This work has been accepted for publication as part of the Memoirs of the American Mathematical Society and will be published in a future volume.



Quantum evolution, Born-Oppenheimer approximation, Pseudodifferential calculus, Operator-valued symbols, Wave-packets





Twisted Pseudodifferential Calculus and


Application to the Quantum Evolution of


Molecules
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Abstract


We construct an abstract pseudodifferential calculus with operator-
valued symbol, adapted to the treatment of Coulomb-type interactions,
and we apply it to study the quantum evolution of molecules in the Born-
Oppenheimer approximation, in the case where the electronic Hamiltonian
admits a local gap in its spectrum. In particular, we show that the molecu-
lar evolution can be reduced to the one of a system of smooth semiclassical
operators, the symbol of which can be computed explicitely. In addition,
we study the propagation of certain wave packets up to long time values of
Ehrenfest order. (This work has been accepted for publication as part of
the Memoirs of the American Mathematical Society and will be published
in a future volume.)


1 Introduction


In quantum physics, the evolution of a molecule is described by the initial-value
Schrödinger system, {


i∂tϕ = Hϕ;
ϕ |t=0 = ϕ0,


(1.1)


where ϕ0 is the initial state of the molecule and H stands for the molecular
Hamiltonian involving all the interactions between the particles that constitute
the molecule (electron and nuclei). (In case the molecule is imbedded in an
electromagnetic field, the corresponding potentials enter the expression of H,
too.) Typically, the interaction between two particles of respective positions z
and z′ is of Coulomb type, that is, of the form α|z−z′|−1 with α ∈ IR constant.
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In the case of a free molecule, a first approach for studying the system (1.1)
consists in considering bounded initial states only, that is, initial states that are
eigenfunctions of the Hamiltonian after removal of the center of mass motion.
More precisely, one can split the Hamiltonian into,


H = HCM +HRel,


where the two operators HCM (corresponding to the kinetic energy of the center
of mass) and HRel (corresponding to the relative motion of electrons and nuclei)
commute. As a consequence, the quantum evolution factorizes into,


e−itH = e−itHCM e−itHRel ,


where the (free) evolution e−itHCM of the center of mass can be explicitly com-
puted (mainly because HCM has constant coefficients), while the relative motion
e−itHRel still contains all the interactions (and thus, all the difficulties of the
problem). Then, taking ϕ0 of the form,


ϕ0 = α0 ⊗ ψj (1.2)


where α0 depends on the position of the center of mass only, and ψj is an
eigenfunction of HRel with eigenvalue Ej , the solution of (1.1) is clearly given
by,


ϕ(t) = e−itEj (e−itHCMα0)⊗ ψj .


Therefore, in this case, the only real problem is to know sufficiently well the
eigenelements of HRel, in order to be able to produce initial states of the form
(1.2).


In 1927, M. Born and R. Oppenheimer [BoOp] proposed a formal method for
constructing such an approximation of eigenvalues and eigenfunctions of HRel.
This method was based in the fact that, since the nuclei are much heavier than
the electrons, their movement is slower and allows the electrons to adapt almost
instantaneously to it. As a consequence, the movement of the electrons is not
really perceived by the nuclei, except as a surrounding electric field created by
their total potential energy (that becomes a function of the positions of the
nuclei). In that way, the evolution of the molecule reduces to that of the nuclei
imbedded in an effective electric potential created by the electrons. Such a
reduction (that is equivalent to a separation of the problem into two different
position-scales) permits, in a second moment, to use semiclassical tools in order
to find the eigenelements of the final effective Hamiltonian.


At this point, it is important to observe that this method was formal only,
in the sense that it permitted to produce formal series of functions that were
(formally) solutions of the eigenvalue problem for HRel, but without any esti-
mates on the remainder terms, and no information about the possible closeness
of these functions to true eigenfunctions, nor to the possible exhaustivity of such
approximated eigenvalues.
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Many years later, a first attempt to justify rigorously (from the mathematical
point of view) the Born-Oppenheimer approximation (in short: BOA) was made
by J.-M. Combes, P. Duclos and R. Seiler [CDS] for the diatomic molecules, with
an accuracy of order h2, where h :=


√
m/M is the square-root of the ratio of


the electron masses to nuclear masses. After that, full asymptotics in h were
obtained by G. Hagedorn [Ha2, Ha3], both in the case of diatomic molecules with
Coulomb interactions, and in the case of smooth interactions. In these two cases,
these results have permitted to answer positively to the first question concerning
the justification of the BOA, namely, the existence of satisfactory estimates on
the remainder terms of the series. Later, by using completely different methods
(mostly inspired by the microlocal treatment of semiclassical spectral problems,
developed by B. Helffer and J. Sjöstrand in [HeSj11]), and in the case of smooth
interactions, the first author [Ma1] extended this positive answer to the two
remaining questions, that is, the exhaustivity and the closeness of the formal
eigenfunctions to the true ones. Although such a method (based on microlocal
analysis) seemed to require a lot of smoothness, it appeared that it could be
adapted in the case of Coulomb interactions, too, giving rise to a first complete
rigorous justification of the BOA in a work by M. Klein, A. Martinez, R. Seiler
and X.P. Wang [KMSW]. The main trick, that has made possible such an
adaptation, consists in a change of variables in the positions of the electrons, that
depends in a convenient way of the position (say, x) of the nuclei. This permits
to make the singularities of the interactions electron-nucleus independent of
x, and thus, in some sense, to regularize these interactions with respect to x.
Afterwards, the standard microlocal tools (in particular, the pseudodifferential
calculus with operator-valued symbols, introduced in [Ba]) can be applied and
permit to conclude.


Of course, all these justifications concerned the eigenvalue problem for HRel,
not the general problem of evolution described in (1.1). In the general case, one
could think about expanding any arbitrary initial state according to the eigen-
functions of HRel, and then apply the previous constructions to each term.
However, this would lead to remainder terms quite difficult to estimate with
respect to the small parameter h, mainly because one would have to mix two
types of approximations that have nothing to do each other: The semiclassical
one, and the eigenfunctions expansion one. In other words, this would cor-
respond to handle both functional and microlocal analysis, trying to optimize
both of them at the same time. It is folks that such a method is somehow
contradictory, and does not produce good enough estimates. For this reason,
several authors have looked for an alternative way of studying (1.1), by trying
to adapt Born-Oppenheimer’s ideas directly to the problem of evolution.


The first results in this direction are due to G. Hagedorn [Ha4, Ha5, Ha6],
and provide complete asymptotic expansions of the solution of (1.1), in the case
where the interactions are smooth and the initial state is a convenient perturba-
tion of a single electronic-level state. More precisely, splitting the Hamiltonian
into,


H = Kn(hDx) +Hel(x),
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where Kn(hDx) stands for the quantum kinetic energy of the nuclei, and Hel(x)
is the so-called electronic Hamiltonian (that may be viewed as acting on the
position variables y of the electrons, and depending on the position x of the
nuclei), one assumes that Hel(x) admits an isolated eigenvalue λ(x) (say, for
x in some open set of IR3) with corresponding eigenfunction ψ(x, y), and one
takes ϕ0 of the form,


ϕ0(x, y) = f(x)ψ(x, y) +
∑
k≥1


hkϕ0,k(x, y) = f(x)ψ(x, y) +O(h),


where f(x) is a coherent state in the x-variables. Then, it is shown that, if
the ϕ0,k’s are well chosen, the solution of (1.1) (with a rescaled time t 7→ t/h)
admits an asymptotic expansion of the type,


ϕt(x, y) ∼ ft(x)ψ(x, y) +
∑
k≥1


hkϕt,k(x, y),


where all the terms can be explicitly computed by means of the classical flow of
the effective Hamiltonian Heff(x, ξ) := Kn(ξ) + λ(x).


Such a result is very encouraging, since it provides a case where the relevant
information on the initial state is not anymore connected with the point spec-
trum of Hrel, but rather with the localization in energy of the electrons and the
localization in phase space of the nuclei. This certainly fits much better with
the semiclassical intuition of this problem, in concomitance with the fact that
the classical flow of Heff(x, ξ) is involved.


Nevertheless, from a conceptual point of view, something is missing in the
previous result. Namely, one would like to have an even closer relation between
the complete quantum evolution e−itH/h and some reduced quantum evolution
of the type e−itH̃eff (x,hDx)/h, for some H̃eff close to Heff . In that way, one would
be able to use all the well developed semiclassical (microlocal) machinery on the
operator H̃eff(x, hDx), in order to deduce many results on its quantum evolution
group e−itH̃eff (x,hDx)/h (e.g., a representation of it as a Fourier integral opera-
tor). In the previous result, the presence of a coherent state in the expression of
ϕ0 has allowed the author to, somehow, by-pass this step, and to relate directly
the complete quantum evolution to its semiclassical approximation (that is, to
objects involving the underlying classical evolution). However, a preliminary
link between e−itH/h and some e−itH̃eff (x,hDx)/h would have the advantage of
allowing more general initial states, and, by the use of more sophisticated results
of semiclassical analysis, should permit to have a better understanding of the
phenomena related to this approximation. Moreover, as we will see, this prelim-
inary link is usually valid for very large time intervals of the form [−h−N , h−N ]
with N ≥ 1 arbitrary, while it is well known that the second step (that is,
the semiclassical approximation of e−itH̃eff (x,hDx)/h) has, in the best cases, the
Ehrenfest-time limitation |t| = O(ln 1


h ) (see (2.5) and Theorem 11.3 below).


