ C. The last estimate
is obvious. To prove the �rst estimate we use the inequality (IV.2), in order to
convert the operator |p|2 into the operator Hpg:


∥∥(|p|2 + ρHf + 1)F`[Hf + r]
∥∥


≤ 2
∥∥(Hpg + ρ(Hf + r + r̃`) + 3)F`[Hf + r]


∥∥.


Clearly, it suf�ces to consider λ changing in suf�ciently large bounded set. The
the above estimate gives


∥∥(|p|2 + ρHf + 1)F`[Hf + r]
∥∥ ≤ C


∥∥F`[Hf + r]
∥∥ + C. (XI.22)
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If the operator F`[Hf + r] inside the operator norm on the r.h.s. is normal, as
in the case of the ground state analysis, then its norm can be estimated in terms
of its spectrum. For non-normal operators we proceed as follows. Using that
π̄[Hf ] := Ppj ⊗ χHf≥ρ + P̄pj ⊗ 1, we write


F`[Hf + r] := Ppj ⊗ [χs≥ρ]
2
(
λj + s− λ


)−1


+P̄pj ⊗ 1
(
H̄pg + s− λ


)−1
, (XI.23)


where s := ρ(Hf + r + r̃`), recall, P̄pj := 1−Ppj and H̄pg := HpgP̄p. Now, since
Re(λj−λ) ≥ −ρ/2 ≥ −s/2 for λ ∈ Qj and s ≥ ρ, we have that λj +s−λ ≥ ρ/2
for the �rst term on the r.h.s.. For the second term on the r.h.s., we observe that by
the spectral decomposition of the operator s in (XI.23) we have


sup
λ∈Qj


‖(P̄pj⊗1)
(
H̄pg +s−λ


)−1‖ ≤ sup
λ∈Qj , µ≥0


‖P̄pj


(
H̄pg +µ−λ


)−1‖part. (XI.24)


Since Qj − [0,∞) = Qj and due to (V.3) we have


sup
λ∈Qj


‖(P̄pj ⊗1)
(
H̄pg + s−λ


)−1‖ ≤ sup
λ∈Qj


‖P̄pj


(
H̄pg−λ


)−1‖part ≤ κ−1
j . (XI.25)


Since ρ ≤ κj , the last estimate, together with the estimate of the �rst term on
the r.h.s. of (XI.23) mentioned above, yields


∥∥F`[Hf + r]
∥∥ ≤ Cρ−1 for ` =


1, ..., L− 1. This, due to (XI.22), implies the estimate (XI.21).
Next, since W̃`


[
ρk


(`)
(m`,n`)


]
contain products of p` +q` ≤ m` +p` +n` +q` ≤ 2


creation and annihilation operators (see (XI.3) and (XI.11) and the paragraph after
(IV.1)), we have, by (IV.4), (V.20) - (V.23) and similar estimates (cf. (VI.10)), that


∥∥∥W̃`


[
ρk


(`)
(m`,n`)


]〈p〉−(2−s`)(Hf + 1)−s`/2
∥∥∥ ≤ C‖wm′


`,n
′
`
‖(0)


0 , (XI.26)


where m′
` := m` +p` and n′` := n` +q` and s` := m′


` +n′` (remember that s` ≤ 2).
Consequently,


A` ≤ Cρ−1+δ`,L‖wm′
`,n


′
`
‖(0)


0 . (XI.27)


Now, since
∥∥F0[Hf + r]


∥∥
op
≤ 1 we �nd from (XI.20) and (XI.26) that


∣∣Vm,p,n,q[r; k(M,N)]
∣∣ ≤ ρ


(Cg


ρ


)L
L∏


`=1


∥∥wm`+p`,n`+q`


∥∥(0)


0
(XI.28)


and similarly for the r− derivatives. This proves the isotropic, (XI.19) with µ = 0,
bound on the functions Vm,p,n,q[r; k(M,N)].
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Now we prove the anisotropic, µ > 0, bound on Vm,p,n,q[r; k(M,N)]. Let
ϕ(x) := δ〈x〉 for δ suf�ciently small. De�ne for ` = 1, ..., L− 1


F δ
` [Hf + r] := e−ϕF`[Hf + r]eϕ


and
W̃ δ


`


[
k


(`)
(m`,n`)


]
:= e−ϕW̃`


[
k


(`)
(m`,n`)


]
eϕ.


