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Abstract


We study Schrödinger operators on an infinite quantum graph of a
chain form which consists of identical rings connected at the touching
points by δ-couplings with a parameter α ∈ R. If the graph is “straight”,
i.e. periodic with respect to ring shifts, its Hamiltonian has a band spec-
trum with all the gaps open whenever α 6= 0. We consider a “bending”
deformation of the chain consisting of changing one position at a single
ring and show that it gives rise to eigenvalues in the open spectral gaps.
We analyze dependence of these eigenvalues on the coupling α and the
“bending angle” as well as resonances of the system coming from the
bending. We also discuss the behaviour of the eigenvalues and resonances
at the edges of the spectral bands.


1 Introduction


Quantum graphs, i.e. Schrödinger operators with graph configuration spaces,
were introduced in the middle of the last century [RuS53] and rediscovered three
decades later [GP88, EŠ89]. Since then they attracted a lot of attention; they
became both a useful tool in numerous applications and a mean which makes
easy to study fundamental properties such as quantum chaos. We refrain from
giving an extensive bibliography and refer to the recent proceedings volume
[AGA] which the reader can use to check the state of art in this area.


One of the frequent questions concerns relations between the geometry of
a graph Γ and spectral properties of a Schrödinger operator supported by Γ.
Put like that, the question allows different interpretation. On one hand, we can
have in mind the intrinsic geometry of Γ which enters the problem through the
adjacency matrix of the graph and the lengths of its edges. On the other hand,
quite often one thinks of Γ as of a subset of Rn with the geometry inherited
from the ambient space. In that case geometric perturbations can acquire a
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rather illustrative meaning and one can ask in which way they influence spectral
properties of a quantum particle “living” on Γ; in this context one can think of
graphs which are “bent”, locally “protruded” or “squeezed”, etc.


The aim of the present paper is to analyze the influence of a “bending”
deformation on a graph which exhibits a one-dimensional periodicity. Without
striving for generality we will discuss in detail a simple nontrivial example in
which the unperturbed system is a “chain graph” consisting of an array of rings
of unit radius, cf. Fig. 1, connected through their touching points. We suppose


Figure 1: The unperturbed chain graph


that there are no external fields. Since values of physical constants are not
important in our considerations we put ~ = 2m = 1 and identify the particle
Hamiltonian with the (negative) Laplacian acting as ψj 7→ −ψ′′j on each edge of
the graph. It is well known that in order to get a self-adjoint operator one has
to impose appropriate boundary conditions at the graph vertices. In our model
we employ the so-called δ-coupling characterized by the conditions


ψj(0) = ψk(0) =: ψ(0) , j, k ∈ n̂ ,


n∑


j=1


ψ′j(0) = αψ(0) , (1.1)


where n̂ = {1, 2, . . . , n} is the index set numbering the edges emanating from
the vertex — in our case n = 4 — and α ∈ R ∪ {+∞} is the coupling constant
supposed to be the same at every vertex of the chain. It is important that the
“straight” graph has spectral gaps, thus we exclude the free boundary conditions
(sometimes called, not quite appropriately, Kirchhoff), i.e. we assume α 6= 0.


The geometric perturbation to consider is the simplest possible bending of
such a chain obtained by a shift of one of the contact points, as sketched in
Fig. 2, which is parametrized by the bending angle ϑ characterizing the ratio
of the two edges constituting the perturbed ring. Our aim is to show that the
bending gives rise to eigenvalues in the gaps of the unperturbed spectrum and
to analyze how they depend on ϑ. At the same time the bent chain will exhibit
resonances and we will discuss behaviour of the corresponding poles.


The contents of the paper is the following. In the next section we analyze
the straight chain. Using Bloch-Floquet decomposition we will show that the
spectrum consists of infinite number of absolutely continuous spectral bands
separated by open gaps, plus a family of infinitely degenerate eigenvalues at
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Figure 2: A bent graph


band edges. In Section 3 we will analyze the discrete spectrum due to the bend-
ing showing that in each gap it gives rise to at most two eigenvalues. Section 4
describes their dependence on the bending angle as well as complex solutions
to the spectral condition corresponding to resonances in the bent chain. In
Section 5 we discuss further the angular dependence with attention to singular
points where the solutions coincide with the band edges. Finally, in the con-
cluding remarks we draw a parallel of our results with properties of quantum
waveguides.


2 An infinite periodic chain


First we consider a “straight” chain Γ0 as sketched in Fig. 1; without loss of
generality we may suppose that the circumference of each ring is 2π. The state
Hilbert space of a nonrelativistic and spinless particle living on Γ0 is L2(Γ0). We
suppose that the particle is free, not interacting with an external potentials on
the edges, and denote by H0 its Hamiltonian, i.e. it acts as the negative Lapla-
cian on each graph link and its domain consists of all functions from W 2,2


loc (Γ0)
which satisfy the δ boundary conditions (1.1) at the vertices of Γ0; we suppose
that the coupling constant α is the same at each vertex1.


In view of the periodicity of Γ0, the spectrum of H0 can be computed us-
ing Bloch-Floquet decomposition. Let us consider an elementary cell with the
wavefunction components denoted according to the Fig. 3 and ask about the
spectrum of the Floquet components of H0. Since the operator acts as a negative
second derivative, each component of the eigenfunction with energy E = k2 6= 0
is a linear combination of the functions e±ikx. The momentum k is convention-
ally chosen positive for E > 0, while for E negative we put k = iκ with κ > 0


1The coupling constant α is kept fixed and for the sake of simplicity we will not use it to
label the Hamiltonian neither in the straight nor in the bent case.
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Figure 3: Elementary cell of the periodic system


(the case E = 0 will be mentioned separately below). For a given E 6= 0, the
wavefunction components on the elementary cell are therefore given by


ψL(x) = C+
L eikx + C−L e−ikx, x ∈ [−π/2, 0]


ψR(x) = C+
Reikx + C−R e−ikx, x ∈ [0, π/2]


ϕL(x) = D+
L eikx + D−


L e−ikx, x ∈ [−π/2, 0]


ϕR(x) = D+
Reikx + D−


Re−ikx, x ∈ [0, π/2]


(2.1)


As we have said, at the contact point the δ-coupling (1.1) is assumed, i.e.