The first results concerning a reduced quantum evolution have been obtained
recently (and independently) by H. Spohn and S. Teufel in [SpTe], and by the
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present authors in [MaSo]. In both cases, it is assumed that, at time t = 0,
the energy of the electrons is localized in some isolated part of the electronic
Hamiltonian Hel(x). In [SpTe], the authors find an approximation of e−itH/h in
terms of e−itHeff (x,hDx)/h, and prove an error estimate in O(h) (actually, it seems
that such a result was already present in a much older, but unpublished, work
by A. Raphaelian [Ra]). In [MaSo] (following a procedure of [NeSo, So], and
later reproduced with further applications in [PST, Te]), a whole perturbation
H̃eff ∼ Heff +


∑
k≥1 h


kHk of Heff is constructed, allowing an error estimate in
O(h∞) for the quantum evolution.


However, these two papers have the defect of assuming all the interactions
smooth, and thus of excluding the physically interesting case of Coulomb inter-
actions. Here, our goal is precisely to allow this case. More precisely, we plan to
mix the arguments of [MaSo] and those of [KMSW] in order to include Coulom-
type (or, more generally, Laplace-compact) singularities of the potentials.


In [KMSW], the key-point consists in a refinement of the Hunziker distorsion
method, that leads to a family of x-dependent unitary operators (where, for each
operator, the nuclei-position variable x has to stay in some small open set) such
that, once conjugated by these operators, the electronic Hamiltonian becomes
smooth with respect to x. Then, by using local pseudodifferential calculus with
operator-valued symbols, and various tricky patching techniques, a constructive
Feshbach method (through a Grushin problem) is performed and leads to the
required result.


When reading [KMSW], however, one has the impression that all the techni-
cal difficulties and tricky arguments actually hide a somewhat simpler concept,
that should be related to some global pseudodifferential calculus adapted to the
singularities of the interactions. In other words, it seems that interactions such
as Coulomb electron-nucleus ones are indeed smooth with respect to x for some
‘exotic’ differential structure on the x-space, and that such a differential struc-
ture could be used to construct a complete pseudodifferential calculus (with
operator-valued symbols). Such considerations (that are absent in [KMSW])
have naturally led us to the notion of twisted pseudodifferential operator that
we describe in Sections 4 and 5. This new tool permits in particular to han-
dle a certain type of partial differential operators with singular operator-valued
coefficients, mainly as if their coefficients were smooth. To our opinion, the
advantages are at least two. First of all, it simplifies considerably (making them
clearer and closer to the smooth case) the arguments leading to the reduction of
the quantum evolution of a molecule. Secondly, thanks to its abstract setting,
we believe that it can be applied in other situations where singularities appear.


Roughly speaking, we say that an operator P on L2(IRn
x ;H) (H = abstract


Hilbert space) is a twisted h-admissible pseudodifferential operator, if each op-
erator UjPU


−1
j (where, for any j, Uj = Uj(x) is a given unitary operator de-


fined for x in some open set Ωj ⊂ IRn) is h-admissible (e.g., in the sense of
[Ba, GMS]). Then, under few general conditions on the finite family (Uj ,Ωj)j ,
we show that these operators enjoy all the nice properties of composition, inver-
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sion, functional calculus and symbolic calculus, similar to those present in the
smooth case. Thanks to this, the general strategy of [MaSo] can essentially be
reproduced, and leads to the required reduction of the quantum evolution. More
precisely, we prove that, if the initial state ϕ0 is conveniently localized in space,
in energy, and on a L-levels isolated part of the electronic spectrum (L ≥ 1),
then, during a certain interval of time (that can be estimated), its quantum
evolution can be described by that of a selfadjoint L×L matrix A = A(x, hDx)
of smooth semiclassical pseudodifferential operators in the nuclei-variables, in
the sense that one has,


e−itH/hϕ0 = W∗e−itA/hWϕ0 +O(〈t〉h∞),


whereW is a bounded operator onto L2(IRn)⊕L, such thatWW∗ = 1 andW∗W
is an orthogonal projection (that projects onto a so-called almost-invariant sub-
space). We refer to Theorem 2.1 for a precise statement, and to Theorem 7.1
for an even better result in the case where the spectral gap of the electronic
Hamiltonian is global. In the particular case L = 1, this also permits to give a
geometrical description (involving the underlying classical Hamilton flow of A)
of the time interval in which such a reduction is possible. Then, to make the
paper more complete, we consider the case of coherent initial states (in the same
spirit as in [Ha5, Ha6]) and, applying a semiclassical result of M. Combescure
and D. Robert [CoRo], we justify the expansions given in [Ha6] up to times of
order ln 1


h (at least when the geometry makes it possible).


Outline of the paper:


In Section 2, we introduce our notations and assumptions, and we state
our main results concerning the reduction of the quantum evolution in the case
where the electronic Hamiltonian admits a local gap in its spectrum. In Section
3, we modify the electronic operator away from the relevant region in x, in order
to deal with a globally nicer operator, admitting a global gap in its spectrum.
Sections 4 and 5 are devoted to the settlement of an abstract singular pseu-
dodifferential calculus (bounded in Section 4, and partial differential in Section
5). In Section 6, following [MaSo], we construct a quasi-invariant subspace that
permits, in Section 7, to have a global reduction of the evolution associated
with the modified operator constructed in Section 3. In Sections 8 and 9, we
complete the proofs of our main results, and, in Section 10, we give a simple
way of computing the effective Hamiltonian. Then, in Section 11, we apply
these results to study the evolution of wave packets. Section 12 treats, more
specifically, the case of polyatomic molecules, by showing how it can be inserted
in our general framework. The remaining three sections are just appendices:
Section 13 reviews standard results on pseudodifferential calculus; Section 14
gives an estimate on the propagation-speed of the support (up to O(h∞)) for
the solutions of (1.1); Section 15 contains two technical results used in the main
text.
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2 Assumptions and Main Results


The purpose of this paper is to investigate the asymptotic behavior as h→ 0+


of the solutions of the time-dependent Schrödinger equation,


ih
∂ϕ


∂t
= P (h)ϕ (2.1)


with
P (h) = ω +Q(x) +W (x), (2.2)


where Q(x) (x ∈ IRn) is a family of selfadjoint operators on some fix Hilbert
space H with same dense domain DQ, ω =


∑
|α|≤m cα(x;h)(hDx)α is a sym-


metric semiclassical differential operator of order 0 and degree m, with scalar
coefficients depending smoothly on x, and W (x) is a non negative function
defined almost everywhere on IRn.


Typically, in the case of a molecular system, x stands for the position of the
nuclei, Q(x) represents the electronic Hamiltonian that includes the electron-
electron and nuclei-electron interactions (all of them of Coulomb-type), ω is the
quantized cinetic energy of the nuclei, and W (x) represents the nuclei-nuclei
interactions. Moreover, the parameter h is supposed to be small and, in the
case of a molecular system, h−2 actually represents the quotient of electronic
and nuclear masses. In more general systems, one can also include a magnetic
potential and an exterior electric potential both in ω and Q(x). We refer to
Section 12 for more details about this case.


We make the following assumptions:


(H1) For all α, β ∈ ZZn
+ with |α| ≤ m, ∂βcα(x, h) = O(1) uniformly for x ∈ IRn


and h > 0 small enough. Moreover, setting ω(x, ξ;h) :=
∑


|α|≤m cα(x;h)ξα, we
assume that there exists a constant C0 ≥ 1 such that, for all (x, ξ) ∈ IR2n and
h > 0 small enough,


Re ω(x, ξ;h) ≥ 1
C0
〈ξ〉m − C0.


In particular, Assumption (H1) implies that m is even and ω is well defined
as a selfadjoint operator on L2(IRn) (and, by extension, on L2(IRn;H)) with
domain Hm(IRn). Moreover, by the Sharp G̊arding Inequality (see, e.g., [Ma2]),
it is uniformly semi-bounded from below.


(H2) W ≥ 0 is 〈Dx〉m-compact on L2(IRn), and there exists γ ∈ IR such that,
for all x ∈ IRn, Q(x) ≥ γ on H.


Assumptions (H1) − (H2) guarantee that, for h sufficiently small, P (h)
can be realized as a selfadjoint operator on L2(IRn;H) with domain D(P ) ⊂
Hm(IRn;H) ∩ L2(IRn;DQ), and verifies P (h) ≥ γ0, with γ0 ∈ IR independent
of h.
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(Of course, in the case of a molecular system, P (h) is essentially selfadjoint,
and the domain of its selfadjoint extension is H2(IRn × Y ), where Y stands for
the space of electron positions.)


For L ≥ 1 and L′ ≥ 0, we denote by λ1(x), . . . , λL+L′(x) the first L + L′


values given by the Min-Max principle for Q(x) onH, and we make the following
local gap assumption on the spectrum σ(Q(x)) of Q(x):


(H3) There exists a contractible bounded open set Ω ⊂ IRn and L ≥ 1 such
that, for all x ∈ Ω, λ1(x), . . . , λL+L′(x) are discrete eigenvalues of Q(x), and
one has,


inf
x∈Ω


dist (σ(Q(x))\{λL′+1(x), . . . , λL′+L(x)}, {λL′+1(x), . . . , λL′+L(x)}) > 0.


