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1 Introduction.


In what follows, we show presence of the spectral gap between the ground state
energy and the rest of spectrum implies statistical independence of left and
right semi-infinite subsystems. This independence is called split property in the
context of local quantum field theory (local QFT) in th sense of R. Haag. (c.f.
[11]) The split property is known to hold in a number of situations of local
QFT while, as far as we are aware, this condition for quantum spin chains was
never proved in the situation we consider here. As a corollary we will see that a
gapless excitation exists in certain U(1) symmetric quantum lattice models on
Z .
Now we will exhibit typical examples of Hamiltonians we have in our mind.
These are U(1) gauge invariant finite range Hamiltonians for quantum spin
chains such as the Heisenberg Hamiltonians HXXX on the one-dimensional in-
teger lattice Z or fermionic systems on Z, HF as described as follows:


HXXX =
∑


i,j∈Z


∑
α=x,y,z


Jijσ
(i)
α σ(j)


α , (1.1)


HF =
∑


i,j∈Z


tijc
∗cj +


∑
k∈Z


Vk(n), (1.2)


where σ
(j)
α in (1.1) is the spin operator at the site j in which the direction of


the spin is denoted by α. c∗j ,ci are Fermion creation - annihilation operators
satisfying the anti-commutation relations and Jij and tij are coupling constants
satisfying the conditions (finite rangeness and translational invariance);


Jij = Ji−j0, tij = ti−j0, Ji0 = 0, ti0 = 0


if |i| > r. Vk(n) is a polynomial of the local number operators ni = c∗i ci at the
site i . A simple example of Vk(n) is Vk(n) = Knknk+1 (K: a constant).


Both HXXX and HF are invariant under the global U(1) gauge transfor-
mation where, for the spin chain, the gauge transformation is defined via the
rotation around the z axis and, for Fermion system, it is defined via the formula
cj → eiθcj . Then, one of our results is expressed as follows.


Theorem 1.1
(i) Consider the quantum spin chain on Z and the spin at each site is 1/2. Let
HS be a translationally invariant , U(1) gauge invariant finite range Hamil-
tonian. Suppose that ϕ is a U(1) gauge invariant , translationally invariant
pure ground state of HS. If ϕ is not a product state, a gapless excitation exists
between the ground state energy and the rest of the spectrum of the effective
Hamiltonian on the GNS representation space.
(ii) Consider the spinless Fermion lattice system on Z. Let HF be a trans-
lationally invariant , U(1) gauge invariant finite range Hamiltonian. Suppose
that ϕ is a U(1) gauge invariant , translationally invariant pure ground state of
HF . Suppose further that ϕ is not neither the standard Fock state ψF nor the
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standard anti-Fock state, a gapless excitation exists between the ground state
energy and the rest of the spectrum of the effective Hamiltonian on the GNS
representation space .


In the above theorem, by the standard Fock state we mean the state ψF specified
by the identity ψF (c∗jcj) = 0 for any j and the standard anti-Fock state is the
state ψAF specified by the identity ψAF (cjc


∗
j ) = 1 for any j.


The infinite volume ground state we consider here is defined in [7]. ϕ is a
ground state for an infinite volume Hamiltonian H if ϕ is a normalized positive
functional on the C∗-algebra of quasi-local observables satisfying


ϕ(Q∗[H,Q]) ≥ 0 (1.3)


for any quasi-local observable Q. The infinite volume limit of ground states
for finite volume Hamiltonians with any boundary conditions gives rise to a
state satisfying (1.3). More precisely let Hn be a sequence of finite volume
Hamiltonians satisfying lim[Hn, Q] = [H,Q] for any local observable Q and Ωn


be a unit eigenvector for the least eigenvalue of Hn. Set


ϕ(Q) = lim
n


(Ωn, QΩn).


Then, the state ϕ satisfies the inequality (1.3).


Results similar to Theorem1.1 were obtained before for several cases. For
example, for antiferromagnetic Heisenberg model, presence of gapless excitation
was proved by I.Affleck and E.Lieb in [5] . Results on Fermion models were
obtained by T.Koma in [15] . The difference between previous results and ours
lies in the two points. First our result is on ground state for arbitrary boundary
conditions. The second point is that our proof is new and the argument is based
on three mathematical ingredient:
(1) Results on Bell’s inequality for infinite quantum systems due to S.Summers
and R.F.Werner ([26]) ,
(2) Haag duality of quantum spin chain recently proved by us [14] and
(3) Improved Lieb-Robinson bound due to R.Simms and B.Nachteregaele [25].


We will see that these three results imply that any translationally invariant
pure ground states have the split property if there is a spectral gap between the
ground state energy and the rest of spectrum. More precisely, we will prove the
following theorem.


Theorem 1.2
(i) Consider a quantum spin chain on Z. Let HS be a translationally invariant
finite range Hamiltonian and let ϕ be a translationally invariant pure ground
state of HS. Suppose that there is a gap between the ground state energy and
the rest of the spectrum of the effective Hamiltonian on the GNS representation
space associated with ϕ .


3







Then, ϕ is equivalent to a product state ψL ⊗ ψR where ψL is a state of the
algebra of observables localized in (−∞, 0] and ψR is a state of the algebra of
observables localized in [1,∞)
(ii) Consider a Fermion lattice system on Z with a finite number of components
at each lattice site. Let HF be a translationally invariant finite range Hamil-
tonian and let ϕ be a translationally invariant pure ground state. Suppose that
there is a gap between the ground state energy and the rest of the spectrum of
the effective Hamiltonian on the GNS representation space associated with ϕ .
Then, ϕ is equivalent to a product state ψL ⊗Z2 ψR where ψL is a even state
of the algebra of observables localized in (−∞, 0] and ψR is a even state of the
algebra of observables localized in [1,∞) and by ⊗Z2 we denote the graded tensor
product.


The notion of graded tensor product is fermion analogue of the tensor product
which we introduce in Section 4.


We employ the C∗-algebraic method to prove Theorem 1.1 and Theorem
1.2. The method is an abstract functional analysis which can be applied to
Hamiltonians with a form more general than in (1.1) and (1.2) . The standard
references for the framework and basic notions of the C∗-algebraic method are
[6] and [7]. In Section 2, we introduce several notions to describe our results
precisely. We introduce Lieb-Robinson bound and uniform exponential cluster-
ing. In Section 3, we prove twisted Haag duality for the fermionic system. In
section 4, we explain the reason why that the spectral gap implies split property
with the aid of Bell’s inequality in infinite quantum systems. We present our
proof of Theorem 1.1 and Theorem 1.2 in the final section.