ψL(0) = ψR(0) = ϕL(0) = ϕR(0)
(2.2)


−ψ′L(0) + ψ′R(0)− ϕ′L(0) + ϕ′R(0) = α · ψL(0)


On the other hand, at the “free” ends of the cell the Floquet conditions are
imposed,


ψR(π/2) = eiθψL(−π/2) ψ′R(π/2) = eiθψ′L(−π/2)


ϕR(π/2) = eiθϕL(−π/2) ϕ′R(π/2) = eiθϕ′L(−π/2)
(2.3)


with θ running through [−π, π); alternatively we may say that the quasimomen-
tum 1


2π θ runs through [−1/2, 1/2), the Brillouin zone of the problem.
Substituting (2.1) into (2.2) and (2.3), one obtains after simple manipula-


tions
C+


X · sin kπ = D+
X · sin kπ , C−X · sin kπ = D−


X · sin kπ , (2.4)


where X stands for L or R, hence C+
X = C−X and D+


X = D−
X provided k /∈ N0 :=


{0, 1, 2, . . . }. We will treat the special case k ∈ N later, now we will suppose
k does not belong to N, the set of natural numbers. Furthermore, from (2.2)
and (2.3) we obtain an equation for the phase factor eiθ,


e2iθ − eiθ
(
2 cos kπ +


α


2k
sin kπ


)
+ 1 = 0 , (2.5)


which has real coefficients for any k ∈ R∪ iR\{0} and the discriminant equal to


D =
(
2 cos kπ +


α


2k
sin kπ


)2


− 4 .
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We have to determine values of k2 for which there is a θ ∈ [−π, π) such that (2.5)
is satisfied, in other words, for which k2 it has, as an equation in the unknown
eiθ, at least one root of modulus one. Note that a pair of solutions of (2.5)
always give one when multiplied, regardless the value of k, hence either both
roots are complex conjugated of modulus one, or one is of modulus greater than
one and the other has modulus smaller than one. Obviously, the latter situation
corresponds to a positive discriminant, and the former one to the discriminant
less or equal to zero. We summarize this discussion as follows:


Proposition 2.1. If k2 ∈ R\{0} and k /∈ N, then k2 ∈ σ(H0) if and only if the
condition ∣∣∣∣cos kπ +


α


4
· sin kπ


k


∣∣∣∣ ≤ 1 (2.6)


is satisfied.


In particular, the negative spectrum is obtained by putting k = iκ for κ > 0
and rewriting the inequality (2.6) in terms of this variable. Note that since
sinhx 6= 0 for all x > 0, it never occurs that sin kπ = 0 for k ∈ iR+, the
positive imaginary axis, thus there is no need to treat this case separately like
for k ∈ R+, cf. (2.4) above.


Corollary 2.2. If κ > 0, then −κ2 ∈ σ(H0) if and only if
∣∣∣∣cosh κπ +


α


4
· sinhκπ


κ


∣∣∣∣ ≤ 1 . (2.7)


Let us finally mention the case k ∈ N left out above. It is straightforward
to check that k2 is then an eigenvalue, and moreover, that it has an infinite
multiplicity. One can construct an eigenfunction which is supported by a single
circle, which is given by ψ(x) = sin kx with x ∈ [0, π] on the upper semicircle
and ϕ(x) = − sin kx with x ∈ [0, π] on the lower one.


Remark 2.3. The condition (2.6) reminds us of the corresponding condition in
the Kronig-Penney model with the distance between the interaction sites equal
to π, cf. [AGHH], the only difference being that the coupling constant is halved,
1
2α instead of α. In contrast to that, the point spectrum of the KP model is
empty. These facts are easy to understand if we realize that our model has
the up-down mirror symmetry, and thus H0 decomposes into a symmetric and
antisymmetric part. The former is unitarily equivalent to the KP model with
modified coupling, the latter corresponds to functions vanishing at the vertices,
having thus a pure point spectrum. Looking ahead, we remark that the bending
perturbation breaks this mirror symmetry.


Finally, in the case E = 0 we get in the similar way the equation


e2iθ − eiθ
(
2 +


απ


2


)
+ 1 = 0 , (2.8)


replacing (2.5), whence we infer that 0 ∈ σ(H0) if and only if
∣∣∣1 +


απ


4


∣∣∣ ≤ 1 , (2.9)


5







hence zero can belong to the continuous part of the spectrum only and it happens
iff α ∈ [−8/π, 0]. In conclusion, we can make the following claim about σ(H0).


Theorem 2.4. The spectrum of H0 consists of infinitely degenerate eigenval-
ues equal to n2 with n ∈ N, and absolutely continuous spectral bands with the
following properties:


If α > 0, then every spectral band is contained in an interval (n2, (n + 1)2] with
n ∈ N0 := N ∪ {0}, and its upper edge coincides with the value (n + 1)2.