Furthermore, the spectral projections Π−
0 (x) associated with {λ1(x), . . . , λL′(x)}


and Π0(x) associated with {λL′+1(x), . . . , λL′+L(x)}, both depend continuously
on x ∈ Ω.


Then, we assume that P can be “regularized” with respect to x in Ω, in the
following sense:


(H4) There exists a finite family of bounded open sets (Ωj)r
j=1 in IRn, a cor-


responding family of unitary operators Uj(x) (j = 1, · · · , r, x ∈ Ωj), and some
fix selfadjoint operator Q0 ≥ C0 on H with domain DQ, such that (denoting by
Uj the unitary operator on L2(Ωj ;H) ' L2(Ωj) ⊗ H induced by the action of
Uj(x) on H),


• Ω = ∪r
j=1Ωj ;


• For all j = 1, · · · , r and x ∈ Ωj , Uj(x) leaves DQ invariant;


• For all j, the operator UjωU
−1
j is a semiclassical differential operator with


operator-valued symbol, of the form,


UjωU
−1
j = ω + h


∑
|β|≤m−1


ωβ,j(x;h)(hDx)β , (2.3)


where ωβ,jQ
|β|
m −1
0 ∈ C∞(Ωj ;L(H)) for any γ ∈ INn (here, L(H) stands


for the Banach space of bounded operators on H), and the quantity


‖∂γ
xωβ,j(x;h)Q


|β|
m −1
0 ‖L(H) is bounded uniformly with respect to h small


enough and locally uniformly with respect to x ∈ Ωj ;


• For all j, Uj(x)Q(x)Uj(x)−1 and Uj(x)Q0Uj(x)−1 are in C∞(Ωj ;L(DQ,H))
(where L(DQ,H) stands for the Banach space of bounded operators from
DQ to H);


• W ∈ C∞(∪r
j=1Ωj);
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• There exists a dense subspace H∞ ⊂ DQ ⊂ H, such that, for any v ∈ H∞
and any j = 1, · · · , r, the application x 7→ Uj(x)v is in C∞(Ωj ,DQ).


Note that, for physical molecular systems, a construction of such operators
Uj(x)’s is made in [KMSW], and can be performed around any point of IRn


where W is smooth. Moreover, in that case one can take Q0 = −∆y + 1 (where
y stands for the position of the electrons), and the last point in (H4) can be
realized by taking H∞ = C∞0 (Y ). Again, we refer the interested reader to
Section 12. Let us also observe that, in the case L′ + L = 1, one does not need
to assume that Ω is contractible.


For any ϕ0 ∈ L2(IRn;H) (possibly h-dependent) such that ‖ϕ0‖L2(Kc
0 ;H) =


O(h∞) for some compact set K0 ⊂⊂ IRn, and for any Ω′ ⊂⊂ IRn open neigh-
borhood of K0, we set,


TΩ′(ϕ0) := sup{T > 0 ; ∃KT ⊂⊂ Ω′, sup
t∈[0,T ]


‖e−itP/hϕ0‖L2(Kc
T


;H) = O(h∞)}.


Then, TΩ′(ϕ0) ≤ +∞, and, if one also assume that ‖(1 − f(P ))ϕ0‖ = O(h∞)
for some f ∈ C∞0 (IR), Theorem 14.1 in Appendix B shows that,


TΩ′(ϕ0) ≥
2 dist (K0, ∂Ω′)


‖∇ξω(x, hDx)g(P )‖
,


for any g ∈ C∞0 (IR) verifying gf = f .


As a main result, we obtain (denoting by L2(IRn)⊕L the space (L2(IRn))L


endowed with its natural Hilbert structure),


Theorem 2.1 Assume (H1)-(H4) and let Ω′ ⊂⊂ Ω with Ω′ open subset of
IRn. Then, for any g ∈ C∞0 (IR), there exists an orthogonal projection Πg


on L2(IRn;H), an operator W : L2(IRn;H) → L2(IRn)⊕L, uniformly bounded
with respect to h, and a selfadjoint L × L matrix A of h-admissible operators
Hm(IRn) → L2(IRn), with the following properties:


• For all χ ∈ C∞0 (Ω′),
Πg
χ = Π0


χ+O(h);


• WW∗ = 1 and W∗W = Πg;


• For x ∈ Ω′, the symbol a(x, ξ;h) of A verifies,


a(x, ξ;h) = ω(x, ξ;h)IL +M(x) +W (x)IL + hr(x, ξ;h)


where IL stands for the L-dimensional identity matrix,M(x) is a L×Lma-
trix depending smoothly on x ∈ Ω′ and admitting λL′+1(x), . . . , λL′+L(x)
as eigenvalues, and where ∂αr(x, ξ;h) = O(〈ξ〉m−1) for any multi-index α
and uniformly with respect to (x, ξ) ∈ Ω′ × IRn and h > 0 small enough;
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• For any f ∈ C∞0 (IR) with Supp f ⊂ {g = 1}, and for any ϕ0 ∈ L2(IRn;H)
such that ‖ϕ0‖ = 1, and,


‖ϕ0‖L2(Kc
0 ;H) + ‖(1−Πg)ϕ0‖+ ‖(1− f(P ))ϕ0‖ = O(h∞), (2.4)


for some K0 ⊂⊂ Ω′, one has,


e−itP/hϕ0 = W∗e−itA/hWϕ0 +O (〈t〉h∞) (2.5)


uniformly with respect to h > 0 small enough and t ∈ [0, TΩ′(ϕ0)).


Remark 2.2 Actually, much more informations are obtained on the operators
Πg, W and A, and we refer to Theorems 7.1 and 8.1 for more details, and to
Section 10 for an explicit computation of A, up to O(h4).


Remark 2.3 Condition (2.4) on the initial data may seems rather strong, but
in fact, it will become clear from the proof that the operators Πg, f(P̃ ) and
χ (where χ ∈ C∞0 (IRn) is supported in K0) essentially commutes two by two
(up to O(h)). Indeed, in the case of a molecular system, they respectively
correspond to a localization in energy for the electrons, a localization in energy
for the whole molecule, and a localization in space for the nuclei.


Remark 2.4 Here, we have assumed that both Π−
0 (x) and Π0(x) have finite


rank, since this corresponds to the main applications that we have in mind.
However, it will become clear from the proof that the case where one or both
of them have infinite rank could be treated in a similar way, with the difference
that, if RankΠ0(x) = ∞, then W∗e−itA/hW must be replaced by e−itΠgPΠg/h


(there will not be any operator A anymore). Moreover, some assumption must
be added in order to be able to construct a modified operator as in Section 3
(for instance, that both Π−


0 (x) and Π0(x) admit extensions to all x ∈ IRn that
depend smoothly on x away from a neighborhood of K).


Remark 2.5 In the next section, we modify the operator Q(x) away from the
interesting region, in such a way that the new operator Q̃(x) admits a global gap
in its spectrum. With such an operator, a much better result can be obtained,
and permits to decouple completely the evolution in a somewhat more complete
and abstract way: see Theorem 7.1 (in particular (7.2)). In particular, even if
‖(1 − Πg)ϕ0‖ is not small, Theorem 7.1 permits to have a description of the
quantum evolution of ϕ0 in terms of two independent reduced evolutions.


As a corollary, in the case L = 1 we also obtain the following geometric lower
bound on TΩ′(ϕ0), that relates it with the underlying classical Hamilton flow of
the operator A:


Corollary 2.6 Assume moreover that L = 1 and the coefficients cα = cα(x;h)
of ω verify,


cα(x;h) = cα,0(x) + ε(h)c̃α(x;h), (2.6)
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with cα,0 real-valued and independent of h, ε(h) → 0 as h→ 0, and, for any β,
|∂βcα,0(x)|+ |∂β c̃α(x, h)| = O(1) uniformly, and set,


a0(x, ξ) :=
∑
|α|≤m


cα,0(x)ξα + λL′+1(x) +W (x) (x ∈ Ω′).


Also, denote by Ha0 := ∂ξa0∂x−∂xa0∂ξ the Hamilton field of a0. Then, for any
f ∈ C∞0 (IR) with Supp f ⊂ {g = 1}, and for any ϕ0 ∈ L2(IRn;H) such that
‖ϕ0‖ = 1, and,


‖ϕ0‖L2(Kc
0 ;H) + ‖(1−Πg)ϕ0‖+ ‖(1− f(P ))ϕ0‖ = O(h∞),


one has,


TΩ′(ϕ0) ≥ sup{T > 0 ; πx(∪t∈[0,T ] exp tHa0(K(f))) ⊂ Ω′}, (2.7)


where πx stands for the projection (x, ξ) 7→ x, and K(f) is the compact subset
of IR2n defined by,


K(f) := {(x, ξ) ; x ∈ K0, ω(x, ξ) + γ ≤ Cf}


with γ = infx∈Ω′ inf σ(Q(x)) and Cf := Max| Supp f |.


Remark 2.7 Thanks to (H1) and (H2), it is easy to see that exp tHa0(x, ξ) is
well defined for all (t, x, ξ) ∈ IR× IR2n.