2 Infinite Volume Ground States and Spectral
Gap.


First we introduce several notations and notions of quantum spin chain on Z
and then later we mention the case of Fermions. We denote the C∗-algebra of
(quasi)local observables by A. This means that A is the UHF C∗−algebra n∞


( the C∗-algebraic completion of the infinite tensor product of n by n matrix
algebras ):


A =
⊗
Z


Mn(C)
C∗


,


where Mn(C) is the set of all n by n complex matirces. Each component of
the tensor product is specified with a lattice site j ∈ Z. A is the totality of
quasi-local observables. We denote by Q(j) the element of A with Q in the j th
component of the tensor product and the identity in any other components :


Q(j) = · · · ⊗ 1 ⊗ 1 ⊗ Q︸︷︷︸
jth component


⊗1 ⊗ 1 ⊗ · · ·
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For a subset Λ of Z , AΛ is defined as the C∗-subalgebra of A generated by
elements Q(j) with all j in Λ. We set


Aloc = ∪Λ⊂Z:|Λ|<∞ AΛ


where the cardinality of Λ is denoted by |Λ|. We call an element of Aloc a local
observable or a strictly local observable.


By a state ϕ of a quantum spin chain, we mean a normalized positive lin-
ear functional on A which gives rise to the expectation value of a quantum
mechanical state.


When ϕ is a state of A, the restriction of ϕ to AΛ will be denoted by ϕΛ :


ϕΛ = ϕ|AΛ .


We set


AR = A[1,∞) , AL = A(−∞,0] , ϕR = ϕ[1,∞) , ϕL = ϕ(−∞,0] .


By τj , we denote the automorphism of A determined by


τj(Q(k)) = Q(j+k)


for any j and k in Z. τj is referred to as the lattice translation of A.
Given a state ϕ of A, we denote the GNS representation of A associated


with ϕ by {πϕ(A), Ωϕ, Hϕ} where πϕ(·) is the representation of A on the GNS
Hilbert space Hϕ and Ωϕ is the GNS cyclic vector satisfying


ϕ(Q) = (Ωϕ, πϕ(Q)Ωϕ) Q ∈ A.


Let π be a representation of A on a Hilbert space. The von Neumann algebra
generated by π(AΛ) is denoted by MΛ. We set


MR = M[1,∞) = π(AR)′′, ML = M(−∞,0] = π(AL)′′.


In terms of the above definitions, we introduce the notion of the dynamics
(the Heisenberg time evolution) and the ground state for infinite volume sys-
tems. By Interaction we mean an assignment {Ψ(X)} of each finite subset X
of Z to a selfadjoint operator Ψ(X) in AX . We say that an interaction is of
finite range if there exists a positive number r such that Ψ(X) = 0 if that the
diameter of X is larger than r. An interaction is translationally invariant if
and only if τj(Ψ(X)) = Ψ(X + j) for any X ⊂ Z and for any j ∈ Z. For a
translationally invariant finite range interaction, we consider the formal infinite
volume Hamiltonian H which is an infinite sum of local observables.


H =
∑
X⊂Z


Ψ(X).
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This sum does not converge in the norm topology, however the following com-
mutator and the limit make sense:


[H,Q] = lim
n→∞


[Hn, Q] =
∑
X⊂Z


[Ψ(X), Q], lim
n→∞


eitHnQe−itHn Q ∈ Aloc


where Hn =
∑


X⊂[−n,n] Ψ(X).
More generally, for any finite subset Λ the finite volume Hamiltonian HΛ is


defined by HΛ =
∑


X⊂Λ Ψ(X). Then if {Ψ(X)} is a translationally invariant
interaction, and if we assume that∑


X∋0


|X|||Ψ(X)|| < ∞, (2.1)


the following limit exists


αt(Q) = lim
Λ→Z


eitHΛQe−itHΛ


for any element Q of A in the C∗ norm topology. We call αt(Q) the time
evolution of Q.


Definition 2.1 Suppose the time evolution αt(Q) associated with an interaction
satisfying (2.1) is given. Let ϕ be a state of A. ϕ is a ground state of H if and
only if


ϕ(Q∗[H,Q]) =
1
i


d


dt
ϕ(Q∗αt(Q)) ≥ 0 (2.2)


for any Q in Aloc.


Suppose that ϕ is a ground state for αt . In the GNS representation of
{πϕ(A), Ωϕ,Hϕ}, there exists a positive selfadjoint operator Hϕ ≥ 0 such that


eitHϕπϕ(Q)e−itHϕ = πϕ(αt(Q)), eitHϕΩϕ = Ωϕ


for any Q in A. Roughly speaking, the operator Hϕ is the effective Hamiltonian
on the physical Hilbert space Hϕ obtained after regularization via subtraction
of the vacuum energy.


The spectral gap we are interested in is that of Hϕ. Note that, in principle,
a different choice of a ground state gives rise to a different spectrum.


Definition 2.2 We say that Hϕ has the spectral gap if 0 is a non-degenerate
eigenvalue of Hϕ and for a positive M > 0, Hϕ has no spectrum in (0,M),i.e.
Spec(Hϕ) ∩ (0,M) = ∅.


It is easy to see that Hϕ has the spectral gap if and only if there exists a positive
constant M such that


ϕ(Q∗[H,Q]) ≥ M(ϕ(Q∗Q) − |ϕ(Q)|2).


6







In the quantum field theory with locality it is known that presence of the
spectral gap implies exponential decay of (spacial) correlation. (c.f.[4], [10]) The
most general result is obtained by K.Fredenhagen and the result is referred to
as Fredenhagen’s cluster theorem.


The nature of locality in quantum spin chains is quite different from the
relativistic quantum field theory as we do not have speed of light. Nevertheless,
there is a control of propagation of quasi locality which is due to E.Lieb and
D.Robinson. The bound of this kind is called the Lieb-Robinson bound. ( [16])
The inequality is described as follows.


||[αt(Q), R]|| ≤ C(Q,R)e−ad(X,Y )−v|t| (2.3)


where Q(resp. R) is an element of AX (resp. AY and C(Q, R) is a constant
positive depending on Q and R and v is another positive constant called “group
velocity”. Though not straightforward, once the above quasi-locality estimate
is established we may expect a lattice model analogue of Fredenhagen’s cluster
theorem. This was achieved relatively recently. ( See [22], [12] and see also [8],
[15], [21], [24] for extension and application of the results.) The estimate of
spacial decay of correlation we need for our purpose is due to B.Nachtergaele
and R.Sims. Now we present this version in [25] .


Theorem 2.3 (B.Nachtergaele and R.Sims 2007) We consider the quan-
tum spin chain on Z. Assume that the interaction {Ψ(X)} is translationally
invariant and of finite range. Let ϕ be a translationally invariant pure ground
state of the Hamiltonian H. Assume further that the effective Hamiltonian Hϕ


has the spectral gap.
Then, there exists positive constants C and K such that for any Q in AL, R in
AR and any positive integer j, the following estimate is valid.


|ϕ(Qτj(R)) − ϕ(Q)ϕ(R)| ≤ C||Q|| · ||R||e−Kj (2.4)


C and K are independent of Q and R.


That C is independent on the size of support of observables Q and R is crucial
to our argument below and it seems that this independence was never obtained
before [25].