If α < 0, then in each interval [n2, (n + 1)2) with n ∈ N there is exactly one
spectral band the lower edge of which coincides with n2. In addition, there is a
spectral band with the lower edge (being the overall spectral threshold) equal to
−κ2, where κ is the largest solution of


∣∣∣∣cosh κπ +
α


4
· sinhκπ


κ


∣∣∣∣ = 1 . (2.10)


The position of the upper edge of this band depends on α. If −8/π < α < 0,
then it is equal to k2 where k is the solution of


cos kπ +
α


4
· sin kπ


k
= −1


contained in (0, 1). On the other hand, for α < −8/π the upper edge is negative,
−κ2 with κ being the smallest solution of (2.10), and for α = −8/π it equals
zero.


Finally, σ(H0) = [0, +∞) holds if α = 0.


Proof. The degenerate bands, in other words, the eigenvalues of infinite multi-
plicity, were found already and it is straightforward to check that no other eigen-
values exist. The continuous spectrum can be in view of Remark 2.3 treated as
in [AGHH], nevertheless, we sketch the argument not only to make the paper
self-contained, but also in view of next sections where some ideas and formula
of the present proof will be used again.


Consider first the positive part of the continuous spectrum. The condi-
tion (2.6) clearly determines bands with one endpoint at n2, n ∈ N, where the
sign of α decides whether it is the upper or lower one. If α < 0, the pres-
ence of a band in (0,1) depends on |α|. Denoting g(x) := cos xπ + α


4 · sin xπ
x


we want to show that B := {x ∈ (0, 1) : |g(x)| ≤ 1} is either empty or an
interval with zero as its edge. It is obvious that g maps (0, 1) continuously into
(−∞, 1); we will check that g(x0) = −1 implies g′(x0) < 0. We notice first
that the premise implies cos x0π = −1 − α


4 · sin x0π
x0


; taking the square of this


relation we find after simple manipulations that sin x0π = −2
(


α
4x0


+ 4x0
α


)−1


and cos x0π =
(


α
4x0


− 4x0
α


)(
α


4x0
+ 4x0


α


)−1


. Evaluating g′(x0) and substituting
these expressions we get


g′(x0) =
απ


4x0


(
1− sin πx0


πx0


)
< 0 .
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These properties together with the continuity of g imply that if B is not empty,
then it is an interval with the left endpoint zero. It is also clear that B is non-
empty iff g(0+) > −1 which gives the condition α > −8/π. On the contrary, B
is empty if α < −8/π and the borderline case α = −8/π was mentioned above.


Let us next focus on the negative part using g̃(x) := cosh xπ+ α
4 · sinh xπ


x and
ask about B̃ := {x ∈ (0,∞) : |g̃(x)| ≤ 1}. It is easy to check that g̃(x) = −1
iff tanh xπ


2 = 4x
|α| and g̃(x) = 1 iff coth xπ


2 = 4x
|α| . It implies that there is exactly


one x1 such that g̃(x1) = 1, and that the equation g̃(x) = −1 has one solution
x−1 in the case α < −8/π and no solution in the case α ∈ [−8/π, 0). Since
obviously 0 < x−1 < x1 and g̃(0+) := limx→0+ g̃(x) = 1+απ/4, we infer that B̃
is a bounded interval. Its closure contains zero iff α ∈ [−8/π, 0) because then
g̃(0+) ∈ [−1, 1). In such a case the lowest spectral band is the closure of B ∪ B̃,
otherwise it is the closure of B̃ only.


3 The perturbed system


3.1 General considerations


Let us suppose now that the straight chain of the previous section suffers a
bending perturbation as shown in Figure 2. We call the perturbed graph Γϑ;
it differs from Γ0 by replacing the arc lengths π of a fixed ring, conventionally
numbered as zero, by π ± ϑ. The bending angle ϑ is supposed to take values
from (0, π), regardless of the fact that for ϑ ≥ 2π/3 it is not possible to consider
Γϑ as embedded in the plane as sketched — one can certainly realize such a
“bending” in an alternative way, for instance, by deforming the selected ring.


The state Hilbert space of the perturbed system is L2(Γϑ) and the Hamil-
tonian is Hϑ obtained by a natural modification of H0; our aim is to determine
its spectrum. Since Γϑ has the mirror symmetry w.r.t. the axis of the zeroth
ring passing through the points x = 1


2 (π ± ϑ), the operator Hϑ can be reduced
by parity subspaces into a direct sum of an even part, H+, and odd one, H−;
for the sake of simplicity we drop mostly the subscript ϑ in the following.


All the components of the wavefunction at energy k2 are linear combinations
of e±ikx. As we have said we use the ring labelling with zero corresponding to
the perturbed one; the mirror symmetry allows us to study a half of the system
only, say, with non-negative indices. The wavefunction on each ring will be a
pair of functions ψj and ϕj , where j is the circle index, ψj corresponds to the
upper semicircle and ϕj to the lower one,


ψj(x) = C+
j eikx + C−j e−ikx, x ∈ [0, π] ,


ϕj(x) = D+
j eikx + D−


j e−ikx, x ∈ [0, π]
(3.1)


for j ∈ N. The situation is different in the case j = 0, where the variables run
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over modified intervals,


ψ0(x) = C+
0 eikx + C−0 e−ikx, x ∈


[
π − ϑ


2
, π


]


ϕ0(x) = D+
0 eikx + D−


0 e−ikx, x ∈
[
π + ϑ


2
, π


] (3.2)


There are δ-couplings with the parameter α in the points of contact, i.e.


ψj(0) = ϕj(0) ψj(π) = ϕj(π) (3.3)


and


ψj(0) = ψj−1(π) (3.4)
ψ′j(0) + ϕ′j(0)− ψ′j−1(π)− ϕ′j−1(π) = α · ψj(0) (3.5)


Substituting (3.1) into (3.3) we obtain


C+
j · sin kπ = D+


j · sin kπ and C−j · sin kπ = D−
j · sin kπ ,


thus for k /∈ N0 we have C+
j = D+


j and C−j = D−
j . The case k ∈ N0 can be


treated in analogy analogously with the “straight” case: it is easy to see that
squares of integers are infinitely degenerate eigenvalues and the eigenfunctions
can be supported by any ring, now with the exception of the zeroth one. From
now on, we suppose k /∈ N0.