Remark 2.8 Actually, as it will be seen in the proof, in (2.7) one can replace
the set K(f) by ∪r


j=1 FS(UjΠgϕ0), where FS stands for the Frequency Set of


locally L2 functions introduced in [GuSt] (we refer to Section 9 for more details).


Remark 2.9 Our proof would permit to state a similar result in the case L > 1,
but under the additional assumption that the set {λL′+1(x), . . . , λL′+L(x)} can
be written as {E1(x), . . . , EL′′(x)}, where the (possibly degenerate) eigenvalues
Ej(x) are such that Ej(x) 6= Ej′(x) for j 6= j′ and x ∈ Ω. In the general
case where crossings may occur, such a type of result relies on the microlocal
propagation of the Frequency Set for solutions of semiclassical matrix evolution
problems (for which not much is known, in general).


Remark 2.10 The proof also provides a very explicit and somehow optimal
bound on TΩ′(ϕ0) in the case where ϕ0 is a coherent state with respect to the
x-variables: see Theorem 11.3 and (11.8).


3 A Modified Operator


In this section, we consider an arbitrary compact subset K ⊂⊂ Ω and an open
neighborhood ΩK ⊂⊂ Ω of K. We also denote by Ω0 an open subset of IRn,
with closure disjoint from ΩK , and such that (Ωj)r


j=0 covers all of IRn, and
we set U0 := 1. The purpose of this section is to modify Q(x) for x outside a
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neighborhood of K0, in order to make it regular with respect to x there, and to
deal with a global gap instead of a local one.


Due to the contractibility of Ω, we know that there exist L′ + L continuous
functions u1, . . . , uL′+L in C(Ω;H), such that the families (u1(x), . . . , uL′(x))
and (uL′+1(x), . . . , uL′+L(x)) span RanΠ−


0 (x) and RanΠ0(x) respectively, for
all x ∈ Ω (see, e.g., [KMSW]).


Then, following Lemma 1.1 in [KMSW], we first prove,


Lemma 3.1 For all x ∈ IRn, there exist ũ1(x), . . . , ũL′+L(x) in DQ, such
that the family (ũ1(x), . . . , ũL′+L(x)) is orthonormal in H for all x ∈ IRn,
the families (ũ1(x), . . . , ũL′(x)) and (ũL′+1(x), . . . , ũL′+L(x)) span RanΠ−


0 (x)
and RanΠ0(x), respectively, when x ∈ ΩK , and, for all j = 0, 1, · · · , r and
k = 1, . . . , L′ + L,


Uj(x)ũk(x) ∈ C∞(Ωj ;DQ).


Proof Let ζ1, ζ2 ∈ C∞(IRn; [0, 1]), such that Supp ζ1 ⊂ Ωc
0, ζ1 = 1 on ΩK and


ζ2
1 + ζ2


2 = 1 everywhere. Since u1(x), . . . , uL′+L(x) depend continuously on x in
Ω, for any ε > 0 one can find a finite number of points x1, · · · , xN ∈ Supp ζ1
and a partition of unity χ


1, · · · , χN ∈ C∞0 (Ω) on Supp ζ1, such that, for all
k = 1, . . . , L′ + L,


sup
x∈ Supp ζ1


‖uk(x)−
N∑


`=1


χ
`(x)uk(x`)‖H ≤ ε.


On the other hand, using the last assertion of (H4), for any (k, `) one can find
vk,` in DQ, such that, ‖vk,`− uk(x`)‖H ≤ ε and Uj(x)vk,` ∈ C∞(Ωj ,DQ) for all
j = 1, . . . , r. Moreover, it follows from (H3) and (H4) that, for all j = 1, · · · , r,


Uj(x)Π−
0 (x)U∗j (x) and Uj(x)Π0(x)U∗j (x) ∈ C∞(Ωj ,L(H,DQ)).


Therefore, if we set,


vk(x) := Π−
0 (x)


N∑
`=1


χ
`(x)vk,` (k = 1, . . . , L′);


vk(x) := Π0(x)
N∑


`=1


χ
`(x)vk,` (k = L′ + 1, . . . , L′ + L),


and since
∑N


`=1
χ


`(x) = 1 on Supp ζ1, we obtain (also using that Π−
0 (x)uk(x) =


uk(x) for k ≤ L′, and Π0(x)uk(x) = uk(x) for k ≥ L′ + 1),


sup
x∈ Supp ζ1


‖uk(x)− vk(x)‖H ≤ 2ε


Uj(x)vk(x) ∈ C∞(Ωj ,DQ) (j = 1, . . . , r).


In particular, by taking ε small enough, we see that the families (v1(x), . . . , vL′(x))
and (vL′+1(x), . . . , vL′+L(x)) span RanΠ−


0 (x) and RanΠ0(x), respectively, for
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x ∈ Suppζ1. Moreover, by Gram-Schmidt, this families can also be assumed to
be orthonormal.


Then, using again the last point of (H4), one can find an orthonormal family
w1, . . . , wL′+L ∈ DQ, such that |〈wm, uk(x`)〉| ≤ ε for all 1 ≤ k,m ≤ L′ + L,
1 ≤ ` ≤ N , and Uj(x)wm ∈ C∞(Ωj ,DQ) (j = 1, . . . , r). Thus, setting,


w̃k(x) := ζ1(x)vk(x) + ζ2(x)wk,


we see that, for all k, k′ ∈ {1, . . . , L′ + L},


〈w̃k(x), w̃k′(x)〉H = δk,k′ +O(ε).


As a consequence, taking ε > 0 sufficiently small and orthonormalizing the
family (w̃1(x), . . . , w̃L′+L(x)), we obtain a new family (ũ1(x), . . . , ũL′+L(x)) that
verifies all the properties required in the lemma. •


Then, (with the usual convention
∑L′


k=1 = 0 if L′ = 0) we set,


Π̃−
0 (x) =


L′∑
k=1


〈·, ũk(x)〉Hũk(x),


Π̃0(x) =
L′+L∑


k=L′+1


〈·, ũk(x)〉Hũk(x)


so that Π̃−
0 (x) and Π̃0(x) are orthogonal projections of rank L′ and L respec-


tively, are orthogonal each other, coincide with Π−
0 (x) and Π0(x) for x in ΩK ,


and verify,


Uj(x)Π̃−
0 (x)Uj(x)∗ and Uj(x)Π̃0(x)Uj(x)∗ ∈ C∞(Ωj ,L(H)), (3.1)


for all j = 0, 1, · · · , r.
Now, with the help of Π̃−


0 (x), Π̃0(x), we modify Q(x) outside a neighborhood
of K as follows.


Proposition 3.2 Let Ω′K ⊂⊂ ΩK be an open neighborhood of K. Then, for
all x ∈ IRn, there exists a selfadjoint operator Q̃(x) on H, with domain DQ, and
uniformly semi-bounded from below, such that,


Q̃(x) = Q(x) if x ∈ Ω′K ; (3.2)
[Q̃(x), Π̃−


0 (x)] = [Q̃(x), Π̃0(x)] = 0 for all x ∈ IRn, (3.3)


and the application x 7→ Uj(x)Q̃(x)Uj(x)−1 is in C∞(Ωj ;L(DQ,H)) for all


j = 0, 1, · · · , r. Moreover, the bottom of the spectrum of Q̃(x) consists in L′+L
eigenvalues λ̃1(x), . . . , λ̃L′+L(x), and Q̃(x) admits a global gap in its spectrum,
in the sense that,


inf
x∈IRn


dist (σ(Q̃(x))\{λ̃L′+1(x), . . . , λ̃L′+L(x)}, {λ̃L′+1(x), . . . , λ̃L′+L(x)}) > 0.
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Proof We set Π̃+
0 (x) = 1 − Π̃−


0 (x) − Π̃0(x) and we choose a function ζ ∈
C∞0 (ΩK ; [0, 1]) such that ζ = 1 on Ω′K . Then, with Q0 as in (H4), we set,


Q̃(x) = ζ(x)Q(x) + (1− ζ(x))Π̃+
0 (x)Q0Π̃+


0 (x)− (1− ζ(x))Π̃−
0 (x).


Since Π̃−
0 (x) = Π−


0 (x) and Π̃0(x) = Π0(x) on Suppζ, we see that Π̃−
0 (x) and


Π̃0(x) commute with Q̃(x), and it is also clear that Q̃(x) is selfadjoint with
domain DQ. Moreover,


Π̃−
0 (x)Q̃(x)Π̃−


0 (x) = ζ(x)Π−
0 (x)Q(x)Π−


0 (x)− (1− ζ(x))Π−
0 (x);


Π̃0(x)Q̃(x)Π̃0(x) = ζ(x)Π0(x)Q(x)Π0(x),


and, setting,


λL+L′+1(x) := inf (σ(Q(x))\{λ1(x), . . . , λL+L′(x)}) ,


one has,


Π̃+
0 (x)Q̃(x)Π̃+


0 (x) ≥ (ζ(x)λL+L′+1(x) + (1− ζ(x)) Π̃+
0 (x).


