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Abstract


We introduce a model for charge and heat transport based on the Landauer-Büttiker
scattering approach. The system consists of a chain of N quantum dots, each of them
being coupled to a particle reservoir. Additionally, the left and right ends of the chain
are coupled to two particle reservoirs. All these reservoirs are independent and can be
described by any of the standard physical distributions: Maxwell-Boltzmann, Fermi-
Dirac and Bose-Einstein. In the linear response regime, and under some assumptions,
we first describe the general transport properties of the system. Then we impose the
self-consistency condition, i.e. we fix the boundary values (TL, µL) and (TR, µR), and
adjust the parameters (Ti, µi), for i = 1, . . . , N , so that the net electric and heat cur-
rents through all the intermediate reservoirs vanish. This leads to expressions for the
temperature and chemical potential profiles along the system, which turn out to be
independent of the distribution describing the reservoirs. We also determine the elec-
tric and heat currents flowing through the system and present some numerical results,
using random matrix theory, showing that the statistical average currents are governed
by Ohm and Fourier laws.
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Keywords Quantum transport; Quantum dots; Landauer-Büttiker scattering approach;
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1 Introduction
The study of transport properties of systems out of equilibrium is a fascinating subject in
theoretical physics. In particular, various models have been developed to find out what
are the underlying microscopic mechanisms giving rise to macroscopic behaviours such as
Ohm and Fourier laws [1, 2].
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One interesting class of models that has been introduced with this purpose is related to
the Lorentz gas [3–8]. In particular, a classical model for particle and energy transport has
recently been investigated by Eckmann and Young [9]. In this EY-model, the system is a
linear chain of chaotic cells, each one containing a fixed freely rotating disc at its centre
(see Figure 1). Both ends of the chain are coupled to classical particle reservoirs assumed
to be at thermal equilibrium at temperatures TL and TR, respectively. Particles are injected
into the system from these reservoirs at characteristic rates γL and γR, respectively. Once
in the system, the non-interacting particles move freely and collide elastically with the
boundaries of the cells as well as with the discs. The particles can also leave the system
through these reservoirs.


Note that in this model the discs play the role of energy tanks, allowing the redistribu-
tion of energy among the particles in a given cell and thus permitting the system to reach
at large times a stationary state satisfying local thermal equilibrium (in the linear regime).
As a consequence, this model admits a well-defined notion of local temperature.


One of the main results states that, under some assumptions, the particle and energy
currents through the system are governed by Fick and Fourier laws.


PSfragreplacements
TL


γL γR


TR


(1) (2) (N )


Figure 1: The classical EY-model composed of N cells.


In the present paper, we shall construct a similar type of model using the Landauer-
Büttiker scattering approach [10–14]. This will permit, in particular, to establish an effec-
tive quantum version of the EY-model.


Basically, in the scattering approach to charge and heat transport, one expresses the
electric and heat currents through a conductor in terms of the probability that a particle can
transmit through it. Therefore, starting from the EY-model, we shall make the following
crucial modifications:


(1) The main modification concerns the scattering version of the disc. There are two
features of the EY-model that should be pointed out: (i) The exact position of the
disc within a given cell is not important, so one may consider the cell represented in
Figure 2 (left). (ii) Once the system has reached a stationary state (close to equilib-
rium), the discs are at equilibrium and the net particle and energy currents into the
discs vanish.


Therefore, in the scattering approach, one can obtain an effective description of the
discs as follows1: We model the discs as independent particle reservoirs with char-


1This way of modelling the discs in the scattering approach was suggested to me by M. Büttiker.
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PSfrag replacements RESERVOIR


Figure 2: Left: A possible EY-cell. Right: The corresponding scattering cell.


acteristic temperatures and chemical potentials such that the stationary particle and
heat currents through these reservoirs vanish (see Figures 2 and 3). In this manner,
the particles in a given cell will be in equilibrium with their respective reservoir,
i.e. the system will be in local thermal equilibrium.


Although the discs carry finite amounts of energy, while the reservoirs have infinite
energy, we believe that the transport properties of the system in the stationary state
(assuming there is one) will be similar in both cases.


Usually, the condition of zero net particle and heat currents, between the system and
a reservoir, is referred to as the self-consistency condition [15–20]. In the situation
in which one is only interested in the electric current, the self-consistent reservoirs
correspond to the voltage probes used in mesoscopic physics, originally introduced
to model the inelastic scatterings occuring in a conductor [21–29].


If the couplings between the system and the self-consistent reservoirs are sufficiently
small, then one may interpret the intermediate reservoirs as ideal potentiometers and
thermometers [30, 31].


(2) The transport properties of the cells will be given in terms of N scattering matrices
S(1), . . . , S(N). However, we will work mostly in terms of the scattering matrix S
associated to the global multi-terminal system, which is obtained by composing the
N local scattering matrices together.


(3) In order to have some generality, we will describe the particle reservoirs in terms
of the three standard physical distributions: the classical Maxwell-Boltzmann dis-
tribution and the quantum Fermi-Dirac and Bose-Einstein distributions. We assume
that the particles may carry some charge e, so that we may speak of electric currents
instead of particle currents. Nevertheless, we shall assume, as in the EY-model, that
the particles do not interact with each other.


For obvious reasons, we now call the cells quantum dots. In the EY-model, the outer
boundaries of the cells were chosen such that the system was chaotic. We shall at some
point impose this property by assuming that the quantum dots are classically chaotic.
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PSfrag replacements
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Figure 3: The system made of N quantum dots with self-consistent reservoirs.


The organization of this paper is as follows. In Section 2, we establish the framework of
multi-terminal systems in mesoscopic physics, present our model and outline the strategy
adopted to obtain the desired chain of quantum dots. Starting with Section 3, we will work
in the linear response regime and under the following main assumption: the scattering
matrix S associated to the system does not depend on the energy. As we shall see, this
assumption, which is a good approximation in certain limiting cases, will lead to some
interesting consequences.


More precisely, the main results of this paper are divided into three parts. In Section 3,
we present the general transport properties of the system, and discuss in particular the On-
sager relations and the entropy production. In Section 4, we solve the self-consistency
condition, i.e. we fix the boundary values (TL, µL) and (TR, µR), and adjust the parameters
(Ti, µi), for i = 1, . . . , N , so that the net electric and heat currents through all the interme-
diate reservoirs vanish. This leads to explicit expressions for the temperature and chemical
potential profiles along the system, which turn out to be independent of the nature of the
particles, i.e. independent of the distribution describing the reservoirs. From these profiles,
we work out the electric and heat currents flowing through the system from left to right. In
particular, we discuss Ohm and Fourier laws under the self-consistency condition. Finally,
in Section 5, we present some numerical results, using in particular random matrix theory,
which support the validity of Ohm and Fourier laws in the chain of quantum dots with
self-consistent reservoirs.


Actually, all the results presented in Sections 3 and 4 hold for any energy-independent
scattering matrix S (see Figure 4). It is only in Section 5 that we restrict our attention to
the linear geometry represented in Figure 3.


2 The Model


We consider a chain of N connected quantum dots, where each dot is coupled to a particle
reservoir at temperature Ti and chemical potential µi, with i = 1, . . . , N . Additionally, the
left and right ends of the chain are coupled to particle reservoirs with parameters (TL,µL)
and (TR,µR), respectively (Figure 3). All these reservoirs, which we also call terminals, are
independent and inject particles into the system according to some distribution function.
We assume that they can also absorb particles without changing their state.
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In this paper, we shall consider the following three cases (i ∈ {L,R, 1, . . . , N}):


fMB
i (E) ≡ fMB(E;Ti, µi) = exp


(
−E − µi


kBTi


)
, (2.1)


fFD
i (E) ≡ fFD(E;Ti, µi) =


[
exp


(
E − µi
kBTi


)
+ 1


]−1


, (2.2)


fBE
i (E) ≡ fBE(E;Ti, µi) =


[
exp


(
E − µi
kBTi


)
− 1


]−1


. (2.3)


Here, E ∈ [0,∞) is the energy, kB is Boltzmann’s constant and Ti > 0 is the temperature
of the i-th terminal. For the chemical potentials there is one subtlety: for the Maxwell-
Boltzmann and Fermi-Dirac functions, one has µi ∈ (−∞,∞), while for the Bose-Einstein
function, one has µi ∈ (−∞, 0). Let us emphasise that, for each i, the parameters Ti and
µi are independent of each other.


We consider that the transport properties of the k-th quantum dot are described by a
scattering matrix S(k)(E) at energy E > 0:


S(k)(E) =
(
S


(k)
ij;mn(E)


)
, k ∈ {1, . . . , N} , (2.4)


where i, j denote the three possible entrances of the k-th dot and the indices m,n denote
their corresponding channels. In Section 5, we shall use these scattering matrices to build
the scattering matrix S associated to the global system made of N quantum dots. For the
present, let us assume that we are given the scattering matrix of the global system:


S(E) = (Sij;mn(E)) , (2.5)


where i, j ∈ {L,R, 1, . . . , N} and for each couple (i, j) the indices m ∈ {1, . . . ,Mi}
and n ∈ {1, . . . ,Mj} number the channels in terminal i and j, respectively. Therefore,
the matrix element Sij;mn(E) is the probability amplitude that a particle with energy E
incident in channel n in terminal j is transmitted into channel m in terminal i.


Being given S(E), one can define the total transmission probability tij(E) that a parti-
cle with energy E > 0 goes from terminal j to terminal i [32]:


tij(E) =


Mi∑


m=1


Mj∑


n=1


|Sij;mn(E)|2 . (2.6)


Throughout this paper, we always assume that the following holds.


Assumption A1. For each E > 0, the complex matrix S(E) is unitary.