Using the coupling conditions (3.4) and (3.5), we arrive at a “transfer ma-
trix” relation between coefficients of the neighbouring rings,


(
C+


j


C−j


)
=


( (
1 + α


4ik


)
eikπ α


4ik e−ikπ


− α
4ik eikπ


(
1− α


4ik


)
e−ikπ


)


︸ ︷︷ ︸
M


·
(


C+
j−1


C−j−1


)
, (3.6)


valid for all j ≥ 2, which yields
(


C+
j


C−j


)
= M j−1 ·


(
C+


1


C−1


)
. (3.7)


It is clear that the asymptotical behavior of the norms of (C+
j , C−j )T is de-


termined by spectral properties of the matrix M . Specifically, let (C+
1 , C−1 )T


be an eigenvector of M corresponding to an eigenvalue µ, then |µ| < 1
(|µ| > 1, |µ| = 1) means that


∥∥(C+
j , C−j )T


∥∥ decays exponentially with respect
to j (respectively, it is exponentially growing, or independent of j).


The wavefunction components on the j-th ring for both H± (as well as on
the (-j)-th by the mirror symmetry) are determined by C+


j and C−j , and thus
by (C+


1 , C−1 )T by virtue of (3.7). If (C+
1 , C−1 )T has a non-vanishing component


related to an eigenvalue of M of modulus larger than one, it determines neither
an eigenfunction nor a generalized eigenfunction of H±. On the other hand,
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if (C+
1 , C−1 )T is an eigenvector, or a linear combination of eigenvectors, of the


matrix M with modulus less than one (respectively, equal to one), then the
coefficients C±j determine an eigenfunction (respectively, a generalized eigen-
function) and the corresponding energy E belongs to the point (respectively,
continuous) spectrum of the operator H±. To perform the spectral analysis of
M , we employ its characteristic polynomial at energy k2,


λ2 − 2λ
(
cos kπ +


α


4k
sin kπ


)
+ 1 , (3.8)


which we have encountered already in the relation (2.5); it shows that M has
an eigenvalue of modulus less than one iff the discriminant of (3.8) is positive,
i.e. ∣∣∣cos kπ +


α


4k
sin kπ


∣∣∣ > 1 ,


and a pair of complex conjugated eigenvalues of modulus one iff the above
quantity is ≤ 1. In the former case the eigenvalues of M are given by


λ 1
2


= cos kπ +
α


4k
sin kπ ±


√(
cos kπ +


α


4k
sin kπ


)2


− 1 ,


satisfying λ2 = λ−1
1 , hence λ2 < 1 holds if cos kπ + α


4k sin kπ > 1 and λ1 < 1 if
this quantity is < −1. Moreover, the corresponding eigenvectors of M are


v1,2 =
( α


4ik e−ikπ


λ1,2 −
(
1 + α


4ik


)
eikπ


)
.


Remark 3.1. Comparing to (2.6) we see that the perturbation does not affect
the spectral bands, and also, that new eigenvalues coming from the perturbation
can appear only in the gaps. These facts are obvious, of course, from general
principles. Using the natural identification of L2(Γ0) and L2(Γϑ) we see that H0


and Hϑ differ by a shift of the point where a boundary condition is applied, hence
their resolvent difference has a finite rank (in fact, rank two). Consequently,
their essential spectra coincide and each spectral gap of H0 contains at most
two eigenvalues of Hϑ, see [We, Sec. 8.3, Cor. 1].


3.2 Spectrum of H+


The operator H+ corresponds to the wave functions even w.r.t. the symmetry
axis, hence we may consider a half of the graph with the Neumann conditions
at the boundary (i.e., the points A, B in Figure 2),


ψ′0


(
π − ϑ


2


)
= 0 , ϕ′0


(
π + ϑ


2


)
= 0 .


At the contact point of the zeroth and the first ring (denoted by C) there is a
δ-coupling with the parameter α,


ψ0(π) = ϕ0(π) = ψ1(0) (3.9)
ψ′1(0) + ϕ′1(0)− ψ′0(π)− ϕ′0(π) = α · ψ0(π) (3.10)
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Substituting to these conditions from (3.1) and (3.2) and using the equality
ϕ′1(0) = ψ′1(0), we obtain (C+


1 , C−1 )T up to a multiplicative constant,


(
C+


1


C−1


)
=






cos kπ+cos kϑ
sin kπ + i


(
1− α(cos kπ+cos kϑ)


2k sin kπ


)


cos kπ+cos kϑ
sin kπ − i


(
1− α(cos kπ+cos kϑ)


2k sin kπ


)

 .


The right-hand side is well defined except for sin kπ = 0, but this case has been
already excluded from our considerations; we know that for k ∈ N the number
k2 is an eigenvalue of infinite multiplicity.