Note that this transformation effects only the particle variables.
Exactly in the same way as we proved the bounds (XI.21), with ` = 1, ..., L−1,


one can show the following estimates
∥∥(|p|2 + ρHf + 1)F δ


` [Hf + r]
∥∥ ≤ Cρ−1, (XI.29)


provided λ ∈ Qj and δ ≤ δ0.
Now, expression (XI.17) can be rewritten for any j as


Vm,p,n,q[r; k(M,N)] := gL F0[Hf + r] eϕ ×
j−1∏


`=1


{
W̃ δ


`


[
ρk


(`)
(m`,n`)


]
F δ


` [Hf + r]
}
×


e−ϕW̃j


[
ρk


(j)
(mj ,nj)


]
Fj[Hf + r]×


L∏


`=j+1


{
W̃`


[
ρk


(`)
(m`,n`)


]
F`[Hf + r]


}
.


Since, by the de�nition, the operator F0[Hf + r] contains the projection, Pp, we
conclude that the operator F0[Hf + r]eϕ is bounded. Hence we obtain for j =
1, ..., L


∣∣Vm,p,n,q[r; k(M,N)]
∣∣ ≤ CgLÃδ


j


j−1∏


`=1


Aδ
`


L∏


`=j+1


A` , (XI.30)


where Aδ
` :=


∥∥∥W̃ δ
`


[
ρk


(`)
(m`,n`)


]
F δ


` [Hf +r]
∥∥∥ and Ãδ


j :=
∥∥∥e−ϕW̃`


[
ρk


(`)
(m`,n`)


]
F`[Hf +


r]
∥∥∥. Furthermore, since W̃ δ


`


[
ρk


(`)
(m`,n`)


]
contain products of p` + q` ≤ 2 creation


and annihilation operators (see (XI.3) and (XI.11)), we have, by (IV.4), (V.20)-
(V.23) and similar estimates (cf. (VI.10)), that


∥∥∥W̃ δ
`


[
ρk


(`)
(m`,n`)


]〈p〉−(2−s`)(Hf + 1)−s`/2
∥∥∥


≤ C‖wm′
`,n


′
`
‖(0)


0 (XI.31)
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and ∥∥∥e−ϕW̃`


[
ρk


(`)
(m`,n`)


]〈p〉−(2−s`)(Hf + 1)−s`/2
∥∥∥


≤ C|ρk
(`)
(m`,n`)


|µ‖wm′
`,n


′
`
‖(0)


µ , (XI.32)


where m′
` := m` + p` and n′` := n` + q` and s` := m′


` + n′`. Consequently,


Aδ
` ≤ Cρ−1‖wm′


`,n
′
`
‖(0)


0 and Ãδ
j ≤ Cρµ−1|k(j)


(mj ,nj)
|µ‖wm′


j ,n′j‖(0)
µ . (XI.33)


Putting the equations (XI.30), (XI.33) and (XI.27) together we arrive at


∣∣Vm,p,n,q[r; k(M,N)]
∣∣ ≤ ρµ+1


(Cg


ρ


)L


|k(j)
(mj ,nj)


|µ×


∥∥wmj+pj ,nj+qj


∥∥(0)


µ


1,L∏


` 6=j


∥∥wm`+p`,n`+q`


∥∥(0)


0
(XI.34)


and similarly for the r−derivatives. Since any i, ki is contained, as a 3−dimensional
component, in k