On the other hand, we do not assume the scattering matrix S(E) to be symmetric.
Using the unitarity of S(E) one easily obtains the following results:


∑


i


tij(E) = Mj , ∀j and
∑


j


tij(E) = Mi , ∀i . (2.7)


Remark 2.1. The sums appearing in (2.7) are over the set {L,R, 1, . . . , N} of all terminals.
Unless stated, in what follows every sum will be understood over this set.
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2.1 The Currents
In this paper, we shall always assume that the following holds.


Assumption A2. (i) The particles do not interact with each other.


(ii) The system admits a unique stationary state (out of equilibrium).


Under these assumptions, one can derive for any of the distributions (2.1)–(2.3) the
expressions for the average electric currents in a multi-terminal system [14, 26, 33, 34].
One finds


Ii =
e


h


∑


j


∫ ∞


0


[tji(E)fi(E)− tij(E)fj(E)] dE , (2.8)


where e > 0 is the charge carried by the particles and h is Planck’s constant.
The expression (2.8) can be interpreted as follows: tji(E)fi(E) is the average num-


ber of particles with energy E that are transmitted from terminal i to terminal j, and
tij(E)fj(E) is the same but from terminal j to terminal i. Therefore, Ii is the net elec-
tric current through terminal i, counted positively from the terminal to the system.


Remark 2.2. To describe the transport of neutral particles (such as neutrons or phonons), it
suffices to set e = 1 in (2.8) and one will obtain the particle current.


It turns out that most relations that we shall encounter will have the same form in the
three considered cases (an example being given by the expression (2.8)). Therefore, from
now on, all relations not wearing the superscript MB, FD or BE will be assumed to hold in
all three cases.


We shall also obtain some expressions which do not depend at all on the distribution
function describing the reservoirs. In order to emphasise the fact that such relations do not
depend on the nature of the particles, we shall say that they are universal. We hope the
reader will not be confused with the notion of universality used to refer to properties that
are model independent.


Under the Assumption A2, one can also derive the expression for the (average) heat
current in terminal i [33, 35]. Basically, the idea is to write the particle current, which is
given by (2.8) with e = 1, as well as the energy current, which is also given by (2.8) with
e = 1 but with an extra E in the integrand, and then to invoke the first law of thermody-
namics δQi = dEi − µidNi. One finds


Ji =
1


h


∑


j


∫ ∞


0


[tji(E)fi(E)− tij(E)fj(E)] (E − µi)dE . (2.9)


Remark 2.3. As we shall see in the linear response analysis, if one considers δµi/e and
δTi/T as the thermodynamic forces, then Ii and Ji turn out to be the right currents to
obtain the Onsager relations.


Although the expressions (2.8)–(2.9) for the electric and heat currents have a direct
physical interpretation in terms of tij(E), we prefer to work in terms of the quantities


Γij(E) = Miδij − tij(E) , (2.10)


where δij denotes the Kronecker delta.
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For this, we use the relations (2.7) to rewrite the integrand in (2.8) as follows:
∑


j


[fi(E)tji(E)− fj(E)tij(E)] = fi(E)Mi −
∑


j


fj(E)tij(E)


=
∑


j


fj(E) (Miδij − tij(E))︸ ︷︷ ︸
= Γij(E)


.


Hence, one can rewrite the currents in the following form (i ∈ {L,R, 1, . . . , N}):


Ii =
e


h


∑


j


∫ ∞


0


fj(E)Γij(E) dE , (2.11)


Ji =
1


h


∑


j


∫ ∞


0


fj(E)Γij(E)(E − µi) dE . (2.12)


From (2.7) one immediately obtains the following properties:
∑


i


Γij(E) = 0 , ∀j and
∑


j


Γij(E) = 0 , ∀i . (2.13)


Remark 2.4. Note that Γij(E) 6= Γji(E) in general.


Using the relations (2.13) one immediately sees that the expressions (2.11)–(2.12) for
the currents satisfy the conservation of charge and energy, respectively, i.e.


∑


i


Ii = 0 and
∑


i


(
Ji +


µi
e
Ii


)
= 0 . (2.14)


Remark 2.5. The second relation in (2.14) emphasises the fact that energy is conserved
but not heat. However, as we shall see in the next section, heat is conserved in the linear
response approximation.


2.2 The Strategy
In Section 4, we will fix the values (TL, µL) and (TR, µR), and determine the parameters
(Ti, µi), for i = 1 . . . , N , for which the self-consistency condition is satisfied:


Ii = 0 and Ji = 0 for i = 1, . . . , N . (2.15)


Actually, this condition will be solved only in the linear response approximation. Then
we will work out the remaining currents: IL = −IR and JL = −JR (these equalities are
satisfied in the linear response regime).


Up to that point, the system is described by any scattering matrix S and has therefore
no specific geometry (see Figure 4). In order to obtain a system with the linear geometry
represented in Figure 3, and to interpret IL and JL as the currents flowing through the
system, from left to right, we will consider that the global scattering matrix S is given in
terms of the local (linearly ordered) scattering matrices, S (1), . . . , S(N), associated to the
N quantum dots.


In Section 5, we will study numerically the properties of the composite scattering matrix
S, using random matrix theory (RMT), and show that the currents through the chain of
quantum dots with self-consistent reservoirs are typically (in the sense of RMT) governed
by Ohm and Fourier laws.
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3 General Properties
In this section, we consider that the system is coupled to N + 2 terminals (we use L and R
to be consistent with the next sections) and suppose that its transport properties are given
in terms of some scattering matrix S (see Figure 4).


Figure 4: The general system coupled to N + 2 terminals.


In the linear response regime and under the assumption that the scattering matrix S
does not depend on the energy, we will determine the general transport properties of the
system. All these properties are expected to hold on physical grounds and actually some
of them have recently been obtained in full generality [33]. Nevertheless, in this paper, we
are only interested in some particular situations in which the derivations of these properties
are somehow simpler.


3.1 Linear Transport Analysis
In the remainder of this paper we shall always rely on the following.


Assumption A3. We assume that, for i ∈ {L,R, 1, . . . , N},
Ti = T + δTi , (3.1)
µi = µ+ δµi , (3.2)


where T > 0 and µ ∈ R are some reference values, while δTi ∈ R and δµi ∈ R are some
“small” perturbations. For definiteness, we assume that all subsequent expressions are
first order expansions in δTi and δµi.


To study the transport, we consider the first order expansion of any distribution func-
tion:


g(E;Tj, µj) = g(E;T, µ) +
∂g


∂Tj
(E;T, µ) δTj +


∂g


∂µj
(E;T, µ) δµj . (3.3)


Note that the three considered distribution functions (2.1)–(2.3) are of the form:


g(E;Tj, µj) = g


(
E − µj
kBTj


)
. (3.4)
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Hence, one can rewrite the derivative of g, with respect to Tj and µj, in terms of the
derivative of g with respect to E, and obtain the following result:


fj(E) ≡ f(E;Tj, µj) = f(E;T, µ)− ∂f


∂E
(E;T, µ)


[(
E − µ
T


)
δTj + δµj


]
. (3.5)


Substituting this first order expansion into the expressions (2.11)–(2.12) for the currents,
and using the relations (2.13), one sees that all terms containing f(E;T, µ) vanish and one
is left with


Ii =
∑


j


L
(0)
ij


δµj
e


+ L
(1)
ij


δTj
T


, (3.6)


Ji =
∑


j


L
(1)
ij


δµj
e


+ L
(2)
ij


δTj
T


, (3.7)


where


L
(0)
ij = −e


2


h


∫ ∞


0


∂f


∂E
(E;T, µ)Γij(E) dE , (3.8)


L
(1)
ij = − e


h
kBT


∫ ∞


0


(
E − µ
kBT


)
∂f


∂E
(E;T, µ)Γij(E) dE , (3.9)


L
(2)
ij = −(kBT )2


h


∫ ∞


0


(
E − µ
kBT


)2
∂f


∂E
(E;T, µ)Γij(E) dE . (3.10)


Remark 3.1. While heat is not a conserved quantity in general, one sees from the expression
(3.7) for the heat current, using the relations (2.13), that heat is conserved in the linear
response approximation: ∑


i


Ji = 0 . (3.11)


In Section 4, we will impose the self-consistency condition, Ii = Ji = 0 for i = 1, . . . , N ,
and the conservation laws (2.14) and (3.11) will permit to interpret IL = −IR and JL =
−JR as the electric and heat currents flowing through the system (from left to right).


3.2 The Transport Matrix
Here we establish some basic properties of the transport matrix. From the expressions
(3.6)–(3.7) for the currents we are naturally led to the following definition.


Definition 3.2. We denote by L the transport matrix:


L =


(
L(0) L(1)


L(1) L(2)


)
, where L(k) =






L
(k)
LL L


(k)
L1 . . . L


(k)
LN L


(k)
LR


L
(k)
1L L


(k)
11 . . . L


(k)
1N L


(k)
1R


...
...


...
...


...
L


(k)
NL L


(k)
N1 . . . L


(k)
NN L


(k)
NR


L
(k)
RL L


(k)
R1 . . . L


(k)
RN L


(k)
RR






.
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A quick glance at the expressions (3.8)–(3.10) for the transport coefficients L(k)
ij , re-


membering that Γij(E) = Miδij − tij(E), shows that the Onsager relations hold, i.e. if
S(E) is symmetric (for each E > 0), then L is symmetric. More generally, is the system
satisfies the microreversibility property Sij,mn(E,B) = Sji,nm(E,−B), where B is some
applied magnetic field, then Lij(B) = Lji(−B).


In general, the scattering matrix S depends on the energy. Nevertheless, in this pa-
per, we shall restrict our attention to the energy-independent situations. The assumption
that S does not depend on the energy is a good approximation in some limiting cases
(e.g. looking at (3.8)–(3.10) one sees that for electrons at low temperature one may con-
sider S(E) ≡ S(EF), where EF is the Fermi energy, since (−∂f/∂E)(E) ≈ δ(E − EF))
and leads to interesting consequences. In particular, we will see that the relations among
the transport coefficients, L(0)


ij , L(1)
ij and L(2)


ij , will be very simple and will lead to some
universal transport properties. For definiteness, we assume for the rest of this paper that
the following holds.