Following the above discussion k2 ∈ σp(H+) requires that the vector (C+
1 , C−1 )T


is an eigenvector of M corresponding to the eigenvalue λ of the modulus less
than one. Using the above explicit form of the eigenvectors and solving the
equation


∣∣∣∣∣∣


cos kπ+cos kϑ
sin kπ + i


(
1− α(cos kπ+cos kϑ)


2k sin kπ


)
α


4ik e−ikπ


cos kπ+cos kϑ
sin kπ − i


(
1− α(cos kπ+cos kϑ)


2k sin kπ


)
λ− (


1 + α
4ik


)
eikπ


∣∣∣∣∣∣
= 0


we arrive at the condition


(cos kϑ + cos kπ) ·
(


α


4k
sin kπ ±


√(
cos kπ +


α


4k
sin kπ


)2


− 1


)
= sin2 kπ ,


with the sign given by the sign of cos kπ+ α
4k sin kπ. Since sin kπ 6= 0, the second


factor at the lhs is also nonzero and the last equation is equivalent to


cos kϑ = − cos kπ +
sin2 kπ


α
4k sin kπ ±


√(
cos kπ + α


4k sin kπ
)2 − 1


; (3.11)


for the sake of brevity we denote the expression at the rhs by f(k).
The relation (3.11) is our main tool to analyze the discrete spectrum and


we are going to discuss now its solutions. We start with an auxiliary result
noting that, as a consequence of Theorem 2.4, the set of positive k for which
the inequality | cos kπ + α


4k sin kπ| ≥ 1 is satisfied is an infinite disjoint union
of closed intervals. We denote them In with n ∈ N and recall that n ∈ In. If
α > 0 we denote by I0 the interval with the edge at zero corresponding to the
non-negative part of the lowest spectral gap of H0.


Proposition 3.2. The function f introduced above maps each In\{n} into the
interval (−1, 1) ∪ {(−1)n}. Moreover, f(x) = (−1)n holds for x ∈ In\{n} iff
| cosxπ + α


4x sin xπ| = 1, and limx∈In,x→n f(x) = (−1)n+1.


Proof. According to (3.11), the function f is continuous in each interval In\{n},
thus it maps the interval In\{n} again to an interval. The claim then follows
from the following easy observations. First, f(x) = (−1)n iff x is the non-
integer boundary point of In (if α < 0 and |α| is sufficiently large, the left edge
of I1 is moved to zero and one checks that limx→0 f(x) = −1). Furthermore,
for all x ∈ In\{n} we have f(x) 6= (−1)n−1, and finally, limx→n,x∈In f(x) =
(−1)n−1.
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Proposition 3.2 guarantees the existence of at least one solution of (3.11) in
each interval In\{n}, except for the case when ϑ satisfies cos nϑ = (−1)n−1, or
equivalently, except for the angles ϑ = n+1−2`


n π, ` = 1, . . . ,
[


n+1
2


]
. Later we


will show that for these angles there is indeed no solution of the equation (3.11)
in In\{n}, while for the other angles in (0, π) there is exactly one.


In a similar way one can proceed with the negative part of the spectrum. If
k = iκ where κ > 0, the condition (3.11) acquires the form


cosh κϑ = − cosh κπ − sinh2 κπ


α
4κ sinh κπ ±


√(
cosh κπ + α


4κ sinhκπ
)2 − 1


, (3.12)


where the upper sign in the denominator refers to cosh κπ + α
4κ sinhκπ > 1, and


the lower one to cosh κπ + α
4κ sinhκπ < −1. Let us denote the rhs of(3.12) by


f̃(κ), then we have the following counterpart to Proposition 3.2.


Proposition 3.3. If α ≥ 0, then f̃(κ) < − cosh κϑ holds for all κ > 0 and
ϑ ∈ (0, π). On the other hand, for α < 0 we have


If limκ→0


(
cosh κπ + α


4κ sinhκπ
)


< −1, then there is a right neighbourhood of
zero where f̃(x) = −1 − C(α)x2 + o(x2) with the constant explicitly given by


C(α) :=
(


1
2 +


(
απ
4 +


√(
απ
4


)2 + απ
2


)−1
)


π2. Moreover, f̃(κ) = −1 holds for


κ > 0 iff cosh κπ + α
4κ sinhκπ = −1.


The interval
{
κ : cosh κπ + α


4κ sinhκπ ≥ 1 ∧ κ · tanh κπ < −α/2
}


is mapped by
the function f̃ onto [1, +∞).


If κ tanh κπ > −α/2, then f̃(κ) < − cosh κϑ holds for all κ > 0 and ϑ ∈ (0, π).


Proof. The statement for α ≥ 0 is obvious, assume further that α < 0. The first
claim follows from the Taylor expansions of the functions involved in f̃ , the last
uses the equality cosh2 κ − sinh2 κ = 1. The set determined by the conditions
cosh κπ + α


4κ sinhκπ ≥ 1 and κ · tanh κπ < −α/2 is obviously an interval and
f̃ is continuous on it. Since coshκπ + α


4κ sinhκπ = 1 implies f̃(κ) = 1 and
for κ0 · tanh κ0π = −α/2 it holds limx→κ−0


f̃ = +∞, the second claim follows
immediately. Finally, if κ · tanh κπ > −α/2, then coshκπ + α


4κ sinhκπ > 1


and α
4κ sinhκπ ±


√(
cosh κπ + α


4κ sinhκπ
)2 − 1 > 0, thus f̃(κ) < − cosh κπ <


− cosh κϑ holds for all κ > 0 and ϑ ∈ (0, π).


In particular, the first claim concerning α < 0 together with the continuity
of f̃ implies that if the set


{
κ : cosh κπ + α


4κ sinhκπ ≥ 1
}


is nonempty (and
thus an interval), the graph of f̃ on this set lies below the value -1 touching it
exactly at the endpoints of this interval.


Corollary 3.4. If α ≥ 0, then H+ has no negative eigenvalues. On the other
hand, for α < 0 the operator H+ has at least one negative eigenvalue which
lies under the lowest spectral band and above the number −κ2


0, where κ0 is the
(unique) solution of κ · tanh κπ = −α/2.
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Proof. The eigenvalues are squares of solutions to the equation cosh κϑ = f̃(κ).
The absence of negative eigenvalues for α ≥ 0 follows directly from the first
claim in Proposition 3.3. The same proposition implies that there is exactly
one interval mapped by f̃ onto [1,+∞), hence there is at least one solution of
cosh κϑ = f̃(κ) in this interval.