(j)
(mj ,nj)


for some j, we �nd (XI.19). ¤
Proof of Theorem VII.1. As was mentioned above we present here only the


case s = 1, which is needed in this paper. Recall that we assume ρ ≤ 1/2
and we choose ξ = 1/4. First, we apply Lemma XI.3 to (XI.15) and use that(


m+p
p


) ≤ 2m+p. This yields


∥∥ŵM,N


∥∥
µ,s


≤
∞∑


L=1


ρµ Ls
(Cg


ρ


)L (
2 ρ


)M+N (XI.35)


×
∑


m1+...+mL=M,
n1+...+nL=N


∑
p1,q1,...,pL,qL:


m`+p`+n`+q`≥1


L∏


`=1


{
2p`+q`


∥∥wm`+p`,n`+q`


∥∥(0)


µ


}
.


Using the de�nition (VI.16) and the inequality 2ρ ≤ 1, we derive the following
bound for ŵ1 := (ŵM,N)M+N≥1,


∥∥ŵ1‖µ,s,ξ :=
∑


M+N≥1


ξ−(M+N)
∥∥ŵM,N‖µ,s


≤ 2 ρµ+1


∞∑
L=1


Ls


(
Cg


ρ


)L ∑
M+N≥1


∑
m1+...+mL=M,
n1+...+nL=N


∑
p1,q1,...,pL,qL:


m`+p`+n`+q`≥1


L∏


`=1


{
(2 ξ)p`+q` ξ−(m`+p`+n`+q`)


∥∥wm`+p`,n`+q`


∥∥(0)


µ


}
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≤ 2 ρµ+1


∞∑
L=1


Ls


(
Cg


ρ


)L


{ ∑
m+n≥1


( m∑
p=0


(2 ξ)p
) ( n∑


q=0


(2 ξ)q
)
ξ−(m+n) ‖wm,n‖(0)


µ


}L
.


Let
∥∥w1‖(0)


µ,ξ :=
∑


M+N≥1 ξ−(m+n)
∥∥wm,n‖(0)


µ , where, recall, w1 := (wm,n)m+n≥1


(we introduce this norm in order to ease the comparison with the results of [4]).
Using the assumption ξ = 1/4 and the estimate


∑m
p=0(2 ξ)p ≤ ∑∞


p=0


(
2 ξ


)p
=


1
1− 2 ξ


, we obtain
∥∥ŵ1‖µ,s,ξ ≤ 2 ρµ+1


∑∞
L=1 Ls BL, (XI.36)


where
B :=


Cg


ρ(1 − 2 ξ)2


∥∥w1


∥∥(0)


µ,ξ
. (XI.37)


Our assumption g ¿ ρ also insures that B ≤ 1
2
. Thus the geometric series


on the r.h.s. of (XI.36) is convergent. We obtain for s = 0, 1


∞∑
L=1


Ls BL ≤ 8 B . (XI.38)


Inserting (XI.38) into (XI.36), we see that the r.h.s. of (XI.36) is bounded by
16 ρµ+1 B which, remembering the de�nition of B and the choice ξ = 1/4, gives


∥∥ŵ1‖µ,s,ξ ≤ 64 Cg ρµ
∥∥w1


∥∥(0)


µ,ξ
. (XI.39)


Next, we estimate ŵ0,0. We analyze the expression (XI.16). Using estimate
Eq. (XI.19) with m = 0, n = 0 (and consequently, M = 0, N = 0), we �nd


ρ−1
∥∥V0,p,0,q‖µ,s ≤ Ls ρµ


(Cg


ρ


)L
L∏


`=1


∥∥wp`,q`


∥∥(0)


µ
. (XI.40)


In fact, examining the proof of Lemma XI.3 more carefully we see that the fol-
lowing, slightly stronger estimate is true


ρ−1 sup
r∈I


∣∣∂s
rV0,p,0,q[r]


∣∣ ≤ Ls ρµ+s
(Cg


ρ


)L
L∏


`=1


∥∥wp`,q`


∥∥(0)


µ
. (XI.41)
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Now, using (XI.41), we obtain