Assumption A4. The scattering matrix S does not depend on the energy.


In order to simplify some derivations, without restricting our results too much, it is
convenient to assume the following.


Assumption A5. We assume that tij 6= 0 for all i, j ∈ {L,R, 1, . . . , N}.
Remark 3.3. Recalling the properties (2.7), one sees that the assumption A5 implies tij 6=
min{Mi,Mj}, for all i, j ∈ {L,R, 1, . . . , N}, which permits to avoid total back-scattering.


Under the assumption that the scattering matrix S does not depend on the energy, one
sees in the expressions for the transport coefficients (3.8)–(3.10) that some integrals of the
following form appear (with n = 0, 1, 2):


C(n) = −
∫ ∞


0


(
E − µ
kBT


)n
∂f


∂E
(E;T, µ) dE . (3.12)


More explicitly,


CMB(n) =


∫ ∞


x0


xne−x dx and C±(n) =


∫ ∞


x0


xnex


(ex ± 1)2
dx , (3.13)


where the signs + and − correspond to the Fermi-Dirac and Bose-Einstein cases, respec-
tively, and x0 = −µ/(kBT ) is some reference parameter. Here, x0 ∈ R in MB and FD, but
x0 > 0 in BE.


Remark 3.4. Although C(n) depends on x0, we will see that the transport properties of the
system are essentially independent of x0. This explains why we do not write C(n, x0).


In terms of C(n), one can write


L
(0)
ij =


e2


h
C(0)Γij , (3.14)


L
(1)
ij =


e


h
kBTC(1)Γij , (3.15)


L
(2)
ij =


(kBT )2


h
C(2)Γij . (3.16)
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In Appendix A, we show that C(0), C(1) and C(2) are positive for all


x0 = − µ


kBT
∈







(−1,∞) in MB
(−∞,∞) in FD
(0,∞) in BE


. (3.17)


In the Maxwell-Boltzmann case, when x0 ∈ (−∞,−1], we find that CMB(0) and CMB(2)
are positive, but CMB(1) is non-positive. As one may easily check, all the subsequent
results also hold in this situation. Nevertheless, in order to be able to treat the three consid-
ered cases on the same footing we make the following restricting assumption.


Assumption A6. In the Maxwell-Boltzmann case: x0 = −µ/(kBT ) ∈ (−1,∞).


Remark 3.5. Note that the coefficient CBE(0) diverges as x0 → 0. This may be interpreted
as a Bose-Einstein condensation, and shows that our theory breaks down in describing
properly the transport of Bose-Einstein condensates.


Remark 3.6. In mesoscopic physics, one is usually interested in electronic transport at
low temperature, i.e. x0 = −µ/(kBT ) → −∞. Observe that in this limit CFD(1) → 0


and consequently LFD(1)
ij → 0. In order to have non-zero transport coefficients LFD(1)


ij in
this regime, one usually considers the first order term in the Taylor expansion, Γij(E) =


Γij(µ) + Γ′ij(µ)(E − µ) +O((E − µ)2), which leads to LFD(1)
ij ∼ Γ′ij(µ).


Remark 3.7. Observe that the transport coefficients L(k)
ij depend on the properties of the


quantum dots through the scattering matrix S. Here we can see why the assumption A5
is useful. Indeed, suppose that tii = Mi for some i (total reflection). Then tij = 0 for
all j 6= i and consequently L(k)


ij = 0 for all j. In other words, in such a situation the i-th
reservoir is disconnected from the rest of the system.


Looking at the relations (3.14)–(3.16), one sees that the transport coefficients are related
as follows:


L
(0)
ij =


e2


h
C(0)Γij , L


(1)
ij = Q1L


(0)
ij and L


(2)
ij = Q2L


(0)
ij , (3.18)


where


Q1 =
kBT


e


C(1)


C(0)
> 0 and Q2 =


k2
BT


2


e2


C(2)


C(0)
> 0 . (3.19)


Remark 3.8. The quantity Q1 is related to the Seebeck coefficient (see Remark 4.10). In
the Fermi-Dirac case, limx0→−∞Q2/T


2 = (π2/3)(kB/e)
2 is called the Lorentz number.


Recalling that Γij = Miδij− tij and using the assumption A5, one immediately obtains
the following properties (k = 0, 1, 2):


L
(k)
ij


{
> 0 if i = j
< 0 if i 6= j


, (3.20)


and ∑


i


L
(k)
ij = 0 , ∀j and


∑


j


L
(k)
ij = 0 , ∀i . (3.21)
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As we shall see later on, the following ratio, R, will play an important role. Using
standard techniques, we show in Appendix B that (for all x0):


R ≡ Q1√
Q2


=
C(1)√


C(0) · C(2)
∈ (0, 1) . (3.22)


Remark 3.9. In terms of the matrix


C =


(
C(0) C(1)
C(1) C(2)


)
, (3.23)


the inequality 0 < R < 1 is equivalent to det(C) = C(0)C(2)− C(1)2 > 0.


3.3 The Entropy Production
In this subsection, we show that the transport matrix L is real positive semi-definite. In
other words, we show that the entropy production rate is non-negative:


σs =


2N+4∑


i,j=1


LijViVj ≥ 0 , (3.24)


where the thermodynamic forces are


Vi =


{
δµi−1/e if i = 1, . . . , N + 2
δTi−(N+3)/T if i = N + 3, . . . , 2N + 4


. (3.25)


Here, we have set L = 0 and R = N + 1. Let Xi = δµi/e and Zi =
√
Q2 δTi/T , for


i ∈ {0, 1, . . . , N,N + 1}. Then, in Appendix C, we show that one can rewrite the entropy
production rate as follows:


σs =


N+1∑


i, j = 0
i < j


(−L(0)
ij ) Iij , (3.26)


where


Iij = (Xi −Xj)
2 + (Zi − Zj)2 − 2RCij , Cij = XiZj +XjZi −XiZi −XjZj .


Observe now that (−L(0)
ij ) > 0 for all i 6= j. Therefore, to show that σs ≥ 0 it is sufficient


to show that Iij ≥ 0 for all i 6= j. As we shall see, it will be crucial that the ratioR satisfies
0 < R < 1. Assume first that Cij ≤ 0, then (R > 0)


Iij ≥ (Xi −Xj)
2 + (Zi − Zj)2 ≥ 0 . (3.27)


Assume next that Cij > 0, then (R < 1)


Iij > (Xi −Xj)
2 + (Zi − Zj)2 − 2Cij = (Xi −Xj + Zi − Zj)2 ≥ 0 . (3.28)


This ends the proof that σs ≥ 0.


Remark 3.10. The term (Xi−Xj)
2 accounts for the entropy production due to the electric


current, and it is well known in mesoscopic physics (see e.g. [32]). The term (Zi − Zj)2 is
related to the heat current, and one sees that there is also a thermoelectric term, −2RCij ,
which might take positive and negative values.
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3.4 Equilibrium and Non-Equilibrium States
Here we present some equivalent characterizations of the equilibrium and non-equilibrium
states of the multi-terminal system. We start with the following.


Definition 3.11. We say that the system is at equilibrium if


TL = T1 = · · · = TN = TR and µL = µ1 = · · · = µN = µR .


Otherwise, we say that the system is out of equilibrium.


Now, as one expects, the system is at equilibrium only in the situations in which all the
electric and heat currents vanish, i.e.


{System is at equilibrium} ⇐⇒ {Ii = 0 and Ji = 0, ∀i} .


This equivalence is obtained by writing the no-current condition, Ii = Ji = 0 for all i ∈
{L,R, 1, . . . , N}, in a matrix form and by using the properties of the transport coefficients
L


(k)
ij as well as the fact that 0 < R < 1. The details are presented in Appendix D.


Also, one can characterize the equilibrium and non-equilibrium states of the system in
terms of the entropy production:


{
System is at
equilibrium


}
⇐⇒ σs = 0 and


{
System is


out of equilibrium


}
⇐⇒ σs > 0 .


This equivalence easily follows from the expression (3.26) for σs and the inequality (3.27).
The details can be found in Appendix D.


4 The Self-Consistency Condition
We now turn to the resolution of the self-consistency condition (2.15). Using the expres-
sions (3.6)–(3.7) one can rewrite the self-consistency condition as follows (i = 1, . . . , N ):


N∑


j=1


(
L


(0)
ij


δµj
e


+ L
(1)
ij


δTj
T


)
= −


∑


j=L,R


(
L


(0)
ij


δµj
e


+ L
(1)
ij


δTj
T


)
, (4.29)


N∑


j=1


(
L


(1)
ij


δµj
e


+ L
(2)
ij


δTj
T


)
= −


∑


j=L,R


(
L


(1)
ij


δµj
e


+ L
(2)
ij


δTj
T


)
. (4.30)


We recall that we are given the values (TL, µL) and (TR, µR), so that the right-hand side
of the above equations are supposed to be known (Tj = T + δTj and µj = µ + δµj).
Therefore, the self-consistency condition constitutes a set of 2N equations for the 2N
unknown variables T1, . . . , TN and µ1, . . . , µN .







14 Philippe A. Jacquet


To solve these equations, it is convenient to introduce the vectors X, Y ∈ RN and the
N ×N matrix L(0)


C defined by (i, j = 1, . . . , N ):


Xj =
δµj
e


, Yj =
δTj
T


, and (L
(0)
C )ij = L


(0)
ij . (4.31)


Remark 4.1. Recalling that L(0) is the (N + 2)× (N + 2) matrix defined in Definition 3.2,
one sees that L(0)


C is the reduced matrix associated to the “central” terminals 1, . . . , N .