3.3 Spectrum of H− and a summary


The operator H− which corresponds to the odd part of the wavefunction can
be treated in an analogous way. The boundary conditions on the zero circle are
now Dirichlet ones,


ψ0


(
π − ϑ


2


)
= 0 , ϕ0


(
π + ϑ


2


)
= 0 .


One can easily find the spectral condition,


− cos kϑ = − cos kπ +
sin2 kπ


α
4k sin kπ ±


√(
cos kπ + α


4k sin kπ
)2 − 1


; (3.13)


in comparison with (3.11) corresponding to H+ there is a difference in the sign
of the cosine on the left-hand side. Since we already know the behaviour of the
right-hand side, cf. Proposition 3.2, we can infer, similarly as for H+, that there
is at least one solution of (3.13) in each interval In except for the case when
− cosnϑ = (−1)n−1, i.e. when ϑ = n−2`


n π, ` = 1, . . . ,
[


n
2


]
.


Following the analogy with the symmetric case further we can employ Propo-
sition 3.2 to conclude that in each interval In there is at least one solution of
− cos kϑ = f(κ). The only exception is the interval I1 for α < 0: for |α| suffi-
ciently small it holds − cos kϑ < f(k) in the whole I1; we will comment on this
situation in more detail in the next section devoted to resonances. The negative
part of the point spectrum of H− is determined by the condition


− cosh κϑ = − cosh κπ − sinh2 κπ


α
4κ sinhκπ ±


√(
cosh κπ + α


4κ sinhκπ
)2 − 1


, (3.14)


where we set k = iκ for κ ∈ R+. It follows from Proposition 3.3 that (3.14) has
a solution for negative α only, and it happens if (i) the positive spectral gap
touching zero extends to negative values, and (ii) the bending angle ϑ is small
enough. In other words, if there is a number κ0 solving cosh κπ + α


4κ sinhκπ =
−1, the energy plot w.r.t. ϑ obtained as the the implicit solutions of (3.14) is a
curve departing from (ϑ,E) = (0,−κ2


0); in the next section we will show that it
is analytic and following it one arrives at the point (ϑ,E) = (π, 1).


Let us summarize the discussion of the discrete spectrum. We have demon-
strated that for each of the operators H± there generally arises at least one
eigenvalue in every spectral gap closure. We have also explained that such an
eigenvalue can lapse into a band edge equal to n2, n ∈ N, and thus be in fact
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absent. The eigenvalues of H+ and H− may also coincide, in this case they
become a single eigenvalue of multiplicity two. One can check directly that it
happens only if


k · tan kπ =
α


2
.


The study of the resonances, performed in the next section, will help us to
find more precise results concerning the number of eigenvalues. We will show
that there are at most two of them in each spectral gap. However, to make the
explanation clearer, we refer already at this moment to the Figs. 4–6 illustrating
the numerical solution of the spectral condition for different signs of the coupling
constant, as well as the resonances of the system.


4 Resonances and analyticity


Proceeding further with the discussion we want to learn more about the angle
dependence of the perturbation effects. First we note, however, that the added
eigenvalues are not the only consequence of the chain bending. One has to
investigate all solutions of (4.1), not only the real ones which correspond to
σp(H+), but also complex solutions describing resonances2 of H±.


Proposition 4.1. Given a non-integer k > 0, the conditions (3.11) and (3.12)
for H±, respectively, are equivalent to


α


2k
(1±cos kϑ cos kπ)(± cos kϑ+cos kπ) = sin kπ · (1±2 cos kϑ cos kπ+cos2 kϑ) .


(4.1)


Proof. First we note that changing the square root sign in denominator of (3.11)
does not give rise to a real solution. Indeed, if the sign of the right-hand side
of (3.11) is changed, the obtained expression is of modulus greater than one,
hence it cannot be equal to cos kϑ. This further implies that one need not
specify the sign in the denominator of (3.11) by the sign of cos kπ + α


4k sin kπ,
and therefore we can express the square root and subsequently square both sides
of the obtained relation. After simple manipulations, we arrive at (4.1); note
that for all k ∈ R+\N, the denominator of (3.11) is nonzero. The equivalence
of (3.11) and (4.1) for k ∈ C\N is obvious for (4.1) considered with the complex
square root, i.e. without restrictions on the sign in the denominator. The
argument for H− is analogous.


Now we are ready to state and prove the analyticity properties. Since the
cases of different symmetries are almost the same, apart of the position of the
points where the analyticity fails, we will mention the operator H+ only.


Proposition 4.2. Curves given by the implicit equation (4.1) for H+ are
analytic everywhere except at (ϑ, k) = (n+1−2`


n π, n), where n ∈ N, ` ∈ N0,


2The notion of resonance in the chain-graph system can be introduced in different, mutually
equivalent, ways similarly as in [EL07].
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` ≤ [
n+1


2


]
. Moreover, the real solution in the n-th spectral gap is given by a


function ϑ 7→ k which is analytic, except at the points n+1−2`
n π.