ρ−1


∞∑
L=2


∑
p1,q1,...,pL,qL:


p`+q`≥1


sup
r∈I


∣∣∂s
rV0,p,0,q[r]


∣∣


≤ ρs+µ


∞∑
L=2


Ls
(Cg


ρ


)L
{ ∑


p+q≥1


∥∥wp,q


∥∥(0)


µ


}L


≤ ρs+µ


∞∑
L=2


Ls DL,


where D := Cgξρ−1‖∂s
rw1‖µ,0,ξ with, recall, w1 := (wm,n)m+n≥1. Now, similarly


to (XI.38), using that
∑∞


L=2 LsDL ≤ 12D2, for D satisfying D ≤ 1/2 (recall
g ¿ ρ), we �nd for s = 0, 1


ρ−1


∞∑
L=2


∑
p1,q1,...,pL,qL:


p`+q`≥1


sup
r∈I


∣∣∂s
rV0,p,0,q[r]


∣∣


≤ 12ρs+µ
(Cg ξ


ρ


∥∥w1


∥∥(0)


µ,ξ


)2


. (XI.42)


Next, Eqns. (XI.16) and (XI.42) yield
∣∣ŵ0,0[0]


∣∣ ≤ 12ρµ
(Cg ξ


ρ


∥∥w1


∥∥(0)


µ,ξ


)2


. (XI.43)


We �nd furthermore that


sup
r∈[0,∞)


∣∣∂rŵ0,0[ r] − 1
∣∣ ≤ 12ρµ+1


(Cg ξ


ρ


∥∥w1


∥∥(0)


µ,ξ


)2


. (XI.44)


Now, recall that
∥∥w1


∥∥(0)


µ,ξ
≤ C and ξ = 1/4. Hence Eqns (XI.43), (XI.44)


and (XI.39) give (VII.2) with s = 1, α = 12ρµ
(


Cg
ρ


)2


, β = 12ρµ+1
(


Cg
ρ


)2


and
γ = C ρµg. This implies the statement of Theorem VII.1. ¤


XII Supplement A: Background on the Fock space,
etc


Let h be either L2(R3,C, d3k) or L2(R3,C2, d3k). In the �rst case we consider h


as the Hilbert space of one-particle states of a scalar Boson or a phonon, and in the
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second case, of a photon. The variable k ∈ R3 is the wave vector or momentum
of the particle. (Recall that throughout this paper, the velocity of light, c, and
Planck's constant, ~, are set equal to 1.) The Bosonic Fock space, F , over h is
de�ned by


F :=
∞⊕


n=0


Sn h⊗n , (XII.1)


where Sn is the orthogonal projection onto the subspace of totally symmetric
n-particle wave functions contained in the n-fold tensor product h⊗n of h; and
S0h


⊗0 := C. The vector Ω := 1
⊕∞


n=1 0 is called the vacuum vector in F . Vectors
Ψ ∈ F can be identi�ed with sequences (ψn)∞n=0 of n-particle wave functions,
which are totally symmetric in their n arguments, and ψ0 ∈ C. In the �rst case
these functions are of the form, ψn(k1, . . . , kn), while in the second case, of the
form ψn(k1, λ1, . . . , kn, λn), where λj ∈ {−1, 1} are the polarization variables.


In what follows we present some key de�nitions in the �rst case only limiting
ourselves to remarks at the end of this appendix on how these de�nitions have to
be modi�ed for the second case. The scalar product of two vectors Ψ and Φ is
given by


〈Ψ , Φ〉 :=
∞∑


n=0


∫ n∏
j=1


d3kj ψn(k1, . . . , kn) ϕn(k1, . . . , kn) . (XII.2)


Given a one particle dispersion relation ω(k), the energy of a con�guration of
n non-interacting �eld particles with wave vectors k1, . . . , kn is given by


∑n
j=1 ω(kj).