We also define for ` = L,R:


X` =
δµ`
e


, Y` =
δT`
T


, and D` =




L


(0)
1`
...


L
(0)
N`



 . (4.32)


Then the equations (4.29)–(4.30) can be rewritten as follows:


L
(0)
C (X +Q1Y ) = −


∑


`=L,R


(X` +Q1Y`) D` , (4.33)


L
(0)
C (Q1X +Q2Y ) = −


∑


`=L,R


(Q1X` +Q2Y`) D` . (4.34)


Since R 6= 1, one has Q2 6= (Q1)2. As a consequence, if one takes (Q2/Q1) times (4.33)
and subtract (4.34) and similarly if one takes (−1/Q1) times (4.34) and add (4.33), one
obtains


L
(0)
C X = −


∑


`=L,R


D`X` and L
(0)
C Y = −


∑


`=L,R


D`Y` . (4.35)


We see here that the equations (4.33)–(4.34) decouple and that the equations for the chem-
ical potentials and for the temperatures are actually identical. In order to proceed, we need
to know that the matrix L(0)


C is invertible. This fact is proved in Appendix E by showing
that L(0)


C is real positive definite. In particular, this shows that the self-consistency condition
(2.15) has a unique solution.


By inverting the matrix L(0)
C , we obtain the following self-consistent temperatures and


chemical potentials (i = 1, . . . , N ):


Ti = TL + Ai (TR − TL) , (4.36)
µi = µL + Ai (µR − µL) , (4.37)


where


Ai =
N∑


j=1


(Γ−1
C )ij tjR , with ΓC = (Γij)


N
i,j=1 . (4.38)


The details about their derivation are given in Appendix F.
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By substituting these expressions into the relations (3.6)–(3.7) for the currents, with
i = L, and by using the properties of the transport coefficients L(k)


ij , one deduces the
stationary currents flowing through the system (from left to right):


IL = σ0


(
µR − µL


e


)
+ σ1


(
TR − TL


T


)
, (4.39)


JL = σ1


(
µR − µL


e


)
+ σ2


(
TR − TL


T


)
, (4.40)


where


σ0 = L
(0)
LR +


N∑


j=1


Aj L
(0)
Lj , σ1 = Q1σ0 and σ2 = Q2σ0 . (4.41)


Remark 4.2. The corresponding expressions to (4.36)–(4.41) in the case of electronic trans-
port at low temperature (Ti = 0 and Ji = 0 for i ∈ {L,R, 1, . . .N}) were obtained in [24].


Using the relations (4.36)–(4.37), one may rewrite the currents (4.39)–(4.40) as follows:


IL =
∑


j


L
(0)
Lj


(
µj − µL


e


)
+ L


(1)
Lj


(
Tj − TL


T


)
, (4.42)


JL =
∑


j


L
(1)
Lj


(
µj − µL


e


)
+ L


(2)
Lj


(
Tj − TL


T


)
. (4.43)


Although the multi-terminal system considered so far has no specific geometry (see
Figure 4), we shall nevertheless use the word “profile” for the arrangements µ1, . . . , µN
and T1, . . . , TN . This terminology will be fully justified in Section 5, where we will restrict
our attention to the linear chain of quantum dots (Figure 3).


Remark 4.3. Note that the temperature and chemical potential profiles are decoupled, i.e. Ti
only depends on (TL, TR) and µi only depends on (µL, µR). On the other hand, since
Q1 > 0, there can be a heat current due to a gradient of chemical potential (TL = TR), and
reciprocally, there can be an electric current due to a gradient of temperature (µL = µR).


Remark 4.4. We see that the form of the profiles is given by the coefficients A1, . . . , AN .
Hence, in what follows we will use the word “profile” to refer to these coefficients. Looking
at the expression (4.38) for Ai one sees that it does not depend on the distribution function
(2.1)–(2.3) describing the reservoirs. In this sense, we say that the profile is universal. One
may wonder whether this is true for any distribution function f . It seems not to be the case.
Indeed, the key ingredients to obtain the preceding results are: (i) the specific form (3.4)
of f and (ii) the ratio R, defined in (3.22), must satisfy 0 < R < 1. Basically, we expect
that any distribution function f satisfying (i)-(ii) will lead to the same results. Note that
universal temperature profiles were also found for a quantum harmonic chain coupled at
both ends to two phonon reservoirs at different temperatures [36].


Remark 4.5. Although the profiles are the same in the three considered situations, one can
distinguish between the classical and quantum chain of quantum dots. Indeed, assume we







16 Philippe A. Jacquet


are given the scattering matrices, S(1), . . . , S(N), associated to the N quantum dots. Then,
as explained in detail in Appendix H, one can compose them into a global scattering matrix
S, out of which one extracts the transmission probabilities tij (see (2.6)). This is the natural
quantum way of working.


In order to extract the interference effects, one may first compute the probability ma-
trices, P (1), . . . , P (N), defined by P


(k)
ij;mn = |S(k)


ij;mn|2, then compose them into a global
probability matrix P and finally set tij =


∑Mi


m=1


∑Mj


n=1 Pij;mn. This way of computing tij
will be referred to as classical.


As one can easily check, the composition law of the probability matrices is the same as
for the scattering matrices, i.e. all expressions in Appendix H hold with P instead of S. In
this sense, we will study in Section 5 the classical versus quantum situations.


In Appendix G, we derive an interesting alternative expression for the coefficients Ai.
We obtain (i = 1, . . . , N )


Ai =


∑N
j=1(−1)i+j det (ΓC(j, i)) tjR∑N


j=1(−1)i+j det (ΓC(j, i)) [tjL + tjR]
, (4.44)


where ΓC(j, i) denotes the (j, i) minor of ΓC.


Remark 4.6. As an illustration, let us apply the relation (4.44) in the case N = 1. One has


A1 =
t1R


t1L + t1R
=⇒ µ1 =


t1L µL + t1R µR


t1L + t1R
. (4.45)


This relation for µ1 corresponds to the one obtained in [32] for a three-terminal conductor
under the conditions TL = T1 = TR = 0 (which implies J1 = 0, since δTj = 0 and
L


FD(1)
ij = 0 in this case) and I1 = 0.


An important consequence of (4.44) is (i = 1, . . . , N ):


Ai ∈ (0, 1) . (4.46)


This implies that the temperatures and chemical potentials of the reservoirs, connected
self-consistently to the N quantum dots, are bounded between the boundary values TL, TR


and µL, µR, respectively. In other words, for i = 1, . . . , N , one has


min{TL, TR} < Ti < max{TL, TR} and min{µL, µR} < µi < max{µL, µR} .
Remark 4.7. The property (4.46) implies that the self-consistent parameters T1, . . . , TN and
µ1, . . . , µN are increasing functions of TL, TR, and µL, µR, respectively.


Moreover, looking at the expressions (4.41) for the coefficients σ0, σ1 and σ2, and
recalling that L(0)


ij < 0 if i 6= j, Q1 > 0 and Q2 > 0, one deduces that for k = 0, 1, 2:


σk < 0 . (4.47)


Remark 4.8. There are some simple consequences of (4.47) with respect to (4.39)–(4.40).
(i) If µL = µR, then the heat current flows from the hot reservoir to the cold one, and
similarly (ii) if TL = TR, then the electric current goes from the high chemical potential to
the lower one. Note, however, that by setting µL, µR and TL, TR to appropriate values there
might be a heat current going from the cold reservoir to the hot one. (A similar statement
holds for the electric current.)
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4.1 Ohm and Fourier Laws
From the relations (4.39)–(4.40) for the electric and heat currents, one can find explicit
expressions for the electric and heat conductances. If TL = TR, then setting µ = eV ,
where V denotes the electric potential, one obtains


IL = −Ge (VR − VL) , (4.48)


where the electric conductance Ge is given by


Ge = −σ0 . (4.49)


If IL = 0, one deduces
JL = −Gh (TR − TL) , (4.50)


where the heat conductance Gh is given by


Gh =
σ2


1 − σ0σ2


σ0T
= −(Q2 −Q2


1)


T
σ0 = −k


2
BT


e2


C(0)C(2)− C(1)2


C(0)2
σ0 . (4.51)


Recalling that 0 < R < 1, one sees that Q2 > Q2
1. Consequently, since σ0 < 0, one


deduces that the electric and heat conductances are positive:


Ge > 0 and Gh > 0 . (4.52)


Assume now that the system has the linear geometry represented in Figure 3 and let a
denote the length of the quantum dots and Σ denote the width of the openings connecting
any two dots (i.e. the effective cross section of the system). Since L = Na corresponds to
the length of the system made of N quantum dots, one may introduce the global gradients:


∇V =
VR − VL


L
and ∇T =


TR − TL


L
. (4.53)


Then, under the same conditions as in (4.48) and (4.50), the current densities, IL = IL/Σ
and JL = JL/Σ, are given by the global Ohm and Fourier laws:


IL = −κe∇V and JL = −κh∇T , (4.54)


where the electric and heat conductivities, κe and κh, are given by


κe =
LGe


Σ
and κh =


LGh


Σ
. (4.55)


Remark 4.9. In the Fermi-Dirac situation, one has


lim
x0→0


Q1 = 0 and lim
x0→0


Q2 =
π2


3


(
kB


e


)2


T 2 =⇒ lim
x0→0


κh


κeT
=
π2


3


(
kB


e


)2


.


The last relation is the Wiedemann-Franz law giving the Lorentz number.
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Remark 4.10. Setting JL = 0, one deduces the thermoelectric field E = −∇V = S∇T ,
where S = Q1/T = kB/e · C(1)/C(0) > 0 is the thermopower or Seebeck coefficient.
Note that S does not depend onN . For further discussions on the thermopower of quantum
dots, see e.g. [37–43].