Next we introduce the U(1) gauge action to describe our main result (Theorem
1.1) more precisely. We consider the spin 1/2 system , thus A is the infinite
tensor product of 2 by 2 matrix algebras. We set


Sz =
1
2


∞∑
j=−∞


σ(j)
z , γθ(Q) = eiθSzQe−iθSz (2.5)


Then γ2π(Q) = Q for any Q in A and γθ gives rise a U(1) action on A. Instead
of proving Theorem 1.1, we will show an equivalent result stated as follows.
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Theorem 2.4 Suppose that the spin S is one half, hence the one-site observable
algebra is M2(C). Let ϕ be a translationally invariant pure ground state of
a finite range translationally invariant Hamiltonian. Suppose further that the
effective Hamiltonian Hϕ has the spectral gap and ϕ is γθ invariant for any θ.
Then, ϕ is a product state.


Next we consider fermionic systems. The results discussed above are extended
in a natural way. Let ACAR be the CAR (canonical anti-commutation relations)
algebra generated by Fermion creation-annihilation operators cj and c∗k (j, k ∈
Z) satisfying


{cj , ck} = 0, {c∗j , c∗k} = 0, {cj , c
∗
k} = δjk1 (2.6)


For each subset Λ of Z, ACAR
Λ is the C∗-subalgebra generated by cj and c∗k


for j, k ∈ Λ. ACAR
loc , ACAR


L , ACAR
R are defined as before. The paritiy Θ is an


automorphism of ACAR defined by Θ(cj) = −cj , Θ(c∗j ) = −c∗j for any j. We
set


(ACAR)± = {Q ∈ ACAR | Θ(Q) = ±Q},


(ACAR
Λ )± = (ACAR)± ∩ ACAR


Λ , (ACAR
loc )± = (ACAR)± ∩ ACAR


loc .


τj is the shift automorphisms defined by


τj(ck) = ck+j , τj(c∗k) = c∗k+j .


We introduce the U(1) gauge action γθ via the following equation:


γθ(cj) = e−iθcj , γθ(c∗j ) = eiθc∗j


For fermionic systems, an interaction is an assignment {Ψ(X)} of each finite
subset X of Z to a selfadjoint operator Ψ(X) in (ACAR


X )+. If we assume finite
rangeness and translational invariance of interactions and the formal infinite
volume Hamiltonian H =


∑
X⊂Z Ψ(X) gives rise to the time evolution αt of the


system via the formula,
d


dt
αt(Q)|t=0 = [H,Q].


The notions of the effective Hamiltonian and the spectral gap are formulated as
before and the Lieb-Robinson bound is valid for Θ-twisted commutators.


||{αt(Q), R}|| ≤ C(Q,R)e−ad(X,Y )−v|t| (2.7)


where Q(resp. R) is an element of (ACAR
X )− (resp. (ACAR


Y )−).


Theorem 2.5 We consider the spinless Fermion on Z. Assume that the in-
teraction {Ψ(X)} is translationally invariant and of finite range. Let ϕ be a
translationally invariant pure ground state of the Hamiltonian H. Assume fur-
ther that the effective Hamiltonian Hϕ has the spectral gap.
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Then, there exists positive constants C and K such that for any Q in ACAR
L , R


in ACAR
R and any positive integer j, the following estimate is valid.


|ϕ(Qτj(R)) − ϕ(Q)ϕ(R)| ≤ C||Q|| · ||R||e−Kj (2.8)


C and K are independent of Q and R.


The standard Fock state ψF is a state of Fermion which is determined uniquely
by the formula


ψF (c∗jcj) = 0 (2.9)


for any j. Similarly, the standard anti-Fock state ψAF is a state of Fermion
which is determined uniquely by the formula


ψAF (cjc
∗
j ) = 0 (2.10)


for any j.


Theorem 2.6 Consider the spinless Fermion on Z and let ϕ be a transla-
tionally invariant pure ground state for a finite range translationally invariant
Hamiltonian. Suppose further that the effective Hamiltonian Hϕ has the spectral
gap and ϕ is γθ invariant for any θ. Then, ϕ is either ψF or ψAF .
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3 Twisted Haag duality


In this section, we show twisted Haag duality for translationally invariant pure
states of Fermion systems. First, let us recall the definition of the Haag duality
for quantum spin chains. Consider an irreducible representation π(A) of A on
a Hilbert space H. We say Haag duality holds for a subset Λ in Z if π(AΛ)′′ =
π(AΛc)′ where Λc is the complement of Λ in Z. At first sight, this duality may
be expected. However, if one recalls other examples of infinite quantum systems
such as positive energy representation of loop groups, the duality turns out to be
highly non-trivial. (c.f. [32]) In the loop group case when we choose the upper
semi-circle as Λ, the duality does not hold for non-vacuum sectors of positive
energy representations.
If π(AΛ)′′ is a type I von Neumann algebra, it is easy to show Haag duality for
any Λ in Z. If Λ is the semi-interval [1,∞) and the representation is associated
with a (gapless) ground state MR = π(AΛ)′′ can be of non type I. Nevertheless
in [14], we succeeded in proving the Haag duality for MR in GNS representations
of translationally invariant pure states


Theorem 3.1 Let ϕ be a translationally invariant pure state of the UHF algebra
A, and let {πϕ(A), Ωϕ, Hϕ} be the GNS triple for ϕ. Then, the Haag duality
holds:


MR = M′
L (3.1)


Next we consider the GNS representation of ACAR associated with a trans-
lationally invariant pure state ψ and we show the fermionic version of Haag
duality. In general, any translationally invariant factor state ψ of ACAR is Θ
invariant. (See [3] for proof.) Suppose that a state ψ of ACAR is Θ invariant
and let {πψ(ACAR),Ωψ, Hψ} be the GNS triple associated with ψ. There exists
a (unique) selfadjoint unitary Γ on Hψ satisfying


Γπψ(Q)Γ−1 = πψ(Θ(Q)), Γ2 = 1, Γ = Γ∗, ΓΩψ = Ωψ. (3.2)


With aid of Γ, we introduce another representation πψ of ACAR via the following
equation:


πψ(cj) = πψ(cj)Γ, πψ(c∗j ) = Γπψ(c∗j ) (3.3)


for any integer j.
Let Λ be a subset of Z and ψ be a state of ACAR which is Θ invariant. By


definition,πψ(ACAR
Λ )′′ ⊂ πψ(ACAR


Λc )′. We say the twisted Haag duality is valid
for Λ if and only if


πψ(ACAR
Λ )′′ = πψ(ACAR


Λc )′ (3.4)


holds.


Theorem 3.2 Let ψ be a translationally invariant pure state of the CAR al-
gebra ACAR. and let {πψ(ACAR), Ωψ,Hψ} be the GNS triple for ψ. Then, the
twisted Haag duality holds for Λ = [1,∞).


πψ((ACAR)L)′′ = πψ((ACAR)R)′ (3.5)
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Now we prove this twisted duality using results of [1], [2] and [14]. Fermion sys-
tems and quantum spin chains are formally equivalent via the Jordan-Wigner
transformation.However this is not mathematically precise as the Jordan-Wigner
transformation contains an infinite product of Pauli spin matrices which may
not converge in the GNS spaces. We follow the idea of [1]. First we introduce
an automorphism Θ− of ACAR by the following equations:


Θ−(c∗j ) = −c∗j , Θ−(cj) = −cj (j ≤ 0),


Θ−(c∗k) = c∗k, Θ−(ck) = ck (k > 0).