In particular, the bottom of the spectrum of Q̃(x) consists in the L+ L′ eigen-
values λ̃k(x) = ζ(x)λk(x) − (1 − ζ(x)) (k = 1, . . . , L′), λ̃k(x) = ζ(x)λk(x)
(k = L′ + 1, . . . , L′ + L), and, due to (H3), one has,


inf
x∈IRn


(
λ̃L′+1(x)− λ̃L′(x)


)
= inf


x∈IRn
(ζ(x)(λL′+1(x)− λL′(x) + (1− ζ(x))) > 0,


and


inf
x∈Ω


dist (σ(Q̃(x))\{λ̃1(x), . . . , λ̃L′+L(x)}, {λ̃1(x), . . . , λ̃L′+L(x)})


≥ inf
x∈Ω


|ζ(x)(λL′+L+1(x)− λL′+L(x)) + (1− ζ(x))| > 0,


while, since Supp ζ ⊂ Ω,


inf
x∈IRn\Ω


dist (σ(Q̃(x))\{λ̃1(x), . . . , λ̃L′+L(x)}, {λ̃1(x), . . . , λ̃L′+L(x)}) ≥ 1.


In particular, Q̃(x) admits a fix global gap in its spectrum as stated in the
proposition. Finally, using (H4) and (3.1), we see that Uj(x)Q̃(x)U∗j (x) depends
smoothly on x in Ωj for all j = 0, 1, · · · , r. •


In the sequel, we also set,


P̃ = ω + Q := ω + Q̃(x) + ζ(x)W (x), (3.4)


and we denote by Π̃0 the projection on L2(IRn;H) induced by the action of
Π̃0(x) on H, i.e. the unique projection on L2(IRn;H) that verifies


Π̃0(f ⊗ g)(x) = f(x)Π̃0(x)g (a.e. on IRn 3 x)


for all f ∈ L2(IRn) and g ∈ H.
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4 Twisted h-Admissible Operators


In order to construct (in the same spirit as in [BrNo, HeSj12, MaSo, NeSo, Sj2,
So]) an orthogonal projection Π on L2(IRn;H) such that Π − Π0 = O(h) and
[P̃ ,Π] = O(h∞) (locally uniformly in energy), we need to generalize the notion
of h-admissible operator with operator-valued symbol (see, e.g., [Ba, GMS] and
the Appendix) by taking into account the possible singularities of Q(x). To
avoid complications, in this section we also restrict our attention to the case of
bounded operators. The case of unbounded ones will be considered in the next
section, at least from the point of view of differential operators.


Definition 4.1 We call “regular covering” of IRn any finite family (Ωj)j=0,···,r
of open subsets of IRn such that ∪r


j=0 Ωj = IRn and such that there exists a
family of functions χj ∈ C∞b (IRn) (the space of smooth functions on IRn with
uniformly bounded derivatives of all order) with


∑r
j=0


χ
j = 1, 0 ≤ χ


j ≤ 1, and
dist ( Supp (χj), IRn\Ωj) > 0 (j = 0, · · · , r). Moreover, if Uj(x) (x ∈ Ωj , 0 ≤
j ≤ r) is a family of unitary operators on H, the family (Uj ,Ωj)j=0,···,r (where


Uj denotes the unitary operator on L2(Ωj ;H) ' L2(Ωj) ⊗ H induced by the
action of Uj(x) on H) will be called a “regular unitary covering” of L2(IRn;H).


Remark 4.2 Despite the terminology that we use, no assumption is made on
any possible regularity of Uj(x) with respect to x.


Remark 4.3 Possibly by shrinking a little bit Ω around the compact set K,
one can always assume that the family (Uj ,Ωj)j=0,1,···,r defined in Section 2 is
a regular unitary covering of L2(IRn;H).


In the sequels, we denote by C∞d (Ωj) the space of functions χ ∈ C∞b (IRn) such
that dist ( Supp (χ), IRn\Ωj) > 0


Definition 4.4 (Twisted h-Admissible Operator) Let U := (Uj ,Ωj)j=0,···,r
be a regular unitary covering (in the previous sense) of L2(IRn;H). We say that
an operator A : L2(IRn;H) → L2(IRn;H) is a U-twisted h-admissible operator,
if there exists a family of functions χj ∈ C∞d (Ωj) such that, for any N ≥ 1, A
can be written in the form,


A =
r∑


j=0


U−1
j
χ


jA
N
j Uj


χ
j +RN , (4.1)


where ‖RN‖L(L2(IRn;H)) = O(hN ), and, for any j = 0, .., r, AN
j is a bounded h-


admissible operator on L2(IRn;H) with symbol aN
j (x, ξ) ∈ C∞b (T ∗IRn;L(H)),


and, for any ϕ` ∈ C∞d (Ω`) (` = 0, .., r), the operator


U`ϕ`U
−1
j
χ


jA
N
j
χ


jUjU
−1
` ϕ`,


is still an h-admissible operator on L2(IRn;H).
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Remark 4.5 In particular, by the Calderón-Vaillancourt theorem, the norm of
A on L2(IRn;H) is bounded uniformly with respect to h ∈ (0, 1].


An equivalent definition is given by the following proposition:


Proposition 4.6 An operator A : L2(IRn;H) → L2(IRn;H) is a U-twisted
h-admissible operator if and only if the two following properties are verified:


1. For any N ≥ 1 and any functions χ1, · · · , χN ∈ C∞b (IRn), one has,


adχ
1
◦ · · · ◦ adχ


N
(A) = O(hN ) : L2(IRn;H) → L2(IRn;H)


where we have used the notation adχ(A) := [χ,A] = χA−Aχ.


2. For any ϕj ∈ C∞d (Ωj), the operator UjϕjAU
−1
j ϕj is a bounded h-admissible


operator on L2(IRn;H).


Proof From Definition 4.4, it is clear that any U-twisted h-admissible operator
verifies the properties of the Proposition. Conversely, assume A verifies these
properties, and denote by (χj)j=0,···,r ⊂ C∞b (IRn) a partition of unity on IRn


such that dist ( Supp (χj), IRn\Ωj) > 0. Then, for all j one can construct
ϕj , ψj ∈ C∞d (Ωj), such that ϕj


χ
j = χ


j and ψjϕj = ϕj , and, for any N ≥ 1, we
can write,


A =
r∑


j=0


χ
jA =


r∑
j=0


(
χ


jAϕj + χ
jadϕj (A)


)
=


r∑
j=0


(
χ


jAϕj + χ
jadϕj (A)ϕj + χ


jad2
ϕj


(A)
)


= · · · =
r∑


j=0


(
N−1∑
k=0


χ
jadk


ϕj
(A)ϕj + χ


jadN
ϕj


(A)


)


=
r∑


j=0


(
N−1∑
k=0


ψj
χ


jadk
ϕj


(A)ϕjψj + χ
jadN


ϕj
(A)


)
.


In particular, since adN
ϕj


(A) = O(hN ), and Uj commutes with the multiplication
by functions of x, we obtain


A =
r∑


j=0


U−1
j ψjA


N
j Ujψj +O(hN ) (4.2)


with


AN
j :=


N−1∑
k=0


Uj
χ


jadk
ϕj


(A)U−1
j ϕj =


N−1∑
k=0


χ
jadk


ϕj
(UjϕjAU


−1
j ϕj). (4.3)
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Therefore, AN
j is a bounded h-admissible operator, and for any ψ̃l ∈ C∞d (Ωl),


it verifies,


Ulψ̃lU
−1
j ψjA


N
j ψjUjψ̃lU


−1
l =


N−1∑
k=0


χ
jadk


ϕj
(Ulψ̃lAU


−1
l ψ̃l)ϕj ,


that is still an h-admissible operator. Thus, the proposition follows. •


In the sequel, if A is a U-twisted h-admissible operator, then an expression
of A as in (4.1) will be said “adapted” to U .


One also has at disposal a notion of (full) symbol for such operators. In the
sequels, we denote by S(Ωj × IRn;L(H)) the space of (h-dependent) operator-
valued symbols aj ∈ C∞(Ωj × IRn;L(H)) such that, for any α ∈ IN2n, the
quantity ‖∂αaj(x, ξ)‖L(H) is bounded uniformly for h small enough and for
(x, ξ) in any set of the form Ω′j × IR


n, with Ω′j ⊂ Ωj , dist
(
Ω′j , IR


n\Ωj


)
> 0. We


also set,


Ω := (Ωj)j=0,...,r;
S(Ω;L(H)) := S(Ω0 × IRn;L(H))× . . .× S(Ωr × IRn;L(H)),


and we write a = O(h∞) in S(Ω;L(H)) when ‖∂αaj(x, ξ)‖L(H) = O(h∞) uni-
formly in any set Ω′j × IRn as before.


Lemma 4.7 Let A be a U-twisted h-admissible operator, where
U = (Uj ,Ωj)0≤j≤r is some regular unitary covering. Then, for all j = 0, . . . , r,
there exists an operator-valued symbol aj ∈ S(Ωj × IRn;L(H)), unique up to
O(h∞), such that, for any χj = χ


j(x) ∈ C∞d (Ωj), the symbol of the h-admissible
operator Uj


χ
jAU


−1
j
χ


j is χj]aj]χj (where ] stands for the standard symbolic
composition: see Appendix A).


Proof Indeed, given two functions χj , ϕj ∈ C∞d (Ωj) with ϕj
χ


j = χ
j , one has


Uj
χ


jAU
−1
j
χ


j = χ
j


(
UjϕjAU


−1
j ϕj


)
χ


j ,


and thus, denoting by aχ
j the symbol of Uj


χAU−1
j
χ, one obtains


a
χj


j = χ
j]a


ϕj


j ]χj .