We de�ne the free-�eld Hamiltonian, Hf , giving the �eld dynamics, by


(HfΨ)n(k1, . . . , kn) =
( n∑


j=1


ω(kj)
)


ψn(k1, . . . , kn), (XII.3)


for n ≥ 1 and (HfΨ)n = 0 for n = 0. Here Ψ = (ψn)∞n=0 (to be sure that the r.h.s.
makes sense we can assume that ψn = 0, except for �nitely many n, for which
ψn(k1, . . . , kn) decrease rapidly at in�nity). Clearly that the operator Hf has the
single eigenvalue 0 with the eigenvector Ω and the rest of the spectrum absolutely
continuous.


With each function ϕ ∈ h one associates an annihilation operator a(ϕ) de-
�ned as follows. For Ψ = (ψn)∞n=0 ∈ F with the property that ψn = 0, for all but
�nitely many n, the vector a(ϕ)Ψ is de�ned by


(a(ϕ)Ψ)n(k1, . . . , kn) :=
√


n + 1


∫
d3k ϕ(k) ψn+1(k, k1, . . . , kn). (XII.4)
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These equations de�ne a closable operator a(ϕ) whose closure is also denoted by
a(ϕ). Eqn (XII.4) implies the relation


a(ϕ)Ω = 0 . (XII.5)
The creation operator a∗(ϕ) is de�ned to be the adjoint of a(ϕ) with respect to the
scalar product de�ned in Eq. (XII.2). Since a(ϕ) is anti-linear, and a∗(ϕ) is linear
in ϕ, we write formally


a(ϕ) =


∫
d3k ϕ(k) a(k) , a∗(ϕ) =


∫
d3k ϕ(k) a∗(k) , (XII.6)


where a(k) and a∗(k) are unbounded, operator-valued distributions. The latter are
well-known to obey the canonical commutation relations (CCR):


[
a#(k) , a#(k′)


]
= 0 ,


[
a(k) , a∗(k′)


]
= δ3(k − k′) , (XII.7)


where a# = a or a∗.
Now, using this one can rewrite the quantum Hamiltonian Hf in terms of the


creation and annihilation operators, a and a∗, as


Hf =


∫
d3k a∗(k) ω(k) a(k) , (XII.8)


acting on the Fock space F .
More generally, for any operator, t, on the one-particle space h we de�ne


the operator T on the Fock space F by the following formal expression T :=∫
a∗(k)ta(k)dk, where the operator t acts on the k−variable (T is the second


quantization of t). The precise meaning of the latter expression can obtained by
using a basis {φj} in the space h to rewrite it as T :=


∑
j


∫
a∗(φj)a(t∗φj)dk.


To modify the above de�nitions to the case of photons, one replaces the vari-
able k by the pair (k, λ) and adds to the integrals in k also the sums over λ.
In particular, the creation and annihilation operators have now two variables:
a#


λ (k) ≡ a#(k, λ); they satisfy the commutation relations
[
a#


λ (k) , a#
λ′(k


′)
]


= 0 ,
[
aλ(k) , a∗λ′(k


′)
]


= δλ,λ′δ
3(k − k′). (XII.9)


One can also introduce the operator-valued transverse vector �elds by


a#(k) :=
∑


λ∈{−1,1}
eλ(k)a#


λ (k),


where eλ(k) ≡ e(k, λ) are polarization vectors, i.e. orthonormal vectors in R3


satisfying k · eλ(k) = 0. Then in order to reinterpret the expressions in this paper
for the vector (photon) - case one either adds the variable λ as was mentioned
above or replaces, in appropriate places, the usual product of scalar functions or
scalar functions and scalar operators by the dot product of vector-functions or
vector-functions and operator valued vector-functions.
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XIII Supplement B: Nelson model
In this supplement we describe the Nelson model describing the interaction of
electrons with quantized lattice vibrations. The Hamiltonian of this model is


HN
g = HN


0 + IN
g , (XIII.1)


acting on the state space, H = Hp ⊗ F , where now F is the Fock space for
phonons, i. e. spinless, massless Bosons. Here g is a positive parameter - a cou-
pling constant - which we assume to be small, and