Let Ã be the crossed product of ACAR by the Z2 action Θ− . Ã is the C∗-algebra
generated by ACAR and a unitary T satisfying


T = T ∗, T 2 = 1, TQT = Θ−(Q) (Q ∈ ACAR).


Via the following formulae, we regard A as a subalgebra of Ã:


σ(j)
z = 2c∗jcj − 1


σ(j)
x = TSj(cj + c∗j )


σ(j)
y = iTSj(cj − c∗j ). (3.6)


where


Sn =



σ(1)


z · · ·σ(n−1)
z n > 1


1 n = 1


σ(0)
z · · ·σ(n)


z n < 1.


We extend the automorphism Θ of ACAR to Ã via the following equations:


Θ(T ) = T, Θ(σ(j)
x ) = −σ(j)


x , Θ(σ(j)
y ) = −σ(j)


y , Θ(σ(j)
z ) = σ(j)


z .


As is the case of the CAR algebra, we set


(A)± = {Q ∈ A|Θ(Q) = ±Q}, (AΛ)± = (A)± ∩ AΛ, (Aloc)± = (A)± ∩ Aloc.


Then, it is easy to see that


(A)+ = (ACAR)+, (AΛ)+ = (ACAR
Λ )+, (Aloc)+ = (ACAR


loc )+.


Let ψ be a pure state of ACAR and assume that ψ is Θ invariant. Let ψ+ be the
restriction of ψ to (ACAR)+ = (A)+. ψ+ is extendible to a Θ invariant state ϕ0


of A via the following formula:


ϕ0(Q) = ψ+(Q+), Q± =
1
2
(Q ± Θ(Q)) ∈ (A)±. (3.7)


In general, ϕ0 may not be a pure state but if ϕ is a pure state extension of ψ+


to A, the relation between ϕ0 and ϕ is written as ϕ0(Q) = ϕ(Q+). That ϕ0 and
ϕ are identical or not depends on existence of a unitary implementing Θ− on
Hψ.
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Proposition 3.3 Let ψ be a Θ invariant pure state of ACAR and ψ+ be the
restriction of ψ to (ACAR)+.


(i) Suppose that ψ and ψ ◦ Θ− are not unitarily equivalent. The unique Θ
invariant extension ϕ of ψ+ to A is a pure state. If ψ is translationally
invariant, ϕ is translationally invariant as well.


(ii) Suppose that ψ and ψ◦Θ− are unitarily equivalent and that ψ+ and ψ+◦Θ−
are unitarily equivalent as states of (ACAR)+. The unique Θ invariant
extension ϕ of ψ+ to A is a pure state. If ψ is translationally invariant,
ϕ is translationally invariant as well.


(iii) Suppose that ψ and ψ◦Θ− are unitarily equivalent and that ψ+ and ψ+◦Θ−
are not unitarily equivalent as states of (ACAR)+. There exists a pure state
extension ϕ of ψ+ to A which is not Θ invariant. Furthermore, we can
identify the GNS Hilbert spaces Hψ+ and Hϕ and


πϕ(A)′′ = πϕ((A)+)′′. (3.8)


If ψ is translationally invariant, ϕ is a periodic state with period 2, ϕ◦τ2 =
ϕ and


πϕ(AL)′′ = πϕ((AL)+)′′, πϕ(AR)′′ = πϕ((AR)+)′′ (3.9)


where we set (AL,R)+ = (AL,R) ∩ (A)+.


Proposition 3.4 (i) Let ψ be a Θ invariant pure state of ACAR and Λ be a
subset of Z. Then, the twisted Haag duality (3.4) holds for Λ if and only
if


πψ+((ACAR
Λ )+)′′ = πψ+((ACAR


Λc )+)′ (3.10)


on the GNS space Hψ+ associated with the state ψ+ of (ACAR)+


(ii) Let ϕ be a Θ invariant pure state of A and Λ be a subset of Z. Then, the
Haag duality holds for Λ if and only if


πϕ+((AΛ)+)′′ = πϕ+((AΛc)+)′ (3.11)


on the GNS space Hϕ+ associated with the restriction ϕ+ of ϕ to (A)+ .


Theorem 3.2 follows from the above Proposition 3.3 , Proposition 3.4 and the
Haag duality for spin systems.


Proof of Proposition 3.3
Set Xj = cj + c∗j . As ψ is Θ invariant, the GNS space Hψ is a direct sum of


H
(±)
(ψ) where


H
(+)
ψ = πψ((A)+)Ω, H


(−)
ψ = πψ((A)+Xj)Ω.
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The representation πψ((A)+) of (A)+ on Hψ is decomposed into mutually dis-
joint irreducible representations on H


(±)
ψ .


Let ψ and ψ̃ be Θ invariant states of ACAR. The argument in 2.8 of [28]
shows that if ψ+ and ψ̃+ of (A)+ are equivalent, ψ and ψ̃ are equivalent. Now we
show (i). If pure states ψ and ψ ◦Θ− are not equivalent, ψ+ = ϕ+ is not equiv-
alent to (ϕ ◦ Θ−)+ and (ϕ ◦ Θ− ◦ Ad(Xj))+. Consider the GNS representation
{πϕ(A), Ωϕ,Hϕ} of A. If we restrict πϕ to (A)+ it is the direct sum of two irre-
ducible GNS representations associated with ψ+ = ϕ+ and (ϕ◦Θ− ◦Ad(Xj))+.
So we set


H = Hϕ, H = H1 ⊕ H2, H1 = Hϕ+ , H2 = H(ϕ◦Θ−◦Ad(Xj))+ .


Any bounded operator A on H is written in a matrix form,


A =
(


a11 a12


a21 a22


)
(3.12)


where a11(resp. a22) is a bounded operator on H1 (resp. H2) and a12(resp. a21)
is a bounded operator from H2 to H1 (resp. a bounded operator from H1 to H2.
As ψ+ = ϕ+ is not equivalent to (ϕ ◦ Θ− ◦ Ad(Xj))+,


P =
(


a 0
0 b


)
(3.13)


is an element of πϕ((A)+)′′ and πϕ(σ(j)
x ) looks like


πϕ(σ(j)
x ) =


(
0 d
d∗ 0


)
(3.14)


A direct computation shows that an operator A of the matrix form (3.12) com-
muting with (3.13) and (3.14) is trivial. This shows that the state ϕ is pure.
The translational invariance of ϕ follows from translational invariance of ψ and
ϕ(Q) = ψ(Q+).