Proof. First we will demonstrate the analyticity of the curves ϑ 7→ k ∈ C. This
is easier done using equation (3.11); we have to prove that at each point (ϑ, k)
solving the equation G(ϑ, k) = 0 with


G(ϑ, k) = − cos kϑ− cos kπ +
sin2 kπ


α
4k sin kπ ±


√(
cos kπ + α


4k sin kπ
)2 − 1


the derivative ∂G
∂ϑ is nonzero. We have ∂G


∂ϑ = k · sin(kϑ) = 0 iff sin kϑ = 0,
i.e. kϑ = mπ, m ∈ Z. This implies G(ϑ, k) = (−1)m+1 − cos kπ, and since
G(ϑ, k) = 0 should be satisfied, k is an integer of the same parity as m + 1. For
k ∈ N, G is not defined and we use (4.1); it is easy to check that any solution
(ϑ, k) of (4.1) with k ∈ N corresponds to


ϑ =
k + 1− 2`


k
π , ` ∈ N, ` ≤


[
k + 1


2


]
.


To prove that real solutions are analytic functions, it suffices to check that,
except at the points (ϕ, k) = (n+1−2`


n π, n), for each (ϑ, k) solving F (ϑ, k) = 0
with


F (ϑ, k) := α(1 + cos kϑ cos kπ)(cos kϑ + cos kπ)
−2k sin kπ · (1 + 2 cos kϑ cos kπ + cos2 kϑ)


it holds ∂F
∂k 6= 0. Computing the derivative one obtains an expression which can


be cast into the form


2 sin2 kπ · (1 + 2 cos kϑ cos kπ + cos2 kϑ)2+


+ α · [π(cos kϑ + cos kπ)4 + sin2 kπ · (cos kϑ + cos kπ)2+


+ϑ sin2 kπ sin2 kϑ(1 + cos k(π − ϑ)) + (π − ϑ) sin2 kπ sin2 kϑ(1 + cos kϑ cos kπ)
]


.


This is always non-negative, and vanishes iff


(cos kπ = 1 ∧ cos kϑ = −1) ∨ (cos kπ = −1 ∧ cos kϑ = 1) ,


i.e. iff k ∈ Z and kπ = kϑ+(2`−1)π, ` ∈ Z, proving this the sought claim.


The resonance dependence on the bending angle ϑ is again visualized on
Figs. 4–6 where the real parts are shown; the imaginary parts corresponding to
the situation of Fig. 4 are plotted on Fig. 7 below.


5 More on the angle dependence


The above results raise naturally the question about the behaviour of the curves
at the singular points [ϑ, k] = [n+1−2`


n π, n] with n ∈ N, ` ∈ N, ` ≤ [
n+1


2


]
, where
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they touch the band edges and where the eigenvalues and resonances may cross.
Now we are going to examine the asymptotic expansion at these points and to
look how many curves “stem” from them.


Consider again first the part H+. Let k0 ∈ N and ϑ0 := n+1−2`
n π for some


` ∈ N, and put
k := k0 + ε, ϑ := ϑ0 + δ .


After substituting into (4.1) with the plus signs and employing Taylor expan-
sions of the cos and sin functions we arrive at the relation


α


4
(
k4
0δ


4 + 4k3
0ϑ0δ


3ε + 6k2
0ϑ


2
0δ


2ε2
)− k0π


3ε3 = O(δε3) +O(ε4) +O(δ3ε) .


Using the theory of algebroidal functions and Newton polygon, we find that in
the neighbourhood of (ϑ0, k0), the asymptotical behaviour of solutions is given
by the terms of the order δ4 and ε3. In other words, up to higher-order term
we have α


4 k4
0δ


4 = k0π
3ε3, and therefore


(
επ


k0


)3


=
α


4
δ4 .


Note that α ∈ R, k0 > 0, δ ∈ R, i.e. only ε may be complex here, hence the last
equation admits exactly three types of solutions:


• ε = 3
√


α
4


k0
π δ4/3 (a real solution corresponding to the spectrum)


• ε = e±i 23 π 3
√


α
4


k0
π δ4/3 (imaginary solutions corresponding to resonances)


Let us remark that since (4.1) has a symmetry with respect to the complex
conjugation of k, the imaginary solution come in pairs. This is why we find
pairs of curves outside from the real plane, conventionally just one of them is
associated with a resonance.


Returning to properties of eigenvalues in a fixed spectral gap, we have so far
demonstrated that each real curve describing a solution of (4.1) is a graph of
a function analytic except at the singular points, cf. Proposition 4.2. Further-
more, at each singular point only one pair of branches meets (with respect to
the variable ϑ); it follows that there is exactly one solution in each spectral gap
closure. Assuming for definiteness α > 0 we can say that the complete graph of
solutions of (4.1) has the following structure:


• It consists of curves that are analytic and not intersecting, except at the
points (ϑ, k) = (n+1−2`


n π, n), where n ∈ N, ` ∈ N, ` ≤ [
n+1


2


]
; these are


the only ramification points.


• The real curves branches join the points (n+1−2`
n π, n) and (n+1−2`−2


n π, n),
i.e. the consecutive points on the lines k = n ∈ N.


• The curves branches outside the plane =(k) = 0 join the points ( `
n−`π, n− `)


and ( `+1
n−`−1π, n−`−1), i.e. the consecutive points laying on the hyperbolas


(ϑ + π) · k = n · π, k ∈ R, n ∈ N, n odd, cf. Fig. 7.
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Furthermore, we have seen that the behaviour of eigenvalues in vicinity of the
singular points is the following,


k ≈ k0 + 3


√
α


4
k0


π
|ϑ− ϑ0|4/3 ,


and this is valid for in the particular case ϑ0 = 0, k0 ∈ N, as well provided the
band edge k0 is odd.