In particular, using the explicit expression of ] (see Appendix A, Proposition
13.2), we see that aϕj


j = a
χj


j +O(h∞) in the interior of {χj(x) = 1}. Then, the
result follows by taking a non-decreasing sequence (ϕj,k)k≥1 in C∞d (Ωj), such
that


⋃
k≥0{x ∈ Ωj ; ϕj,k(x) = 1} = Ωj , and, for any (x, ξ) ∈ Ωj × IRn, by


defining aj(x, ξ) as the common value of the aϕj,k


j (x, ξ)’s for k large enough. •


Definition 4.8 (Symbol) Let A be a U-twisted h-admissible operator, where
U = (Uj ,Ωj)0≤j≤r is some regular unitary covering. Then, the family of
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operator-valued functions σ(A) := (aj)0≤j≤r ∈ S(Ω;L(H)), defined in the pre-
vious lemma, is called the (full) symbol of A. Moreover, A is said to be elliptic
if, for any j = 0, · · · , r and (x, ξ) ∈ Ωj × IRn, the operator aj(x, ξ) is invertible
on H, and verifies,


‖aj(x, ξ)−1‖L(H) = O(1), (4.4)


uniformly for h small enough and for (x, ξ) in any set of the form Ω′j×IR
n, with


Ω′j ⊂ Ωj , dist
(
Ω′j , IR


n\Ωj


)
> 0.


In particular, it follows from the proof of Proposition 4.6 that, if such an operator
A is elliptic, then it can be written in the form (4.1), withAN


j elliptic on {χj 6= 0}
for all j,N . Moreover, we have the two following result on composition and
parametrices:


Proposition 4.9 (Composition) Let U be a regular covering of L2(IRn;H),
and let A and B be two U-twisted h-admissible operators. Then, the compo-
sition AB is a U-twisted h-admissible operator, too. Moreover, its symbol is
given by,


σ(AB) = σ(A)]σ(B),


where the operation ] is defined component by component, that is,


(aj)0≤j≤r](bj)0≤j≤r := (aj]bj)0≤j≤r.


Proof First of all, since


adχ(AB) = adχ(A)B +Aadχ(B),


one easily sees, by induction on N , that the first condition in Proposition 4.6
is satisfied. Moreover, if χj ∈ C∞d (Ωj), let ϕj ∈ C∞d (Ωj) such that ϕj


χ
j = χ


j .
Then, if, for any operator C, we set Cj := UjϕjCU


−1
j ϕj , we have,


Uj
χ


jABU
−1
j
χ


j = χ
jAjBj


χ
j + Uj


χ
jad(ϕ2


j
)(A)BU−1


j
χ


j


= χ
jAjBj


χ
j + χ


j [ad(ϕ2
j
)(A)]jBj


χ
j + Uj


χ
jad2


(ϕ2
j
)(A)BU−1


j
χ


j


= · · ·


=
N−1∑
k=0


χ
j [adk


(ϕ2
j
)(A)]jBj


χ
j + Uj


χ
jadN


(ϕ2
j
)(A)BU−1


j
χ


j (4.5)


for all N ≥ 1. Therefore, since Uj
χ


jadN
(ϕ2


j
)(A)BU−1


j
χ


j = O(hN ), and the oper-


ator [adk
(ϕ2


j
)(A)]j = adk


(ϕ2
j
)(Aj) is a bounded h-admissible operator, we deduce


from (4.5) that AB is a U-twisted h-admissible operator. Moreover, since ϕj = 1
on the support of χj , we see that the symbol of χjadk


(ϕ2
j
)(Aj) vanishes identi-


cally for k ≥ 1, and thus, we also deduce from (4.5) that the symbol (cj)0≤j≤r


of AB verifies,
χ


j]cj]χj = χ
j]aj]bj]χj ,


for any χj ∈ C∞d (Ωj), and the result follows. •
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Proposition 4.10 (Parametrix) Let A be a U-twisted h-admissible operator,
and assume that A is elliptic. Then, A is invertible on L2(IRn;H), and its
inverse A−1 is a U-twisted h-admissible operator. Moreover, its symbol σ(A−1)
is related to the one σ(A) = (aj)0≤j≤r of A by the following formula:


σ(A−1) = (σ(A))−1 + hb,


where (σ(A))−1 := (a−1
j )0≤j≤r and b ∈ S(Ω;L(H)).


Proof We first prove that A is invertible by following an idea of [KMSW] (proof
of Theorem 1.2).


For j = 0, · · · , r, let χj , ϕj ∈ C∞d (Ωj) such that ϕj
χ


j = χ
j , and


∑r
j=0


χ
j =


1. Then, by assumption, the symbol of UjϕjAU
−1
j ϕj can be written on the


form ϕj(x)]aj(x, ξ)]ϕj(x) with aj(x, ξ) invertible, and the operator,


B :=
r∑


j=0


U−1
j ϕ3


jOph(ϕja
−1
j )Uj


χ
j


is well defined and bounded on L2(IRn;H). Moreover, using the standard sym-
bolic calculus, we compute,


AB =
r∑


j=0


AU−1
j ϕ3


jOph(ϕja
−1
j )Uj


χ
j


=
r∑


j=0


U−1
j ϕjUjϕjAU


−1
j ϕjOph(ϕja


−1
j )Uj


χ
j


+[A,ϕ2
j ]U


−1
j ϕjOph(ϕja


−1
j )Uj


χ
j


=
r∑


j=0


U−1
j ϕjOph(ϕ2


jaj)Oph(ϕja
−1
j )Uj


χ
j +O(h)


=
r∑


j=0


U−1
j ϕ4


jUj
χ


j +O(h) =
r∑


j=0


χ
j +O(h) = 1 +O(h). (4.6)


In the same way, defining,


B′ :=
r∑


j=0


U−1
j
χ


jOph(ϕja
−1
j )Ujϕ


3
j ,


we obtain B′A = 1 + O(h), and this proves the invertibility of A for h small
enough. It remains to verify that A−1 is a U-twisted h-admissible operator. We
first prove,


Lemma 4.11 Let A be a U-twisted h-admissible operator, and let χ, ψ ∈
C∞b (IRn) such that dist ( Supp χ, Supp ψ) > 0. Then, ‖χAψ‖ = O(h∞).
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Proof Given N ≥ 1, let ϕ1, · · · , ϕN ∈ C∞b (IRn), such that ϕ1
χ = χ, ϕk+1ϕk =


ϕk (k = 1, · · · , N − 1), and ϕNψ = 0. Then, one has,


χAψ = ϕ1adχ(A)ψ = ϕ2adϕ1 ◦ adχ(A)ψ
= · · · = adϕN


◦ · · · ◦ adϕ1 ◦ adχ(A)ψ = O(hN+1).


•
Now, since,


adχ(A−1) = −A−1adχ(A)A−1,


it is easy to see, by induction on N , that A−1 satisfies to the first property of
Proposition 4.6. Moreover, for v ∈ L2(IRn;H) and for χj ∈ C∞d (Ωj), let us set,


u = A−1U−1
j
χ


jv,


and choose ϕj ,∈ C∞d (Ωj ; IR), ψj ∈ C∞b (IRn; IR), such that ψj
χ


j = 0, ϕ4
j +


ψ2
j ≥ 1, and dist ( Supp (ϕj − 1), Supp χj) > 0. Then, since the symbol of


Aj := UjϕjAU
−1
j ϕj is of the form ϕj]aj]ϕj with aj(x, ξ) invertible for x in


Supp ϕj , we see that the bounded h-admissible operator Bj := A∗jAj + ψ2
j is


globally elliptic, and one has,


BjUj
χ


ju = A∗jAjUj
χ


ju = A∗jUjϕjAχju = A∗jUj
χ


jAu+A∗jUjϕj [A,χj ]u


= A∗jχ
2
jv +A∗jUjϕj [A,χj ]ϕ2


ju+A∗jUj
χ


jA(ϕ2
j − 1)u


= A∗jχ
2
jv +A∗j [Aj , χj ]Ujϕju+O(h∞‖v‖), (4.7)


where the last estimate comes from Lemma 4.11. In particular, since B−1
j is an


h-admissible operator, we obtain that Uj
χ


ju can be written on the form,


Uj
χ


ju = Cjv + hC ′jUjϕju+O(h∞‖v‖)


where Cj , C
′
j are bounded h-admissible operators. Repeating the same argu-


ment with Ujϕju instead of Uj
χ


ju, and iterating the procedure, it follows that
Uj
χ


jA
−1U−1


j
χ


j is an h-admissible operator. Moreover, we see on (4.7) that the
symbol of Uj


χ
jA


−1U−1
j
χ


j coincides, up to O(h), with that of B−1
j A∗jχ


2
j , that


is,


(ϕ4
j (x)a


∗
j (x, ξ)aj(x, ξ) + ψ2


j (x))−1a∗j (x, ξ)χj(x)2 = aj(x, ξ)−1χ
j(x)2,


since ϕj = 1 and ψj = 0 on the support of χj . Thus, the proposition follows. •


Proposition 4.12 (Functional Calculus) Let A be a selfadjoint U-twisted
h-admissible operator, and let f ∈ C∞0 (IR). Then, the operator f(A) is a U-
twisted h-admissible operator, and its symbol is related to that of A by the
formula,


σ(f(A)) = f( Re σ(A)) + hb,


where f( Re (aj)j=0,...,r) := (f( Re aj))j=0,...,r and b ∈ S(Ω;L(H)).
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Proof We use a formula of representation of f(A) due to B. Helffer and J.
Sjöstrand. Denote by f̃ ∈ C∞0 (C ) an almost analytic extension of f , that is, a
function verifying f̃ |IR = f and |∂f̃(z)| = O(| Im z|∞) uniformly on C . Then,
we have (see, e.g., [DiSj1, Ma2]),


f(A) =
1
π


∫
∂f̃(z)(A− z)−1dz dz̄. (4.8)


Now, by Proposition 4.10, we see that, for z ∈ C \IR, the operator (A−z)−1 is a
U-twisted h-admissible operator. Moreover, by standard rules on the operations
adχ, if A and B are two bounded operators, then, for any N ≥ 1 and any
χ


1, · · · , χN ∈ C∞b (IRn), one has,


adχ
1
◦ · · · ◦ adχ


N
(AB) =


∑
I∪J={1,...,N}


I∩J=∅


(∏
i∈I


adχ
i


)
(A)


∏
j∈J


adχ
j


 (B).