In a similar manner, one may introduce the following local quantities:


∇V (i) =
Vi+1 − Vi


a
and ∇T (i) =


Ti+1 − Ti
a


. (4.56)


Then, using the equations (4.36)–(4.37) and (4.54), one obtains the local Ohm and Fourier
laws:


I(i) = −κe(i)∇V (i) and J (i) = −κh(i)∇T (i) , (4.57)


where the local electric and heat conductivities are given by


κe(i) =
κe


N(Ai+1 − Ai)
and κh(i) =


κh


N(Ai+1 − Ai)
. (4.58)


Here, I(i) = IL and J (i) = JL, for i = 1, . . . , N − 1. Since the system has the linear
geometry represented in Figure 3, one may interpret I(i) and J (i) as the net density of
currents flowing from the i-th quantum dot into the (i+ 1)-th quantum dot.


Remark 4.11. Although the global conductivities, κe and κh, are always positive, we will
see, in Section 5, that the local conductivities, κe(i) and κh(i), may take negative values.


The coefficients σ0, σ1 and σ2, the conductances Ge and Gh, and the conductivities κe


and κh depend on the distribution function f describing the reservoirs. Nevertheless, they
are all proportional to σ0, with some multiplicative factor independent ofN . The important
observation is that the dependence on the nature of the particles is entirely contained in
these multiplicative factors. This permits to introduce the following universal quantity.


Definition 4.12. We define the universal conductivity as


κ(N) = − h


e2C(0)
Nσ0 = N


[
tLR +


N∑


i=1


N∑


j=1


tLj (Γ−1
C )ji tiR


]
. (4.59)


Remark 4.13. As an illustration, let us consider the case N = 1. One has


κ(1) = tLR +
tL1 t1R


t1L + t1R


. (4.60)


As expected, the universal conductivity is the sum of two contributions: a direct coherent
transmission and an indirect incoherent transmission through the intermediate terminal.
This result is well known in mesoscopic physics [32], and one sees that the relation (4.59)
is the generalization to N self-consistent reservoirs.


Looking at the expression (4.59) for the universal conductivity, one sees that κ(N) > 0,
since σ0 < 0 and C(0) > 0. Using moreover the relations (2.7) and tLR < min{ML,MR},
one finds the following optimal bounds:


0 < κ(N) < N ·min{ML,MR} . (4.61)
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5 Numerical Simulations


5.1 The Chain of Quantum Dots
To prove the validity of Ohm and Fourier laws in our model, it remains to show that the
transport is normal, that is, the electric and heat conductivities, κe and κh, are intrinsic
properties of the system and therefore are independent of the size L = Na of the system.
More precisely, one has to prove that the electric and heat conductivities converge to finite
limits as L → ∞. Looking at the relations (4.55) and (4.59), one sees that κe and κh


are both proportional to κ(N), with some multiplicative factor independent of N , and
consequently it is sufficient to investigate the limit of κ(N) as N →∞.


As explained previously, the multi-terminal system considered so far has no specific
geometry (Figure 4), and therefore κ(N) will not converge as N → ∞ in general. In
order obtain a finite limit for κ(N) as N →∞ we shall proceed as follows.


Let
(
S(k)


)∞
k=1


be an infinite sequence of scattering matrices, each one being associated
to a quantum dot, and let SN denote the composite global scattering matrix associated to(
S(1), . . . , S(N)


)
. The details concerning the construction of SN are given in Appendix H.


Having set-up the linear geometry represented in Figure 3, one may expect that κ(N) will
converge to a finite value, κ∞, as N → ∞, and this is what we found in typical numerical
experiments (see below). Unfortunately, the composite scattering matrix, SN , is given in
a rather cumbersome form in terms of S(1), . . . , S(N), which prevents us from proving the
existence of limN→∞ κ(N).


Nevertheless, we will see by using numerical simulations under random matrix theory,
that the universal conductivity κ(N) typically admits a finite limit, 〈κ∞〉, as N →∞. This
shows that Ohm and Fourier laws hold on statistical average, and we may write


〈κ∞e 〉 =
a


Σ


e2C(0)


h
〈κ∞〉 (5.1)


and


〈κ∞h 〉 =
a


Σ


k2
BT


h


C(0)C(2)− C(1)2


C(0)
〈κ∞〉 . (5.2)


Moreover, we will see that typically the profile, A1, . . . , AN , becomes linear as the
number of dots N →∞. Introducing the variable x = i/(N + 1) ∈ [0, 1], this means that
in the thermodynamic limit N →∞, one has


〈A(x)〉 = x , (5.3)


and consequently


〈V (x)〉 = VL + (VR − VL) x and 〈T (x)〉 = TL + (TR − TL) x . (5.4)


Remark 5.1. Here we compare the values of the average electric and heat conductivities for
the three considered situations. Indeed, looking at the expressions (5.1)–(5.2), one sees that
they only differ from a multiplicative factor, which depends on the nature of the particles.
In the electric and heat cases, we found the following order: BE>MB> FD, for all x0 > 0
(the common admissible region).
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5.2 Random Matrix Theory
As said in the introduction, the classical EY-model describing particle and energy transport
(Figure 1) has the following important property: it is chaotic. More precisely, the cells,
without the discs, which are making up the system are ergodic. In analogy, we assume the
following.


Assumption A7. The quantum dots are classically chaotic.


Under this assumption, it is natural to describe the transport properties of the quantum
dots with random matrix theory (RMT) [44]. More precisely, we will consider that the
quantum dots are described by the Wigner-Dyson circular ensembles (with β = 1, 2).


Here, we restrict our attention to the one channel situation, i.e. we assume that Mi = 1
for i ∈ {L,R, 1, . . . , N}. Now we consider that the 3 × 3 complex random matrices,
S(1), . . . , S(N), are independent and identically distributed over U(3) with some measure.
More specifically, we consider the following well-known cases:


(1) The Circular Orthogonal Ensemble (COE, β = 1) describes the case of time-reversible
systems.


(2) The Circular Unitary Ensemble (CUE, β = 2) corresponds to the case in which the
time-reversal symmetry is broken. Such a situation appears, for example, when the
system is submitted to some external magnetic field.


In the sequel, we shall be interested mainly in the following quantities:


(i) The universal profile A1, . . . , AN , which gives the shape of the temperature and
chemical potential profiles. In the subsequent plots, we naturally set A0 = AL = 0
and AN+1 = AR = 1.


(ii) The universal conductivity κ(N), which gives the electric and heat currents through
the chain of N quantum dots.


As explained previously, we shall compare the classical and quantum situations by working
in terms of the probability matrices, P (1), . . . , P (N), and scattering matrices, S(1), . . . , S(N),
respectively (see Remark 4.5).


For a review on RMT we refer to [44]. To implement the numerical simulations, we
have followed [45]. In the sequel, the averages are made over an ensemble of 104-106


realizations, depending on the size N of the system.


5.3 The Global Transmission Probabilities
We denote by 〈t(k)


ij 〉1 and 〈t(k)
ij 〉2 the average of the transmission probabilities in COE


(β = 1) and CUE (β = 2), respectively. It turns out that one can determine their exact
values [44]:


〈t(k)
ij 〉1 =


{
1/4 if i 6= j
1/2 if i = j


and 〈t(k)
ij 〉2 =


1


3
, ∀i, j . (5.5)
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Now we use the construction explained in Appendix H to build the scattering matrix S
associated toN quantum dots. As the reader may guess, it is then very difficult to make any
analytical statement concerning the averages 〈tij〉1 and 〈tij〉2. We thus turned to numerical
simulations, and made the following observations for large system sizes N :


(1) The classical and quantum global transmission probabilities, tcl
ij and tqu


ij , are differ-
ent, but their averages, 〈tcl


ij〉β and 〈tqu
ij 〉β, are the same, showing that on average the


interferences are negligible when N is large.


(2) The averages 〈tij〉β do not depend on the system size N .


(3) They are symmetric: 〈tij〉β = 〈tji〉β.


(4) The average couplings between the terminals, 〈tij〉β, depend on |i− j| and are short
ranged, i.e. 〈tij〉β ' 0 if |i− j| > 2. In particular, the average probability matrix has
essentially the following form:


〈P 〉β =






∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


. . . . . . . . .
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗






.


0


0
The values of the matrix elements represented by 0 are smaller than 0.05.


A typical example illustrating the above observations is given in Figure 5, where N =
20. In this figure, five terminals are considered: ` ∈ {L, 5, 10, 15,R} (with L = 0 and
R = 21). The different curves correspond to 〈ti`〉β for some i ∈ {` − 4, . . . , ` + 4}. For
example, the middle curves give the following values: 〈t7,10〉β, . . . , 〈t10,10〉β, . . . , 〈t13,10〉β.


5.4 The Profiles and Currents


Let us recall the expressions for the coefficient Ai and for the universal conductivity κ(N):


Ai = −
N∑


j=1


(Γ−1
C )ij tjR and κ(N) = N


[
tLR +


N∑


i=1


N∑


j=1


tLj (Γ−1
C )ji tiR


]
.