However, H+ has an eigenvalue near ϑ0 = 0 also in the gaps adjacent to
even numbers. In these cases the curve starts at the point (0, k0) for k0 being
the solution of | cos kπ + α


4k sin kπ| = 1 in (n, n + 1), n even. The asymptotic
behaviour of k for ϑ close to zero is then different, namely:


Theorem 5.1. Suppose that n ∈ N is even and k0 is as described above, i.e.
k2
0 is the right endpoint of the spectral gap adjacent to n2. Then the behaviour


of the solution of (4.1) in the neighbourhood of (0, k0) is given by


k = k0 − Ck0,α · ϑ4 +O(ϑ5) ,


where Ck0,α := k2
0


8π ·
(


α
4


)3 (k0π + sin k0π)−1.


Proof. The argument is straightforward, it suffices to use Taylor expansions
in (4.1).


The analogous asymptotic behaviour applies to k2, the energy distance of
the eigenvalue from the band edge is again proportional to ϑ4 in the leading
order. Notice that this is true in any spectral gap, but of course, the error term
depends in general on the gap index.


We refrain from discussing in detail the odd part H− of the Hamiltonian.
The corresponding results are practically the same, the only difference is that
the roles of the even and odd gaps are interchanged.


Most of what we have discussed above modifies easily to the case of attractive
coupling with the obvious changes: for α < 0 the spectral gaps lay now below
the numbers n2, n ∈ N. Of particular interest is the spectral gap adjacent to
the value one, because with the increase of |α| its lower edge moves towards
zero and may become negative for |α| large enough. The even part H+ has
similar properties as before: the eigenvalue curve goes from (0, 1) to (π, k0),
where k0 ∈ (0, 1), and there two complex conjugated branches with <(k) > 0
one of which describes a resonance.


However, the odd part H− requires a more detailed examination. We know
that there is an eigenvalue curve going to the point [π, 1]. If the entire spectral
gap is above zero, this curve joins it with [0, k2


0], where k2
0 is the lower edge of


the gap. On the other hand, if |α| is large enough the eigenvalue curve starts
from [0,−κ0], where −κ2


0 is again the lower gap edge; to show that even in this
case the curve joins the points [0,−κ0] and [π, 1] analytically, it suffices to prove
that the solutions of (4.1) with the negative sign preserves analyticity when it
crosses the line k2 = 0.
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The spectral condition (3.13) for H− is valid for k 6= 0. If we put all terms
to the left-hand side denoting it as G−(ϑ, k), i.e.


G−(ϑ, k) = − cos kϑ + cos kπ − sin2 kπ


α
4k sin kπ ±


√(
cos kπ + α


4k sin kπ
)2 − 1


with the sign in the denominator properly chosen, we have limk→0 G−(ϑ, k) k−l =
0 for l = 0, 1 while for l = 2 the limit is real-valued and non-vanishing. It follows
that to find the behaviour at the crossing point one has to examine the function
given implicitly by G̃(ϑ, k) = 0, where


G̃(ϑ, k) =


{ G−(ϑ,k)
k2 for k 6= 0


limk→0
G−(ϑ,k)


k2 for k = 0


This is continuous and it can be easily checked that it has continuous partial
derivatives with respect to ϑ and k in the neighbourhood of any solution of
G̃(ϑ, k) = 0 with k = 0. In particular, the derivative w.r.t. ϑ equals k−1 sin kϑ
for all k 6= 0, thus at a point [ϑ0, 0] solving G̃(ϑ, k) = 0 we have


∂G̃(ϑ0, 0)
∂ϑ


= lim
k→0


sin kϑ0


k
= ϑ0 6= 0 ,


in other words, the solution of G̃(ϑ, k) = 0 is analytic also at the point [ϑ0, 0].
Needless to say, this claim which he have checked directly here can be obtained
also by means of the analytic perturbation theory [Ka66].


Finally, note that by Proposition 4.2 the solutions of (4.1) with both the
positive and negative signs are analytic in the whole open halfplane <(k) < 0,
and consequently, no resonances curves can be found there.


6 Concluding remarks


We have reasons to believe that the spectral and resonance properties due geo-
metric perturbations of the considered type hold much more generally. In this
paper we have decided, however, to treat the present simple example because it
allowed us to find a rather explicit solution of the problem.


The problem can be viewed from different perspectives. As an alternative
one may interpret the chain graph as a decoration of a simple array-type graph,
or if you wish, the Kronig-Penney model, in the sense of [Ku05]. The results
of the paper then say that a local modification of the decoration can produce a
discrete spectrum in the gaps and the other effects discussed here.


It is also interesting to draw a parallel between the quantum graphs discussed
here and quantum waveguides, i.e. Laplacians in tubular domains. Although
the nature of the the two system is very different, they nevertheless share some
properties, in particular, the existence of bound states below the essential spec-
trum threshold due to a local bend. This effect is well studied for Dirichlet
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quantum waveguides where it is known for a gentle bend the binding energy is
proportional to the fourth power of the bending angle [DE95], i.e. it has exactly
the same behaviour as described by Theorem 5.1.


Bent quantum waveguides with mixed (or Robin) boundary conditions were
also studied [Ji06] and it was shown that the effect of binding through bending is
present for any repulsive boundary. In our case an eigenvalue below the lowest
band exists whenever α 6= 0 which inspires another look at the waveguide case.
It appears that the argument of [Ji06] works again and proves the existence
of curvature-induced bound states in all cases except the Neumann boundary
which is an analogue of the case α = 0 here.
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Figure 4: The spectrum of H+ as a function of ϑ for repulsive coupling, α = 3.
The shaded regions are spectral bands, the dashed lines show real parts of the
resonance pole positions discussed in Sec. 4.
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Figure 5: The spectrum of H− in the same setting as in Fig. 4
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Figure 6: The spectrum of H as a function of ϑ for attractive coupling, α = −3.
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Figure 7: The imaginary parts of resonance pole positions in the same setting
as in the previous picture; for the sake of lucidity only the curves corresponding
to H+ are plotted.
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