In particular, replacing A and B by A − z and (A − z)−1 respectively, one
obtains,


adχ
1
◦ · · · ◦ adχ


N
((A− z)−1)


= −(A− z)−1
∑


I∪J={1,...,N}
I∩J=∅, I 6=∅


(∏
i∈I


adχ
i


)
(A− z)


∏
j∈J


adχ
j


 ((A− z)−1),


and thus, an easy induction gives,


adχ
1
◦ · · · ◦ adχ


N
((A− z)−1) = O(hN | Im z|−(N+1)),


uniformly with respect to h and z. Therefore, it is easy to deduce from (4.8)
that f(A) is a U-twisted h-admissible operator. Moreover, since (aj)0≤j≤r :=
σ(A) = Re (σ(A)) +O(h), a computation similar to that of (4.6) shows that,


(A− z)−1 =
r∑


j=0


U−1
j ϕ3


jOph(ϕj( Re aj − z)−1)Uj
χ


j + hR


where ϕj and χj are as in (4.6), and R verifies,


Uj
χ̃


jRU
−1
j
χ̃


j = Oph(
N∑


k=0


hkrk,j(z)) +O(hN | Im z|−N1(N),


for any χ̃
j ∈ C∞0 (Ωj) such that χ̃jϕj = χ̃


j
χ


j = χ̃
j , any N ≥ 1, and for some


N1(N) ≥ 1 and rk,j(z) ∈ C∞(T ∗Ωj), ∂αrk,j(z) = O(| Im z|−Nα,k,j ) uniformly.
Then, one easily concludes that the symbol bj of Uj


χ̃
jf(A)Uj


χ̃
j verifies,


bj = χ̃
j( Re aj − z)−1χ̃


j +O(h),
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and since the previous construction can be made for χ̃j ∈ C∞0 (Ωj) arbitrary,
the result on the symbol of f(A) follows. •


In order to complete the theory of bounded U-twisted h-admissible opera-
tors, it remains to generalize the notion of quantization. To this purpose, we
first observe that, if a = (aj)j=0,...,r ∈ S(Ω;L(H)), then, the two operators
ϕjOph(aj)ϕj and U−1


j ϕjOph(aj)Ujϕj are well defined for any ϕj ∈ C∞d (Ωj).
Moreover, if a = σ(A) is the symbol of a U-twisted h-admissible operator A,
then, by construction, it necessarily verifies the following condition of compati-
bility:


U−1
j ϕOph(aj)Ujϕ = U−1


k ϕOph(ak)Ukϕ, (4.9)


for any ϕ ∈ C∞d (Ωj) ∩ C∞d (Ωk). Then, we have,


Theorem 4.13 (Quantization) Let a = (aj)j=0,...,r ∈ S(Ω;L(H)) satisfying
to the compatibility condition (4.9). Then, there exists a U-twisted h-admissible
operator A, unique up to O(h∞), such that a = σ(A). Moreover, A is given by
the formula,


A =
r∑


j=0


U−1
j χjOph(aj)Ujϕj , (4.10)


where χ
j , ϕj ∈ C∞d (Ωj)(j = 0, . . . , r) is any family of functions such that∑r


j=0
χ


j = 1 and dist ( Supp (ϕj − 1), Supp χj) > 0.


Proof The unicity up to O(h∞) is a direct consequence of the formulas (4.2)-
(4.3), where A is expressed in terms of UjϕjAU


−1
j ϕj and is clearly O(h∞) if


these operators have identically vanishing symbols. For the existence, we define
A as in (4.10) and we observe that, thanks to (4.9), for any k ∈ {0, . . . , r} and
ψk ∈ C∞d (Ωk), one has,


UkψkAU
−1
k ψk =


r∑
j=0


χjψkOph(ak)ϕjψk =
r∑


j=0


χjψkOph(ak)ψk +O(h∞)


= ψkOph(ak)ψk +O(h∞).


Thus, A admits (ak)k=0,...,r as its symbol, and the result follows. •


To end this section, let us go back to our operator P̃ defined at the end of
Section 3. We have,


Proposition 4.14 Assume (H1)-(H4). Then, the operator P̃ defined in (3.4)
is such that P̃ (ω + Q0)−1 is a U-twisted h-admissible operator on L2(IRn;H),
where U = (Uj ,Ωj)j=0,1,···,r is the regular covering defined in Section 2. More-
over, its symbol p̃ = (p̃j)j=0,1,···,r verifies,


p̃j(x, ξ) = (ω(x, ξ) + Q̃j(x) + ζ(x)W (x))(ω(x, ξ) +Q0,j(x))−1 + hbj ,


where (Q̃j(x))j=0,1,···,r (resp. (Q0,j(x))j=0,1,···,r is the symbol of Q̃(x) (resp.
Q0(x)), and (bj)j=0,...,r ∈ S(Ω;L(H)).


22







Proof We must verify the two conditions of Proposition 4.6. We have,


adχ(P̃ (ω +Q0)−1)


= adχ(P̃ )(ω +Q0)−1 + P̃adχ((ω +Q0)−1)


= adχ(ω)(ω +Q0)−1 − P̃ (ω +Q0)−1adχ(ω)(ω +Q0)−1


= O(h),


and an easy iteration shows that the first condition of Proposition 4.6 is satisfied.
Moreover, if χj , χ̃j ∈ C∞b (IRn) are supported in Ωj (j = 1 · · · , r) and verify
Supp χj ∩ Supp (1− χ̃


j) = ∅, and if we set Pj := Uj
χ


jP̃U
−1
j
χ̃


j , we have,


Uj
χ


jP̃ (ω +Q0)−1U−1
j
χ


j


= Uj
χ


jP̃ χ̃
2


j (ω +Q0)−1U−1
j
χ


j + Uj
χ


jω(1− χ̃2


j )(ω +Q0)−1U−1
j
χ


j


= PjUj
χ̃


j(ω +Q0)−1U−1
j
χ


j +O(h∞),


and a slight generalization of the last argument in the proof of Proposition
4.10 (this time with Bj = Ujϕj(ω + Q0)U−1


j ϕj + ψj(ω + Q0)ψj), shows that
PjUj


χ̃
j(ω + Q0)−1U−1


j
χ


j is a bounded h-admissible operator on L2(IRn;H).
Therefore, the second condition of Proposition 4.6 is satisfied, too, and the
result follows. •


Corollary 4.15 The two operators (P̃ + i)−1 and (ω + Q0)−1 are U-twisted
h-admissible operators on L2(IRn;H).


Proof First observe that the previous proof is still valid if P̃ is changed into
P̃ + 1. This proves that (ω +Q0)−1 = (P̃ + 1)(ω +Q0)−1 − P̃ (ω +Q0)−1 is a
U-twisted h-admissible operator. Moreover, since (P̃ + i)(ω +Q0)−1 is elliptic,
by Proposition 4.10 its inverse (ω + Q0)(P̃ + i)−1 is a U-twisted h-admissible
operator, too. Therefore, so is (P̃ + i)−1 = (ω +Q0)−1


[
(ω +Q0)(P̃ + i)−1


]
. •


Proposition 4.16 For any f ∈ C∞0 (IR), the operator f(P̃ ) is a U-twisted h-
admissible.


Proof By Proposition 4.14 and Corollary 4.15, we see that the operator (P̃ −
z)(ω+Q0)−1 is a U-twisted h-admissible operator, and it is elliptic for z ∈ C \IR.
Therefore, by Proposition 4.10, its inverse (ω +Q0)(P̃ − z)−1 is a U-twisted h-
admissible operator, too. Moreover, for any N ≥ 1 and any χ


1, · · · , χN ∈
C∞b (IRn), one has,


adχ
1
◦ · · · ◦ adχ


N
((ω +Q0)(P̃ − z)−1) = O(hN | Im z|−(N+1))


uniformly with respect to h and z. Therefore, we deduce again from (4.8) that
(ω +Q0)f(P̃ ), too, is a U-twisted h-admissible operator. As a consequence, so
is f(P̃ ). •
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5 Twisted Partial Differential Operators


For µ ≥ 0, we set,


Hµ
d (Ωj) := {u ∈ L2(Ωj ;H) ; ∀χj ∈ C∞d (Ωj), χju ∈ Hµ(IRn;H)},


where Hµ(IRn;H) stands for the usual Sobolev space of order µ on IRn with
values in H. Moreover, if U := (Uj ,Ωj)j=0,···,r is a regular unitary covering (in
the previous sense) of L2(IRn;H), we introduce the vector-space,


Hµ
d (U) := {u ∈ L2(IRn;H) ; ∀ j = 0, . . . , r, Uju


∣∣
Ωj


∈ Hµ
d (Ωj)},


endowed with the family of semi-norms,


‖u‖µ,χ := ‖u‖L2 +
r∑


j=0


‖Uj
χ


ju‖Hµ ,


where χ := (χj)j=0,...,r is such that χj ∈ C∞d (Ωj) for all j. In particular, we
have a notion of continuity for operators A : Hµ


d (U) → Hν
d(U).