(ii) of Proposition 3.3 can be proved by constructing the representation of A
on the GNS space of Fermion. By our assumption, πψ+((A)+) is not equivalent
to πψ+(Ad(Xj)(A)+). Hence πψ+((A)+) is equivalent to πψ+(Θ−(A)+)) and
πψ+(Ad(Xj)(A)+)) is equivalent to πψ+(Θ−(Ad(Xj)A)+)). It turns out that
there exists a selfadjoint unitary U(Θ−) (U(Θ−)∗ = U(Θ−), U(Θ−)2 = 1) on
Hψ such that


U(Θ−)πψ(Q)U(Θ−)∗, U(Θ−) ∈ πψ((A)+)′′ (3.15)


for any Q in ACAR. Any element R of A is writtten in terms of fermion operators
and T as follows:


R = R+ + TR−, (3.16)


where


R+ =
1
2
(R + Θ(R)) ∈ (ACAR)+, R− =


1
2
(TR − TΘ(R)) ∈ (ACAR)−.
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Using this formula, for any R in A, we set


π(R) = πψ(R+) + U(Θ−)πψ(R−) (3.17)


π(R) gives rise to a representation of A on Hψ and we set


ϕ(R) = (Ωψ, π(R)Ωψ) . (3.18)


The representation π(A) is irreducible because π((A)+)′′ contains U(Θ−) and
hence π(A)′′ contains π((ACAR)−) and π(A)′′ = B(Hϕ).
As in (i), the translational invariance of ϕ follows from Θ invariance of ϕ (by
construction) and translational invariance of ψ .


To show (iii), we construct an irreducible representation of A on the GNS
space H+ = πψ+((ACAR)+)Ωψ. Now under our assumption there exists a self-
adjoint unitary V (Θ−) satisfying


V (Θ−)πψ(Q)V (Θ−)∗ = πψ(Θ(Q)), V (Θ−) ∈ πψ((A)−)
w


(3.19)


for any Q in ACAR. For R written in the form (3.16), we set


π(R) = πψ(R+) + V (Θ−)πψ(R−) (3.20)


for R in A and π(R) belongs to the even part πψ((ACAR)+)′′. and π(A) acts
irreducibly on H+.
To show periodicity of the state ϕ, we introduce a unitary W satisfying


WΩψ = Ωψ, Wπψ(Q)W ∗ = πψ(τ1(Q)), Q ∈ ACAR


The adjoint action of both unitaries WV (Θ−)W ∗ and V (Θ−)πψ(σ(1)
z ) gives rise


to the same automorphism on πψ(ACAR). By irreducibility of the representation
πψ(ACAR), WV (Θ−)W ∗ and V (Θ−)πψ(σ(1)


z ) differ in a phase factor.


WV (Θ−)W ∗ = cV (Θ−)πψ(σ(1)
z ) (3.21)


where c is a complex number with |c| = 1 . As both sides in (3.21) are selfadjoint
, c = ±1. Then,


W 2V (Θ−)(W 2)∗ = V (Θ−)πψ(σ(1)
z σ(2)


z ) (3.22)


This implies that the state ϕ is periodic, for example,


ϕ(τ2(σ(1)
x )) =


(
Ωψ, (W 2V (Θ−)πψ(c1 + c∗1)(W


2)∗Ωψ


)
=


(
Ωψ, V (Θ−)πψ((σ(1)


z σ(2)
z )(c3 + c∗3))Ωψ


)
= ϕ(τ2(σ(3)


x )).


End of Proof of Proposition 3.3
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Remark 3.5 In [19], using expansion technique(but not the exact solution) we
have shown the XXZ Hamiltonian HXXZ with large Ising type anisotorpy ∆ >>
1


HXXZ =
∞∑


j=−∞
{∆σ(j)


z σ(j+1)
z + σ(j)


x σ(j+1)
x + σ(j)


y σ(j+1)
y }


has exactly two pure ground states ϕ and


ϕ ◦ Θ = ϕ ◦ τ1 ̸= ϕ.


The unique Θ invariant ground state (1/2ϕ + ϕ ◦ τ1) is a pure state of (A)+ In
this example, the phase factor c of (3.21) is −1.


Proof of Proposition 3.4
We now prove (i). Suppose that ψ is a Θ invariant pure state of A.
Let {πψ(ACAR), Ωψ, Hψ} be the GNS triple associated with ψ and U be the
selfadjoint unitary satisfying


Uπψ(Q)U∗ = πψ(Θ(Q)), UΩψ = Ωψ.


We set
H± = {ξ ∈ Hψ |Uξ = ±ξ}


and let P± be the projection to H±.
First we assume (3.10) and fix k in Λ and l in Λc. Any element Q in the


commutant of πψ(ACAR) is written as


Q = Q1 + Q2Zl, Zl = Uπψ((cl + c∗l )) (3.23)


where
Q1 =


1
2
(Q + UQU∗), Q2 =


1
2
(Q − UQU∗)Z∗


l .


It is easy to see that UQ1U
∗ = Q1, UQ2U


∗ = Q2, and that Q1, Q2 is in
πψ(ACAR


Λ )′. It turns out that, to prove our claim, it suffices to show that
an operator Q commuting with U and πψ(ACAR


Λ ) is in the weak closure of
πψ((ACAR


Λc )+).
Now let Q be an operator satisfying [Q,U ] = 0, [Q, πψ(R)] = 0 for any R


in πψ(ACAR
Λ ). Set


Q± = P±QP±.


Due to our assumption (3.10), we obtain


Q+ = w − lim
α


P+πψ(Qα)P+ (3.24)


for a sequence Qα in (ACAR
Λc )+. As Q commutes with the selfadjoint unitary


Xk = πψ(ck + c∗k), we get


Q− = P−XkQ+XkP− = P−XkP+QP+XkP− = P−XkQXkP−. (3.25)
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Inserting (3.24) in (3.25) we arrive at


Q− = w − lim
α


P−Xkπψ(Qα)XkP−


= w − lim
α


P−πψ((ck + c∗k)Qα(ck + c∗k))P−


= w − lim
α


P−πψ(Qα)P− (3.26)


where we used the conditions that (ck +c∗k) ∈ (ACAR
Λ ) and that Q+


α ∈ (ACAR
Λc )+.


(3.24) and (3.25) imply that


Q = w − lim
α


πψ(Qα) ∈ πψ(ACAR
Λc )+)′′ (3.27)


(3.27) is the property we claimed.


Next we show (3.11) assuming twisted Haag duality (3.11) . We use the same
notation as above.


The representation πψ restricted to (ACAR
Λ ) is a direct sum of representations


π± where
π±((ACAR


Λ )+)) = P±πψ((ACAR
Λ )+))P±


on H±. We denote π̃± by the representation of (ACAR
Λc )+ on H±. π± of (ACAR


Λ )+
are mutually unitarily equivalent because the operator Zl interwtines these rep-
resentations. The same is true for π̃± for (ACAR


Λc )+. Let M± be the von Neu-
mann algebra on H± generated by π±((ACAR


Λ )+) As π± are unitarily equiv-
alent, Ξ = Ad(πψ((ck + c∗k))) gives rise to an automorphism of M±. Thus
Ad(πψ((ck + c∗k)) is an automorphim of the commutant M±


′ on H±.
Now suppose Q+ is an element of M+


′ on H+ and we have to show that Q+


is in π̃+((ACAR
Λc )+)′′.