In Figure 6, we show the average profiles 〈A(x)〉β forN = 5. If TL < TR, these profiles
correspond essentially to the temperature profiles along the system. (The same holds for
the chemical potential profiles if µL < µR). We see that all these profiles are not linear,
the non-linearity being more stressed in the quantum situation, showing the effect of the
interferences.
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Figure 5: The (classical and quantum) average transmission probabilities, 〈ti`〉β, for ` ∈
{L, 5, 10, 15,R} (with L = 0 and R = 21) and some i ∈ {`− 4, . . . , `+ 4}. For example,
the middle curves give: 〈t7,10〉β, . . . , 〈t10,10〉β, . . . , 〈t13,10〉β. Left: COE (β = 1). Right:
CUE (β = 2).
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Figure 6: The classical and quantum average profiles 〈A(x)〉β for N = 5. The diagonal
lines are added to guide the eye. Left: COE (β = 1). Right: CUE (β = 2).
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Remark 5.2. In order to emphasise the role of interferences, let us consider the following
simple toy models. We consider that the classical probability matrices are identical and
given by P (k)


ij = 1/3, for all i, j. In such a situation, the profile A(x) is linear (for all N ).
On the other hand, the following unitary scattering matrices


S(k) =
1√
3






1 e
2π
3
i e


2π
3
i


e
2π
3
i 1 e


2π
3
i


e
2π
3
i e


2π
3
i 1



 , (5.6)


which satisfy the equiprobability property, |S (k)
ij |2 = 1


3
, do not lead to a linear profile,


showing the interference effects (see Figure 7).
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Figure 7: The profiles of the toy models in Remark 5.2 (N = 5).


Remark 5.3. One may have noticed that the average temperature profiles differ from those
in the EY-model. Indeed, in the EY-model the temperature profiles were either linear,
convex or concave functions of the cell position, depending on the values of the injection
rates γL and γR. Basically, the reason was that, in the presence of a particle current, for
example, going from right to left, the disc i hears more often from cell i + 1 than from
cell i − 1. It has therefore a greater tendency to equilibrate with the right than with the
left, causing a curvature in the temperature profile. In particular, the temperature profile
depends on all the boundary values TL, TR, γL and γR. In the present model, the coupling
among the terminals is governed by the scattering matrix S and we have assumed it is
energy-independent leading to a self-consistent temperature profile dependent only on S
and on the boundary values TL and TR. However, we expect that in the general energy-
dependent S-matrix situation, the temperature profile will also depend on µL and µR. To
see whether in this case the EY-model and our model agree needs further investigations.
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We have shown in the preceding section that, if µL = µR and TL < TR, then the heat
current JL goes from the hot reservoir (Right) to the cold one (Left), as one expects from
the second law of thermodynamics. In Figure 6, one sees that the profiles are monotically
increasing from left to right. This means that, on average, heat also flows locally from hot
to cold, i.e. on statistical average, the second law of thermodynamics also holds locally.


All the preceding results concern statistical average values. In Figure 8, we present
different realizations and one sees that very different profiles may occur. Roughly speak-
ing, by choosing an appropriate combination of the S-matrices, S (1), . . . , S(N), one may
generate almost any profile.
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Figure 8: The quantum profiles for some realizations (N = 5).


In particular, one sees in Figure 8 that there exist particular realizations for which the
heat current flows locally from cold to hot. In other words, the profiles are not monotone
increasing for every realization, but only on statistical average. Such phenomena are well
known in mesoscopic systems (see e.g. [32, 46, 47]).


We observed that the quantum dots about which such phenomena occur (i.e. such that
Ai < Ai−1 and consequently κe(i − 1) < 0 and κh(i− 1) < 0) have typically a very high
reflection probability tii. As the system size N grows, we see that such phenomena dimin-
ish in intensity and frequency. Basically, we expect that, when the system is macroscopic,
the second law of thermodynamics also holds locally in every realization.


Moreover, in the thermodynamic limit N → ∞, we see that the average profiles be-
come linear in all situations (COE, CUE, classical and quantum):


〈A(x)〉β = x , ∀x ∈ [0, 1] . (5.7)


Consequently,


〈V (x)〉β = VL + (VR − VL) x and 〈T (x)〉β = TL + (TR − TL) x . (5.8)
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We next present some results concerning the universal conductivity κ(N). In Figure 9,
we plot 〈κ(N)〉β as a function of N and one sees that it seems to admit a finite limit 〈κ∞〉β
as N → ∞. To support this observation and obtain a numerical value for 〈κ∞〉β, we have
proceeded as follows. We found that the curves in Figure 9 are very well fitted (the largest
chi-square being 0.035) by functions (not shown in the figures) of the following form:
〈κ∞〉β + cβ/N


α. Here, cβ is some positive constant and α is an exponent found to be the
same in COE and CUE, and given by αcl = 1/2 and αqu = 1. Moreover,


Classical: 〈κ∞〉1 = 0.057 and 〈κ∞〉2 = 0.531 .


Quantum: 〈κ∞〉1 = 0.005 and 〈κ∞〉2 = 0.164 .
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Figure 9: The average universal conductivity 〈κ(N)〉β as a function of N .
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Let us denote by 〈κ∞e 〉β and 〈κ∞h 〉β the corresponding limits:


〈κ∞e 〉β =
a


Σ


e2C(0)


h
〈κ∞〉β (5.9)


and


〈κ∞h 〉β =
a


Σ


k2
BT


h


C(0)C(2)− C(1)2


C(0)
〈κ∞〉β . (5.10)


These numerical results show that Ohm and Fourier laws hold on statistical average in our
chain of quantum dots with self-consistent reservoirs.


Remark 5.4. In the single channel case (Mi = 1, for all i), the optimal bounds (4.61)
become 0 < κ(N) < N . Let us consider the two extreme situations in which all the
quantum dots are identical.


(1) Total back-reflection:


S(k) =






1 0 0
0 1 0
0 0 1



 .


In this case, we found κ(N) = 0 for all N .
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(2) Optimal transmission:


S(k) =






0 0 1
0 1 0
1 0 0



 .


This corresponds to the case in which all the intermediate terminals are disconnected
from the system and the transmission through the system is optimal (i.e. tLR = tRL =
t11 = · · · = tNN = 1 and all other tij = 0). We found κ(N) = N , for all N . Hence,
a perfect conductor has infinite electric and heat conductivites in the limit N →∞.


Although we have shown that typically (in the sense of RMT) κ(N) converges to a
finite limit as N → ∞, one deduces from the example (2) in Remark 5.4 that the linear
geometry, represented in Figure 3, is not sufficient to ensure the existence of such a limit.
The characterization of the sequences of scattering matrices,


(
S(k)


)∞
k=1


, for which the limit,
limN→∞ κ(N), exists and is finite remains an open problem.


In Figure 9, one sees two manifestations of weak localization:


(1) The classical conductivity is larger than the quantum conductivity. Hence, the effect
of the interferences is to decrease the intensity of the electric and heat currents. Note
that this effect is rather subtle. Indeed, one has


〈κ(N)〉β = N


[
〈tLR〉β +


N∑


i,j=1


〈tLj (Γ−1
C )ji tiR〉β


]
. (5.11)


Since the average global transmission probabilities are the same in the classical and
quantum situations, the effect of the interferences on the conductivity must be due to
correlations among the random variables tij.


(2) The application of an external field (CUE) increases the values of the conductivities
and consequently increases the intensity of the electric and heat currents. This can be
understood as follows: In equation (5.5) and in Figure 5, one sees that the presence
of a magnetic field will (on average) increase the transmissions probabilities.


Remark 5.5. The case of electronic transport at low temperature was already considered by
D’Amato and Pastawski [24]. Modelling the system as a nearest-neighbour tight-binding
Hamiltonian they found approximate expressions for the global transmission probabilities
tij , which turn out to satisfy the properties (2)–(4) presented in Subsection 5.3. Then they
deduced that, in the limit the system size N → ∞, the self-consistent chemical potential
profile is linear and the universal conductivity is finite, in agreement with our results.


6 Concluding Remarks
We have presented a model for charge and heat transport using the Landauer-Büttiker scat-
tering approach. In the linear response regime, we have seen that the Onsager relations
hold. Then, assuming that the scattering matrix S does not depend on the energy, we have
shown that the transport matrix L is real positive semi-definite and we have characterized
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the equilibrium and non-equilibrium states of the system in terms of the currents and in
terms of the entropy production. In particular, we have shown that our multi-terminal sys-
tem satisfies the first and second laws of thermodynamics.


In order to obtain an effective quantum version of the Eckmann-Young model with
rotating discs, we have imposed the self-consistency condition: Ii = Ji = 0 for i =
1, . . . , N . This condition led to expressions for the temperature and chemical potential
profiles, which turn out to be independent of the nature of the particles, as well as to
expressions for the electric and heat currents going through the system. Finally, we have
presented some numerical results, using random matrix theory, supporting the validity of
Ohm and Fourier laws in our model.


Let us point out that we could handle the three physical cases, Maxwell-Boltzmann,
Fermi-Dirac and Bose-Einstein, on the same footing because they share the following two
features: (i) the specific form (3.4) of f and (ii) the ratio R, defined in (3.22), satisfies
0 < R < 1. Basically, we expect that any distribution function f satisfying (i)-(ii) will
lead to the same results.


For further investigations, it would be interesting to study the general energy-dependent
S-matrix situation and to compare the corresponding predictions under RMT with those of
the EY-model. One may also analyse the nonlinear transport properties through the full
counting statistics (FCS) [28, 48–54]. More mathematically oriented investigations would
be to obtain some rigorous results concerning the global composite scattering matrix S and
consequently to prove the existence of the finite limit, limN→∞ κ(N), which ensures the
validity of Ohm and Fourier laws in our model.
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Appendix A. The Coefficients C(n)


Here we derive some properties of the coefficients C(0), C(1) and C(2). For this, let
n = 0, 1 or 2. Then


(i) If x0 ∈ (−1,∞), then CMB(n) > 0. Indeed, this follows from


CMB(0) = e−x0 , CMB(1) = (1 + x0)e−x0 , CMB(2) = (2 + 2x0 + x2
0 )e−x0 . (A.1)


(ii) If x0 ∈ (−∞,∞), one has CFD(n) > 0, and if x0 ∈ (0,∞), one has CBE(n) > 0.
Indeed, if x0 > 0, then clearly CFD(n) > 0 and CBE(n) > 0. For the Fermi-Dirac case,
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assume that x0 ≤ 0, then


CFD(0) =


∫ ∞


x0


ex


(ex + 1)2
dx > 0 , (A.2)


CFD(2) =


∫ ∞


x0


x2ex


(ex + 1)2
dx > 0 . (A.3)


Now,


CFD(1) =


∫ ∞


x0


xex


(ex + 1)2
dx . (A.4)


Observe that CFD(1) > 0 if x0 = 0 and CFD(1) → 0 as x0 → −∞. Therefore, the
property CFD(1) > 0, for all x0 ≤ 0, follows from


d


dx0
CFD(1) = − x0e


x0


(ex0 + 1)2
≥ 0 . (A.5)


Appendix B. The RatioR
Here, we show that for all x0:


R ≡ Q1√
Q2


=
C(1)√


C(0) · C(2)
∈ (0, 1) . (B.1)


Since Q1 > 0 and Q2 > 0, one hasR > 0, so it only remains to show thatR < 1.