HN
0 = HN


p + Hf , (XIII.2)


where HN
p = Hp and Hf are given in (I.1) and (I.3), respectively, but, in the last


case, with the scalar creation and annihilation operators, a and a∗, and where the
interaction operator is IN


g := gI with


I :=


∫
κ(k) d3k


|k|1/2


{
e−ikx a∗(k) + eikx a(k)


}
(XIII.3)


(we can also treat terms quadratic in a and a∗ but for the sake of exposition we
leave such terms out). Here, κ = κ(k) is a real function with the property that


|κ(k)| ≤ const min{1, |k|µ} , (XIII.4)


with µ > 0, and ∫
d3k


|k| |κ(k)|2 < ∞. (XIII.5)


In the following, κ is �xed and g varies. It is easy to see that the operator I is
symmetric and bounded relative to H0, with the zero relative bound (see [58] for
the corresponding de�nitions). Thus HN


g is self-adjoint on the domain of H0 for
arbitrary g. Of course, for the Nelson model we can take an arbitrary dimension
d ≥ 1 rather than the dimension 3.


The complex deformation of the Nelson hamiltonian is de�ned as (�rst for
θ ∈ R)


HN
gθ := UθH


SM
g U−1


θ . (XIII.6)
Under Condition (DA), there is a Type-A ([53]) family HN


gθ of operators analytic in
the domain |Imθ| < θ0, which is equal to (XIII.6) for θ ∈ R and s.t. HN∗


gθ = HN
gθ


,


HN
gθ = UReθH


N
giImθU


−1
Reθ. (XIII.7)


Furthermore, HN
gθ can be written as


HN
gθ = HN


pθ ⊗ 1f + e−θ1p ⊗Hf + IN
gθ , (XIII.8)
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where HN
pθ := UpθH


N
p U−1


pθ and IN
gθ := UθI


N
g U−1


θ .
In the Nelson model case one can weaken the restriction on the parameter ρ


to ρ À g2. One proceeds as follows. Assume for the moment that the parameter
λ is real. Then the operator R0 is non-negative and, due to Eqn (V.13) and Eqn
(VI.10), with m + n ≤ 1, and the fact that the operator I is a sum of creation and
annihilation operators, we have


∥∥R
1/2
0 IgR


1/2
0


∥∥ ≤ Cρ−1/2g , (XIII.9)


where R
1/2
0 := (H0g − λ)−1/2π. Hence the following series


∞∑
n=0


R
1/2
0


(
gR


1/2
0 IgR


1/2
0


)n
R


1/2
0


is well de�ned, converges absolutely and is equal to π(Hπ − λ)−1π. Estimating
this series gives the desired estimate (IV.4) in the case of real λ. For complex λ


we proceed in the same way replacing the factorization R0 = R
1/2
0 R


1/2
0 , we used,


by the factorization R0 = |R0|1/2U |R0|1/2, where |R0|1/2 := |H0g − λ|−1/2π̄ and
U is the unitary operator U := (H0g − λ)−1|H0g − λ|.
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[7] V. Bach, J. Fröhlich, and A. Pizzo. An infrared-�nite algorithm for Rayleigh
scattering amplitudes, and Bohr's frequency condition. Comm. Math. Phys.
274, no. 2, 457�486, 2007.


[8] V. Bach, J. Fröhlich, and A. Pizzo. Infrared-Finite Algorithms in QED II.
The Expansion of the Groundstate of An Atom Interacting with the Quan-
tized Radiation Field, mp arc.
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[21] J. Dereziński and V. Jak�sić. Spectral theory of Pauli-Fierz operators.
J. Funct. Anal., 180(2):243�327, 2001.


[22] J. Faupin. Resonances of the con�ned hydrogenoid ion and the Dicke effect
in non-relativisitc quantum electrodynamics. Preprint 2007.


[23] H. Feshbach. Uni�ed theory of nuclear reactions. Ann. Phys., 5:357�390,
1958.
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