Set Xk = (ck + c∗k and


Q = P+Q+P+ + P−πψ(Xk)Q+πψ(Xk)P−. (3.28)


Then, we claim that Q commutes with (πψ(ACAR
Λ ). To see this, first take R


from (ACAR
Λ )+ and we obtain


Qπψ(R) = P+Q+π+(R)P+ + P−πψ(Xk)Q+πψ(XkRXk)πψ(Xk)P−


= P+π+(R)Q+P+ + P−πψ(Xk)P+Q+P+πψ(XkRXk)P+πψ(Xk)P−


= P+π+(R)Q+P+ + P−(πψ(Xk)P+πψ(XkRXk)P+Q+P+πψ(Xk)P−


= πψ(R)Q. (3.29)


On the other hand,


πψ(Xk)Qπψ(Xk) = P+πψ(Xk)Qπψ(Xk)P+ + P−πψ(Xk)Qπψ(Xk)P−


= P+πψ(Xk)P−QP−πψ(Xk)P+ + P−πψ(Xk)P+QP+πψ(Xk)P−


= P+πψ(Xk)πψ(Xk)Q+πψ(Xk)πψ(Xk)P+ + P−πψ(Xk)Q+πψ(Xk)P−


= P+Q+)P+ + P−πψ(Xk)Q+πψ(Xk)P−


= Q. (3.30)
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As a consequence,


Q ∈ πψ(ACAR
Λ )′ = πψ(ACAR


Λc )′′, Q+ ∈ π+((ACAR
Λc )+)′′


As (ii) can be shown in the same manner, we omit the detail.
End of Proof of Proposition 3.4


4 Split Property and Spectral Gap


Once Haag duality is proven, it is possible to show that the presence of the
spectral gap implies split property in the sense of S.Doplicher and R.Longo.
(cf.[9]) This result is known in case of the relativistic QFT case. We explain the
proof rather briefly. In our proof we use results on maximal violation of Bell’s
inequality due to Stephen J.Summers and Reinhard Werner in [26] .


First let us recall the definition of split property or split inclusion. Let M1 and
M2 be a commuting pair of factors acting on a Hilbert space H, M1 ⊂ M′


2. We
say the inclusion is split if there exists an intermediate type I factor N such
that


M1 ⊂ N ⊂ M′
2 ⊂ B(H) (4.1)


The split inclusion is used for analysis of local QFT and of von Neumann al-
gebras and some general feature of this concept is investigated for abstract von
Neumann alegebras. by J.von Neumann and later by S.Doplicher and R.Longo
in [9] . R.Longo used this notion of splitting for his solution to the factorial
Stone-Weierstrass conjecture in [17].


If (4.1) is valid, the inclusion of the type I factors N = B(H1) ⊂ B(H) implies
factorization of the underlying Hilbert spaces and we obtain H = H1 ⊗ H2 and
tensor product


M1 = M̃1 ⊗ 1H2 ⊂ B(H1) ⊗ 1H2 , M2 = 1H1 ⊗ M̃2 ⊂ 1H1 ⊗ B(H2). (4.2)


In this sense the split inclusion is statistical independence of two algebras M1


and M2.
When M2 is the commutant M′


1.of M1, the split property of the inclusion
M1 ⊂ M′


2 is nothing but the condition that M1 and hence M2 are type I von
Neumann algebras . In our case of quantum spin chains, we set M1 = MR =
πϕ(AR)′′, and M2 = ML = πϕ(AL)′′. When the state ϕ is translationally
invariant and pure, M2 is the commutant of M1 due to Haag dualtiy.


In 1987, Stephen J.Summers and Reinhard Werner found the characterization
of split property in terms of violation of Bell’s inequality. We now explain their
results in [26] . Fix a commuting pair of factors M1 and M2 and let M be the
von Neumann algebra generated by M1 and M2, M = M1 ∨ M2 and letϕ be a
normal state of M .
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By an admissible quadraple I = {X1, X2, Y1, Y2}, we mean a quartet of
operators X1, X2 in M1 and Y1, Y2 in M2 satisfying


−1 ≤ X1 ≤ 1, −1 ≤ X2 ≤ 1, −1 ≤ Y1 ≤ 1, −1 ≤ Y2 ≤ 1.


We set
β(ϕ,M1, M2) =


1
2


sup
I


ϕ(X1(Y1 + Y2) + X2(Y1 − Y2)) (4.3)


where the supremun is taken in all admissible quadraple I = {X1, X2, Y1, Y2} .
We call β(ϕ,M1,M2) the Bell’s constant.


The following results are known. (cf. [27]):


(i) 1 ≤ β(ϕ, M1, M2) ≤
√


2


(ii) If either M1 or,M2 is commutative, β(ϕ,M1, M2) = 1.


(iii) If the normal state ϕ of M is a convex combination of product states, then
ϕ =


∑
i ψ


(i)
1 ⊗ ψ


(i)
2 , β(ϕ, M1, M2) = 1.


(iii) If X1 and X2 attain the maximum value
√


2 of the Bell’s constant ,
β(ϕ, M1, M2) =


√
2, then,


ϕ(X2
i Q) = ϕ(QX2


i ) = ϕ(Q), ϕ((X1X2 + X2X1)Q) = 0 (4.4)


for i = 1, 2 and for any Q in M1.


When the state ϕ is faithful on M1, the equation (4.4) means that σx = X1,
σy = X2, and σz = iX1X2 satisfy the relation of Pauli matrices and that
the state ϕ restricted to these Pauli spin matrices is the tracial state. If the
maximum value


√
2 of the Bell’s constant is not attained by some elements, it is


possible to find a sequence of operators asymptotically satisfying the relation of
Pauli matrices in the ultra product of M1. Then, by applying a result of strong
stability of von Neumann algebras due to A.Connes, we are led to the followin
relation between split property, strong sability of von Neumann algebras and
Bell’s constant. (See [26] for proof.)


Theorem 4.1 (S. J.Summers and Reinhard Werner) Let M be a von Neu-
mann algebra in a separable Hilbert space H with cyclic separating vector. The
following conditions are equivalent.
(i) M is strongly stable, i.e.


M ∼= M ⊗ R1


where R1 is the hyperfinite II1 factor.
(ii) For every normal state ϕ of B(H), β(ϕ, M, M′) =


√
2.


Corollary 4.2 (i) Let ϕ be a translationally invariant pure state of A and set


Cj = sup |ϕ(Qτj(R)) − ϕ(Q)ϕ(R)| (4.5)
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where the supremum is taken for Q ∈ AL, and R ∈ AR satisfying
∥Q∥ ≤ 1, ∥R∥ ≤ 1 .