(i) Let us first consider the Maxwell-Boltzmann case. Recalling the explicit expressions
(A.1), one obtains (x0 ∈ (−1,∞))


R2 =
1 + 2x0 + x2


0


2 + 2x0 + x2
0


< 1 . (B.2)


To show thatR < 1 in the other two cases, it is convenient to introduce the real functional
space L2([a,∞), dx) with scalar product (·, ·)a and norm ‖ · ‖a:


(f1, f2)a =


∫ ∞


a


f1(x) f2(x) dx , ‖f‖2
a = (f, f)a . (B.3)


(ii) For the Bose-Einstein case, one has (x0 > 0)


R =
‖√x g‖2


x0


‖g‖x0 · ‖x g‖x0


, with g(x) =
ex/2


|ex − 1| . (B.4)


Hence, it is sufficient to show that


‖√x g‖2
x0
< ‖g‖x0 · ‖x g‖x0 . (B.5)


We have
‖√x g‖2


x0
= (
√
x g,
√
x g)x0 = (g, x g)x0 < ‖g‖x0 · ‖x g‖x0 , (B.6)


where we have used the Cauchy-Schwarz inequality.
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(iii) Finally, let us consider the Fermi-Dirac case. If x0 > 0, then we proceed as in (ii). If
x0 ≤ 0, then we observe that


R ≤ ‖√x g‖2
0


‖g‖0 · ‖x g‖0
, with g(x) =


ex/2


|ex + 1| , (B.7)


and again proceed as in point (ii).


Appendix C. The Entropy Production
In this appendix, we derive the expression (3.26) for the entropy production rate σs. For
this, let us first recall how a real positive semi-definite matrix is defined. Let {ej} ⊂ R2N+4


denote the canonical basis in which (ei, Lej) = Lij, where (·, ·) denotes the usual scalar
product in R2N+4. Then the matrix L is said to be real positive semi-definite if for any
vector V ∈ R2N+4 one has


σs = (V, LV ) =
∑


i


∑


j


LijViVj ≥ 0 . (C.1)


Let us decompose the matrix elements Lij into a symmetric and antisymmetric part:


Lij = Lsij + Laij , (C.2)


where
Lsij =


1


2
(Lij + Lji) = Lsji and Laij =


1


2
(Lij − Lji) = −Laji . (C.3)


Then
σs =


∑


i


∑


j


LsijViVj . (C.4)


This shows that only the symmetric part of the transport matrix L may contribute to the
entropy production. Observe that the symmetric transport coefficients, Lsij , also satisfy the
relations (3.20) and (3.21). Since we shall only make use of these properties, we see that
we can assume that the matrix L is symmetric.


The first idea is to decompose the sum (C.4) into four sums, one associated to each
block appearing in the matrix L. To simplify the notation, let us consider that the chain
contains N − 2 quantum dots and then number as 1 and N the left and right reservoirs, re-
spectively. We shall then writeX1, . . . , XN for the firstN components of V and Y1, . . . , YN
for its last N components. One may interpret this decomposition as follows: Xi = δµi/e
and Yi = δTi/T . Recalling that Lij = Lji, one has


σs =


N∑


i=1


N∑


j=1


L
(0)
ij XiXj + 2


N∑


i=1


N∑


j=1


L
(1)
ij XiYj +


N∑


i=1


N∑


j=1


L
(2)
ij YiYj . (C.5)


Now, using the relations L(1)
ij = Q1L


(0)
ij and L(2)


ij = Q2L
(0)
ij , one obtains


σs =


N∑


i=1


N∑


j=1


L
(0)
ij [XiXj + 2Q1XiYj +Q2YiYj] . (C.6)
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Let Zj =
√
Q2Yj andR = Q1/


√
Q2. Then


σs =


N∑


i=1


N∑


j=1


L
(0)
ij [XiXj + 2RXiZj + ZiZj] . (C.7)


Let us first consider the term:


T1 =


N∑


i=1


N∑


j=1


L
(0)
ij XiXj . (C.8)


We write


T1 =
N∑


i=1


L
(0)
ii X


2
i +


N∑


i=1


N∑


j=1


L
(0)
ij XiXj(1− δij) . (C.9)


Since
∑


j L
(0)
ij = 0, one has L(0)


ii = −∑j L
(0)
ij (1− δij) and therefore


T1 = −
N∑


i=1


N∑


j=1


L
(0)
ij X


2
i (1− δij) +


N∑


i=1


N∑


j=1


L
(0)
ij XiXj(1− δij) . (C.10)


Now comes a trick:


N∑


i=1


N∑


j=1


L
(0)
ij X


2
i (1− δij) =


N∑


i=1


N∑


j=1


L
(0)
ij X


2
j (1− δij) . (C.11)


Hence


T1 = −
N∑


i, j = 1
i < j


L
(0)
ij (X2


i − 2XiXj +X2
j )︸ ︷︷ ︸


(Xi−Xj)2


. (C.12)


This relation is well known (see e.g. [32]). Next we consider the second term:


T2 = 2R
N∑


i=1


N∑


j=1


L
(0)
ij XiZj = 2R


N∑


i=1


L
(0)
ii XiZi + 2R


N∑


i=1


N∑


j=1


L
(0)
ij XiZj(1− δij) . (C.13)


Using the relation L(0)
ii = −∑j L


(0)
ij (1− δij) and the identities


N∑


i=1


N∑


j=1


L
(0)
ij XiZi(1− δij) =


N∑


i=1


N∑


j=1


L
(0)
ij XjZj(1− δij) , (C.14)


and
N∑


i=1


N∑


j=1


L
(0)
ij XiZj(1− δij) =


N∑


i=1


N∑


j=1


L
(0)
ij XjZi(1− δij) , (C.15)
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one can write


T2 =
N∑


i=1


N∑


j=1


L
(0)
ij R (XiZj +XjZi −XiZi −XjZj) (1− δij) . (C.16)


Writing the term in ZiZj in a similar manner as T1, one finally obtains


σs =


N∑


i, j = 1
i < j


(−L(0)
ij ) Iij , (C.17)


where


Iij = (Xi −Xj)
2 + (Zi − Zj)2 − 2RCij , Cij = XiZj +XjZi −XiZi −XjZj .


This is the relation (3.26) used in Subsection 3.3 to prove that σs ≥ 0.


Appendix D. Equilibrium and Non-Equilibrium States
In this appendix, we prove the equivalent relations presented in Subsection 3.4.


To obtain the first one,


{System is at equilibrium} ⇐⇒ {Ii = 0 and Ji = 0, ∀i} ,


let us write the no-current condition (i ∈ {L,R, 1, . . . , N}):


Ii =
∑


j


L
(0)
ij


δµj
e


+ L
(1)
ij


δTj
T


= 0 , (D.1)


Ji =
∑


j


L
(1)
ij


δµj
e


+ L
(2)
ij


δTj
T


= 0 . (D.2)


It is convenient to define X, Y ∈ RN+2 by


Xj =
δµj
e


and Yj =
δTj
T


. (D.3)


Then, using the relations L(1)
ij = Q1L


(0)
ij and L(2)


ij = Q2L
(0)
ij , and setting Q = Q2/Q1, one


sees that the conditions (D.1)–(D.2) can be rewritten as follows:


L(0)(X +Q1Y ) = 0 , (D.4)
L(0)(X +QY ) = 0 . (D.5)


Since R 6= 1, it follows that Q1 6= Q. Assume now that all the currents vanish. Then the
equations (D.4)–(D.5) imply that


L(0)X = 0 and L(0)Y = 0 . (D.6)
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Since
∑


j L
(0)
ij = 0, the equilibrium situation, Xi = δµ/e and Yi = δT/T , is a solution.


Observe now that L(0) can be considered as the generator of a Markov process and, con-
sequently, the equation L(0)V = 0 has a unique solution (up to a multiplicative constant).
Therefore the system is at equilibrium. Finally, the reverse implication is immediate since
the equilibrium situation satisfies the equations (D.4)–(D.5).


We next turn to the equivalence in terms of the entropy production:
{


System is at
equilibrium


}
⇐⇒ σs = 0 and


{
System is


out of equilibrium


}
⇐⇒ σs > 0 .


Observe that, since σs ≥ 0, the two above statements are contrapositive equivalences.
Therefore, it is sufficient to prove the first. For this we use the expression (C.17) for σs.


[⇒] Assume the system is at equilibrium. Then, X1 = · · · = XN and Z1 = · · · = ZN , and
therefore Iij = 0 for all i, j, from which it follows that σs = 0.


[⇐] Conversely, assume that σs = 0. Then, since (−L(0)
ij ) < 0 and Iij ≥ 0 for all i < j,


one has Iij = 0 for all i < j. Therefore, by (3.27), one deduces that X1 = · · · = XN and
Z1 = · · · = ZN , i.e. the system is at equilibrium.


Appendix E. The Matrix L
(0)
C


Here we prove that the matrix L(0)
C is real positive definite and consequently that L(0)


C has
positive determinant and is therefore invertible.