Suppose that the following uniform decay of correlation is valid.


lim
j→∞


Cj = 0 (4.6)


Then, ML and MR are of type I.
(ii) Let ψ be a translationally invariant pure state of ACAR and set


Cj = sup |ϕ(Qτj(R)) − ϕ(Q)ϕ(R)| (4.7)


where the supremum is taken for Q ∈ ACAR
L , and R ∈ ACAR


R satisfying
∥Q∥ ≤ 1, ∥R∥ ≤ 1 .


Suppose that the following uniform decay of correlation is valid.


lim
j→∞


Cj = 0 (4.8)


Then, MCAR
L = πψ(ACAR


L )′′ and MCAR
R = πψ(ACAR


R )′′ are of type I.


Proof of Corollary 4.2. To show the above corollary 4.2 (i), first take j large
such that Cj < ϵ and we have


| (Ωϕ, QRΩϕ) − (Ωϕ, QΩϕ) (Ωϕ, RΩϕ) | < ϵ||Q|| · ||R|| (4.9)


for any Q in M(−∞,0] and any R in M[j,∞). Let ϕ̃ be the vector state associated
with Ωϕ and restrict it to M(−∞,0]∪[j,∞). Then, ϕ̃(−∞,0]∪[j,∞) is close to a
product state due to (4.9)


β(ϕ̃(−∞,0]∪[j,∞), M[j,∞), M(−∞,0]) ≤ 1 + 2ϵ (4.10)


As the state ϕ is pure, the von Neumann algebra M(−∞,0]∪[j,∞) is type I and
by Haag duality explained in the previous section, we have


M(−∞,0]∪[j,∞) ∩ M′
(−∞,0] = M[j,∞).


The state ϕ̃(−∞,0]∪[j,∞) may not be faithful. We reduce M[j,∞) by the support
projection P for ϕ̃(−∞,0]∪[j,∞). We set M = PM[j,∞)P and we apply Theorem
4.1 of S.J.Summes and R.Werner. As a result, M is not strong stable. By
construction, M is hyperfinite, so M and M[j,∞) are type I von Neumann
algebra. (See Section 4 and Appendix of [13].) As M1j,∞) is the tensor product
of a matrix algbera and M[j,∞), it is of type I as well.


The case of the corollary 4.2 (ii) can be handle in the same way. Then,
instead of (4.9) , we obtain


| (Ωψ, QRΩψ) − (Ωψ, QΩψ) (Ωψ, RΩψ) | < ϵ||Q|| · ||R|| (4.11)


for for any Q in π̃(ACAR
(−∞,0])


′′ and any R in π(ACAR
[j,∞))


′′.
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As before, we express any element Q of ACAR as a sum of even and odd
elements.


Q = Q+ + Q−, Q± ∈ ACAR)±, ||Q±|| ≤ ||Q||.


The state ψ is Θ invariant, and we see


ψ(QR) − ψ(Q)ψ(R) = ψ(Q+R+) − ψ(Q+)ψ(R+) + ψ(Q−R−).


For Q in ACAR
[1,∞) and R in ACAR


(−∞,0]


| (Ωψ, π̃ψ(R)πψ(Q)Ωψ) − (Ωψ, π̃ψ(R)Ωψ) (Ωψ, πψ(Q)Ωψ) |
≤ | (Ωψ, πψ(R+)πψ(Q+)Ωψ) − (Ωψ, πψ(R+)Ωψ) (Ωψ, πψ(Q+)Ωψ) |
+ | (Ωψ, πψ(R−)πψ(Q−)Ωψ) (4.12)


Thus we obtain the following estimate of the Bell’s constant


β(ψ̃(−∞,0]∪[j,∞), π(ACAR
[j,∞))


′′, π̃(ACAR
(−∞,0])


′′) ≤ 1 + 4ϵ. (4.13)


(4.13) shows that π(ACAR
[1,∞))


′′ is of type I. End of Proof of Corollary 4.2.


By setting Cj = C0e
−M |j| the above corollary 4.2 implies Theorem 1.2 (i).


We consider fermionic systems. A state ψ of ACAR or ACAR
Λ is called even


if ψ ◦ Θ = ψ. Suppose that states ψ1 of ACAR
Λ and ψ2 of ACAR


Λc are given and
that ψ1 is even. We construct the graded tensor product state ψ1 ⊗Z2 ψ2 in
the following manner. Let {πk(·), Ωk, Hk} (k = 1, 2) be the GNS representation
associated with ψk. As ψ1 is even, there exists a selfadjoint unitary Γ on H1


implementing Θ on ACAR
Λ :


Γπ1(Q)Γ∗ = π1(Θ(Q)), Q ∈ ACAR
Λ


We introduce a representation π of ACAR on H = H1 ⊗ H2 via the following
identity:


π(cj) = π1(cj) ⊗ 1, π(cj) = π2Γ ⊗ (ck)


for j in Λ and k in Λc. We define ψ1 ⊗Z2 ψ2 as the vector state for Ω1 ⊗ Ω2.


ψ1 ⊗Z2 ψ2(Q) = (Ω1 ⊗ Ω2, π(Q)Ω1 ⊗ Ω2) .


If ψ is an even state of ACAR and if the restriction of ψ to ACAR
Λ gives rise to


a type I representation, ψ is equivalent to ψ1 ⊗Z2 ψ2 where ψ1 is a even state
of ACAR


Λ and ψ2 is a state of ACAR
Λc .


Noticing these facts we see that the corollary 4.2 implies Theorem 1.2 (ii).
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5 U(1) Gauge Symmetry


To complete our proof of Theorem 1.1, we use the main theorem of [18]. and
the proposition below.


Theorem 5.1 Suppose that the spin S of one site algebra M2S+1(n = 2S + 1)
for A is 1/2. Let ϕ be a translationally invariant pure state of A such that ϕR


gives rise to a type I representation of AR. Suppose further that ϕ is U(1) gauge
invariant , ϕ ◦ γθ = ϕ. Then, ϕ is a product state.


Proposition 5.2 Let ψ be a translationally invariant pure state of ACAR.
(i) Suppose further that ψ is U(1) gauge invariant, ψ ◦γθ = ψ. The Θ invariant
extension of ψ+ to A is a translationally invariant pure state.
(ii) Suppose further that ψ is U(1) gauge invariant and the von Neumann algebra
πψ(ACAR


L )′′ associated with the GNS representation of ψL is of type I. Then,
either ψ = ψF or ψ = ψAF holds.


Next we present a proof for Theorem 5.1 partly different from the one in
[18]. Let {π(A), Ω, H} be the GNS triple for ϕ. Suppose that MR is of type I.
As ϕR is γθ invariant, γθ is extendible to an U(1) action on the type I factor
MR. As any automorphism of an type I factor is inner, there exists a projective
unitary representation UR(θ) in MR satisfying


UR(θ)π(Q)UR(θ)∗ = π(γθ(Q)), Q ∈ AR. (5.1)


For U(1) the cocycle is trivial and we may assume that UR(θ) is a representation
of U(1). Similarly we obtain a representation UL(θ) of U(1) in ML satisfying


UL(θ)π(Q)UL(θ)∗ = π(γθ(Q)), Q ∈ AL. (5.2)


Furthermore by suitably choosing phase factors and setting U(θ) = UR(θ)UL(θ),
we obtain


U(θ)Ω = Ω, UR(θ)Ω = UL(−θ)Ω (5.3)


We write the Fourrier series for UR(θ) and UL(θ) as follows:


UR(θ) =
∞∑


k=−∞


eikθPR(k), UL(θ) =
∞∑


k=−∞


eikθPL(k)


Due to (5.3) we have PR(k)Ω = PL(−k)Ω.