Let W ∈ RN , W 6= 0, and


T ≡ (W,L
(0)
C W ) =


N∑


i=1


N∑


j=1


L
(0)
ij WiWj . (E.1)


The idea is to proceed as in the proof of σs ≥ 0, but with the identity


L
(0)
ii = −L(0)


iL − L
(0)
iR −


N∑


j=1


L
(0)
ij (1− δij) . (E.2)


We obtain


T = −
N∑


i, j = 1
i < j


L
(0)
ij (Wi −Wj)


2 −
N∑


i=1


(L
(0)
iL + L


(0)
iR )W 2


i > 0 . (E.3)


This shows that L(0)
C is real positive definite.
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Now, let λ1, . . . , λN denote the eigenvalues of L(0)
C , which might be complex since L(0)


C


is not symmetric in general.


(1) Assume that λ is a real eigenvalue of L(0)
C and let v ∈ RN be a normalized associated


eigenvector. Then


λ = λ‖v‖ = (v, λv) = (v, L
(0)
C v) > 0 , (E.4)


where we have used that L(0)
C is real positive definite.


(2) Assume next that λ is a complex eigenvalue: λ = a + ib, with a, b ∈ R and b 6= 0.
Then, since L(0)


C is a real matrix, both λ and its complex conjugate λ are eigenvalues
of L(0)


C .


In summary, we have shown that the eigenvalues of L(0)
C are either positives or come in


pairs (λ, λ) with λ 6= 0. Therefore


det(L
(0)
C ) =


∏


i


λi > 0 . (E.5)


Appendix F. The Profiles
Here we explain the details in the derivation of the profiles (4.36)–(4.38). From (4.35), one
sees that the profiles are obtained by solving the generic equation:


L
(0)
C X = −


∑


`=L,R


D`X` . (F.1)


From Appendix E, the matrix L(0)
C can be inverted to give


X = −
∑


`=L,R


[L
(0)
C ]−1D`X` . (F.2)


Recalling that (D`)j = L
(0)
j` , one has in components:


Xi = −
N∑


j=1


([L
(0)
C ]−1)ij


[
L


(0)
jLXL + L


(0)
jRXR


]
. (F.3)


Now comes a trick:


L
(0)
jL = −L(0)


jR −
N∑


k=1


L
(0)
jk . (F.4)


With this identity, one has


Xi =
N∑


k=1


N∑


j=1


([L
(0)
C ]−1)ijL


(0)
jk XL −


N∑


j=1


([L
(0)
C ]−1)ijL


(0)
jR(XR −XL)


= XL −
N∑


j=1


([L
(0)
C ]−1)ijL


(0)
jR(XR −XL) . (F.5)
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Observe that (L
(0)
C )ij = L


(0)
ij = e2C(0)/h Γij and L(0)


jR = −e2C(0)/h tjR. Hence, the
constant e2C(0)/h involved in ([L


(0)
C ]−1)ij and in L


(0)
jR simplifies, and we are left with


profiles independent of the distribution f describing the reservoirs. The temperature and
chemical potential profiles are obtained by setting Xi = δTi/T , with Ti = T + δTi, and
Xi = δµi/e, with µi = µ+ δµi, respectively.


Appendix G. An Expression for Ai


In this appendix, we derive the alternative expression (4.44) for the coefficient Ai. From
(4.38), one has


Ai =


N∑


j=1


(Γ−1
C )ij tjR . (G.1)


Now, we write


(Γ−1
C )ij =


1


det (ΓC)
(−1)i+j det (ΓC(j, i)) , (G.2)


so that


Ai =
1


det (ΓC)


N∑


j=1


(−1)i+j det (ΓC(j, i)) tjR . (G.3)


It remains to expand det (ΓC). One has


det (ΓC) =
N∑


j=1


(−1)i+j det (ΓC(j, i)) Γji . (G.4)


Using the relation


Γji = −ΓjL − ΓjR −
N∑


k = 1
k 6= i


Γjk , (G.5)


one obtains


det (ΓC) =


N∑


j=1


(−1)i+j det (ΓC(j, i)) [tjL + tjR]− Ri , (G.6)


where


Ri =


N∑


j=1


N∑


k = 1
k 6= i


(−1)i+j det (ΓC(j, i)) Γjk . (G.7)


Finally, using (G.2), one obtains


Ri = det (ΓC)


N∑


k = 1
k 6= i


N∑


j=1


(
Γ−1


C


)
ij


Γjk = det (ΓC)


N∑


k = 1
k 6= i


δik = 0 . (G.8)
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Appendix H. The Global Scattering Matrix SN


In this appendix, we explain how to build the scattering matrix S of the system made of
N quantum dots from the N individual scattering matrices S (1), . . . , S(N), where S(k) is
the (M + Mk + M) × (M + Mk + M) unitary scattering matrix associated with the k-th
quantum dot. Here, we have set ML = MR = M .


Let us start with the case N = 2. Let S(1) and S(2) denote the scattering matrices of the
first and second quantum dot, respectively, and let S2 denote the corresponding scattering
matrix for the system made of two quantum dots (see Figure 10).


PSfrag replacements


xL


yL xR


yR


x1 y1


z′


z


x2 y2


S(1) S(2)


Figure 10: Combination of S(1) and S(2) into the composite S-matrix S2.


From Figure 10, one easily sees that these matrices are related as follows:


S(1)




xL


x1


z



 =




yL


y1


z′



 , S(2)




z′


x2


xR



 =




z
y2


yR



 , S2






xL


x1


x2


xR



 =






yL


y1


y2


yR



 . (H.1)


Introducing


r(1) =


(
S


(1)
11 S


(1)
12


S
(1)
21 S


(1)
22


)
, r′(1) = S


(1)
33 , t(1) =


(
S


(1)
31 S


(1)
32


)
, t′(1) =


(
S


(1)
13


S
(1)
23


)
(H.2)


and


xL1 =


(
xL


x1


)
, yL1 =


(
yL


y1


)
(H.3)


one can rewrite the first relation in (H.1) as follows:
(
r(1) t′(1)


t(1) r′(1)


)(
xL1


z


)
=


(
yL1


z′


)
. (H.4)


Similarly, setting


r(2) = S
(2)
11 , r′(2) =


(
S


(2)
22 S


(2)
23


S
(2)
32 S


(2)
33


)
, t(2) =


(
S


(2)
21


S
(2)
31


)
, t′(2) =


(
S


(2)
12 S


(2)
13


)
(H.5)
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and


x2R =


(
x2


xR


)
, y2R =


(
y2


yR


)
(H.6)


one has for the second relation in (H.1):
(
r(2) t′(2)


t(2) r′(2)


)(
z′


x2R


)
=


(
z
y2R


)
. (H.7)


Finally, we write the third relation in (H.1) as follows:
(
r2 t′2
t2 r′2


)(
xL1


x2R


)
=


(
yL1


y2R


)
. (H.8)


Solving the equations (H.4) and (H.7) for yL1 and y2R, and recalling the relation (H.8), one
obtains


r2 = r(1) + t′(1)[1− r(2)r′(1)]−1r(2)t(1) , (H.9)
r′2 = r′(2) + t(2)[1− r′(1)r(2)]−1r′(1)t′(2) , (H.10)
t2 = t(2)[1− r′(1)r(2)]−1t(1) , (H.11)
t′2 = t′(1)[1− r(2)r′(1)]−1t′(2) . (H.12)


Let us now generalize these relations to the N > 2 quantum dots situation. For this we
denote by S(1), . . . , S(N) the N individual scattering matrices and by SN the composite
S-matrix associated to N quantum dots. We write


SN






xL


x1


:
xN
xR






=






yL


y1


:
yN
yR






, SN =


(
rN t′N
tN r′N


)
. (H.13)


Then


rN = r(12...N−1) + t′(12...N−1)[1− r(N)r′(12...N−1)]−1r(N)t(12...N−1) , (H.14)
r′N = r′(N) + t(N)[1− r′(12...N−1)r(N)]−1r′(12...N−1)t′(N) , (H.15)
tN = t(N)[1− r′(12...N−1)r(N)]−1t(12...N−1) , (H.16)
t′N = t′(12...N−1)[1− r(N)r′(12...N−1)]−1t′(N) , (H.17)


where


r(N) = S
(N)
11 , r′(N) =


(
S


(N)
22 S


(N)
23


S
(N)
32 S


(N)
33


)
, t(N) =


(
S


(N)
21


S
(N)
31


)
, t′(N) =


(
S


(N)
12 S


(N)
13


)
.


(H.18)
and


r(12...N−1) =






(SN−1)11 . . . (SN−1)1N


: :
(SN−1)N1 . . . (SN−1)NN



 , r′(12...N−1) = (SN−1)N+1 N+1 , (H.19)
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t(12...N−1) =
(
(SN−1)N+1 1 . . . (SN−1)N+1 N


)
, t′(12...N−1) =






(SN−1)1 N+1


:
(SN−1)N N+1



 .


(H.20)
Therefore, by working recursively, one can build the global scattering matrix S = SN from
the local scattering matrices S(1), . . . , S(N). Note that, by construction, if S(1), . . . , S(N)


are unitary, then S will also be unitary.


Remark. If one considers that the terminals have only one channel: Mi = 1 for all i,
then r(N) and r′(12...N) become complex numbers and we can introduce the following com-
plex number:


cN = [1− r(N)r′(12...N−1)]−1 . (H.21)


Then one can rewrite the equations (H.14)–(H.17) as follows:


rN = r(12...N−1) + cN r(N) t′(12...N−1)t(12...N−1) , (H.22)
r′N = r′(N) + cN r′(12...N−1) t(N)t′(N) , (H.23)
tN = cN t(N)t(12...N−1) , (H.24)
t′N = cN t′(12...N−1)t′(N) . (H.25)


These are the equations that are used in the numerical simulations in Section 5.
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