The state ϕ is translationally invariant, τ1 restricted to AR is extendible to
the von Neumann algebra MR as an endomorphism denoted by ΞR.


ΞR(π(Q)) = π(τ1(Q)), Q ∈ AR.


This endomorphism ΞR is a shift of the type I von Neumann algebra MR,
namely, ∩∞


k=0Ξ
k(MR) = C1. Then, there exists a representation of O2 in MR


implementing ΞR .


T ∗
k Tl = δkl1, ΞR(Q) = T1QT ∗


1 + T2QT ∗
2 , Q ∈ MR (5.4)
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We can introduce a backward shift ΞL on ML satisfying


ΞL(π(Q)) = π(τ−1(Q)), Q ∈ AL


and another representation of O2 in ML implementing ΞL .


S∗
kSl = δkl1, ΞL(Q) = S1QS∗


1 + S2QS∗
2 , Q ∈ ML (5.5)


The representations of O2 satisfying (5.4) and (5.5) is not unique because we
have freedom of the U(2) gauge action (or choice of base of the 2 dimensional
space) but we may assume that


T2T
∗
2 − T1T


∗
1 = σ(1)


z , S2S
∗
2 − S1S


∗
1 = σ(0)


z .


Still we have freedom to choose the phase factor corresponding to the U(1)
gauge action. If we set V = S∗


1T1 + S∗
2T2, a direct computation shows that V is


a unitary and
V π(Q)V ∗ = π(τ1(Q)) (5.6)


for any Q in A. As the state ϕ is translationally invariant we may assume that


V Ω = Ω, S∗
kΩ = T ∗


k Ω. (5.7)


Next turn to UR(θ)TkUR(θ)∗. These operators satisfy the relation of the gen-
erators of O2. On the other hand, the adjoint action of UR(θ) is same as γθ


restricted on MR. By this fact we conclude


UR(θ)T1UR(θ)∗ = eilθT1, UR(θ)T2UR(θ)∗ = ei(l+1)θT2 (5.8)


By the same reason,


UL(θ)S1UR(θ)∗ = eil′θS1, UR(θ)S2UR(θ)∗ = ei(l′+1)θS2 (5.9)


We claim that l = l′. As τ1 commutes with γθ V commutes with U(θ) where
we used V Ω = Ω, U(θ)Ω = Ω. By definition,


U(θ)V = ei(l−l′)θV U(θ)


so we conclude l = l′.
(5.8) and (5.9) tell us


PR(k)T1 = T1PR(k − l), PR(k)T2 = T2PR(k − l − 1),
PL(k)S1 = S1PL(k − l), PL(k)S2 = S2PL(k − l − 1). (5.10)


Setting S1S
∗
1 = e


(0)
1 , S2S


∗
2 = e


(0)
2 T1T


∗
1 = e


(1)
1 , T2T


∗
2 = e


(1)
2 , we have


(Ω, e
(0)
1 PR(k)Ω) = (S∗


1Ω, PR(k)S∗
1Ω) = (Ω, T1PR(k)T ∗


1 Ω) = (Ω, PR(k + l)e(1)
1 Ω)


and
(Ω, e


(0)
2 PRΩ) = (Ω, PR(k + l + 1)e(1)


2 Ω)
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where we used 5.7. As e
(0)
1 + e


(0)
2 = 1 = e


(1)
1 + e


(1)
2


(Ω, PR(k)Ω) = (Ω, (e(1)
1 + e


(1)
2 )PR(k)Ω)


= (Ω, PR(k + l)e(1)
1 + PR(k + l + 1)e(1)


2 )Ω) (5.11)


Suppose that l = 0. Then,


(Ω, e
(1)
2 PR(k)Ω) = (Ω, PR(k + 1)e(1)


2 Ω) = α


for any k. Thus, for any m, we obtain


(Ω, e
(1)
2 Ω) ≥


n+m∑
k=n


(Ω, PR(k + 1)e(1)
2 Ω) = mα.


This shows that α = 0 and


(Ω, e
(1)
2 Ω) =


∞∑
k=−∞


(Ω, PR(k + 1)e(1)
2 Ω) = 0


Thus , ϕ is a translational invariant pure state satisfying ϕ(e(1)
1 ) = 0 which is a


product state.
Suppose that l = −1. Then,


(Ω, e
(1)
1 PR(k)Ω) = (Ω, PR(k − 1)e(1)


1 Ω) = α


for any k. By the same line of reasoning


(Ω, e
(1)
1 Ω) = 0


Thus , ϕ is a translational invariant pure state satisfying ϕ(e(1)
2 ) = 0 which is a


product state.
Suppose that l ≥ 1. Take sum of k in (5.11)


∞∑
k=n


(Ω, (e(1)
1 + e


(1)
2 )PR(k)Ω) =


∞∑
k=n


(Ω, PR(k + l)e(1)
1 + PR(k + l + 1)e(1)


2 )Ω)


It turns out
l−1∑
k=n


(Ω, e
(1)
1 PR(k)Ω) +


l∑
k=n


(Ω, e
(1)
2 PR(k)Ω) = 0 (5.12)


Each summand is positive in (5.12) and we see


(Ω, e
(1)
1 PR(k)Ω) = (Ω, e


(1)
2 PR(k)Ω) = 0


This shows (Ω, e
(1)
1 Ω) = 0 (Ω, e


(1)
2 Ω) = 0 and we arrive at a contradiction. So


l ≥ 1 is not possible. Similarly l ≤ −2 is impossible. End of Proof
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Proof of Proposition 5.2
To prove Proposition 5.2 (i), we show the case (iii) in Proposition 3.3 is impos-
sible due to assumption of γθ invariance. There exists U(θ) implementing γθ on
the GNS space of ψ. Then


U(θ)V (Θ−)U(θ)∗ = c(θ)V (Θ−)


as the adjoint action of both unitaries are identical. Moreover these are self-
adjoint so c(θ) = ±1 . Due to continuity in θ we conclude that c(θ) = 1 and
V (Θ−) is an even element.


Finally, we consider Proposition 5.2 (ii). Due to (i) of Proposition 5.2 (i),
the Fermionic state ψ has a translationally invariant pure state extension ϕ to
A. Then, the split property for Fermion implies that that of the Pauli spin
system. It turns out that either ψ(c∗jcj) = ϕ(e(j)


1 ) = 0 or ψ(cjcj∗) = ϕ(e(j)
2 ) = 0


holds. This completes our proof of Proposition 5.2 (ii).
End of Proof of Proposition 5.2
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