Let us also remark that, for µ = 0, we recover H0
d(U) = L2(IRn;H), and, if


µ ≥ ν, then Hµ
d (U) ⊂ Hν


d(U) with a continuous injection.


Definition 5.1 Let U := (Uj ,Ωj)j=0,···,r be a regular unitary covering (in the


previous sense) of L2(IRn;H), and let µ ∈ ZZ+. We say that an operator A :
Hµ


d (U) → L2(IRn;H) is a (semiclassical) U-twisted partial differential operator
up to regularizing unitary conjugation (in short: U-twisted PDO) of degree µ, if
A is local with respect to the variable x (that is, Supp (Au) ⊂ Supp u for all u,
where Supp stands for the support with respect to x), and, for all j = 0, . . . , r,
the operator UjAU


−1
j (well defined on Hµ


d (Ωj)) is of the form,


UjAU
−1
j =


∑
|α|≤µ


aα,j(x;h)(hDx)α


with aα,j ∈ S(Ωj ;L(H)).


In particular, for any partition of unity (χj)j=0,...,r on IRn with χ
j ∈ C∞d (Ωj),


A can be written as,


A =
r∑


j=0


U−1
j AjUj


χ
j , (5.1)


with Aj := UjAU
−1
j . As a consequence, one also has adχ


1
◦ · · · ◦ adχ


µ+1
(A) = 0


for any functions χ1, · · · , χµ+1 ∈ C∞b (IRn).


Of course, we also have an obvious notion of (full) symbol for such operators,
namely, the family,


σ(A) := (aj)0≤j≤r, aj(x, ξ;h) :=
∑
|α|≤µ


aα,j(x;h)ξα.
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Moreover, if A and B are two U-twisted PDO’s on L2(IRn;H), of respective
degrees µ and µ′, by writing UjABU


−1
j = (UjAU


−1
j )(UjBU


−1
j ) and by using


a partition of unity as before, we immediately see that AB is well defined on
Hµ+µ′


d (U), and is a U-twisted PDO, too, with symbol,


σ(AB) = σ(A)]σ(B).


Now, we turn back again to the operator P̃ defined at the end of Section 3,
and the regular covering defined in Section 2.


Proposition 5.2 Let A be a U-twisted PDO on L2(IRn;H) of degree µ, where
U is the regular covering defined in Section 2. Then, for any integers k, ` such
that k+ ` ≥ µ/m, the operator (P̃ + i)−kA(P̃ + i)−` is a U-twisted h-admissible
operator.


Proof We first consider the case k = 0. For ϕj , ψj ∈ C∞d (Ωj), such that
dist ( Supp (ψj − 1), Supp ϕj) > 0, we have,


UjϕjA(P̃ + i)−`U−1
j ϕj = UjϕjAU


−1
j ψjUjψj(P̃ + i)−`U−1


j ϕj , (5.2)


and, as in the proof of Proposition 4.10, we see that the inverse of (P̃ + i)` can
be written as,


(P̃ + i)−` = B(1 + hR) (5.3)


where R is uniformly bounded, and B is of the form,


B =
r∑


ν=0


U−1
ν
χ̃


νOph((pν + i)−`)Uν
χ


ν , (5.4)


where (χν)ν=0,...,r is an arbitrary partition of unity with χ
ν ∈ C∞d (Ων), χ̃ν ∈


C∞d (Ων) is such that χ̃ν
χ


ν = χ
ν , and pν(x, ξ;h) = ω(x, ξ;h)+Q̃ν(x)+ζ(x)W (x).


Lemma 5.3 Let j ∈ {0, . . . , r} and ψj ∈ C∞d (Ωj) be fixed. Then, there exists
a partition of unity (χν)ν=0,...,r of IRn with χ


ν ∈ C∞d (Ων), and there exists
χ̃


ν ∈ C∞d (Ων) with χ̃ν
χ


ν = χ
ν (ν = 0, . . . , r), such that χjψj = ψj and χ̃νψj = 0


if ν 6= j.


Proof It is enough to construct a partition of unity in such a way that
dist ( Supp ψj , Supp (χj − 1)) > 0 (and thus, automatically, one will also have
dist ( Supp ψj , Supp χν) > 0 for ν 6= j). Let (χ′ν)ν=0,...,r be a partition of
unity as in Definition 4.1, and let χ′′j ∈ C∞d (Ωj ; [0, 1]) such that χ′′j = 1 in a
neighborhood of Supp ψj ∪ Supp χj . Then, the result is obtained by taking
χ


ν := (1− χ′′
j )χ′ν if ν 6= j, and χj := χ′′


j . •


Taking the χν ’s and χ̃
ν ’s as in the previous lemma, we obtain from (5.3)-


(5.4),
Ujψj(P̃ + i)−` = ψjOph((pj + i)−`)Uj


χ
j(1 + hR),
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and thus, since UjϕjAU
−1
j ψj is a differential operator of degree µ with operator-


valued symbol, we easily deduce from (5.2) that if m` ≥ µ, then A(P̃ + i)−` is
bounded on L2(IRn;H), uniformly with respect to h > 0. Moreover, writing,


UjϕjA(P̃+i)−`U−1
j ϕj = [UjϕjAU


−1
j ψj〈hDx〉−m`][〈hDx〉m`Ujψj(P̃+i)−`U−1


j ϕj ],


and using the standard pseudodifferential calculus with operator-valued symbol
for the first factor, and a slight refinement of (4.7) for the second one, we see
that UjϕjA(P̃ + i)−`U−1


j ϕj is an h-admissible operator on L2(IRn);H). Then,
it only remains to verify the first property of Proposition 4.6. We first prove,


Lemma 5.4 For any α1, . . . , αN ∈ C∞b (IRn), one has,


adα1 ◦ . . . ◦ adαN
((P̃ + i)−`) = hN (P̃ + i)−`RN , (5.5)


with RN = O(1) on L2(IRn;H).


Proof Since adαN
((P̃ + i)−`) = −(P̃ + i)−`adαN


((P̃ + i)`)(P̃ + i)−`, by an
easy iteration we see that it is enough to prove that h−Nadα1 ◦ . . . ◦ adαN


((P̃ +
i)`)(P̃ + i)−` is uniformly bounded. Moreover, since adαN


((P̃ + i)`)(P̃ + i)−`


is a sum of terms of the type (P̃ + i)kadαN
(ω)(P̃ + i)−k−1 (0 ≤ k ≤ ` − 1),


another easy iteration shows that it is enough to prove that h−N (P̃ + i)`adα1 ◦
. . . ◦ adαN


(ω)(P̃ + i)−`−1 is uniformly bounded. Now, by (H4), we see that, for
any partition of unity (χj) as before, (P̃ + i)` can be written as,


(P̃ + i)` =
r∑


j=0


U−1
j Pj,`Uj


χ
j ,


where Pj,` is of the form,


Pj,` =
∑


|α|≤m`


ρj,`,α(x;h)(hDx)α,


with ρj,`,αQ
|α|
m −`


0 ∈ C∞(Ωj ;H). Moreover, by (2.3), the operator Ujadα1 ◦ . . . ◦
adαN


(ω)U−1
j = adα1 ◦ . . . ◦ adαN


(UjωU
−1
j ) is of the form,


Ujadα1 ◦ . . . ◦ adαN
(ω)U−1


j = hN
∑


|α|≤(m−N)+


τj,α(x;h)(hDx)α,


with τj,αQ
|α|
m −1


0 ∈ C∞(Ωj ;H). In particular, we obtain,


(P̃ + i)`adα1 ◦ . . . ◦ adαN
(ω) = hN


r∑
j=0


∑
|α|≤m(`+1)


U−1
j λj,`,α(x;h)(hDx)αUjϕj ,


with ϕj ∈ C∞d (Ωj) and λj,`,αQ
|α|
m −`−1


0 ∈ C∞(Ωj ;H), and the result follows
as before by using (5.3)-(5.4), and by observing that, for |α| ≤ m(` + 1), the
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operator Q1+`− |α|
m


0 (hDx)α(〈hDx〉m + Q0)−`−1 is uniformly bounded, and thus


so is the operator Q1+`− |α|
m


0 (hDx)αϕjOph((pj + i)−`−1)Uj
χ


j . •


On the other hand, we see on (5.1) that adχ
1
◦ . . . ◦ adχ


N
(A) is a U-twisted


PDO of degree (µ−N)+, and the first property of Proposition 4.6 for A(P̃+i)−`


follows easily.
For the case k > 0, by taking a partition of unity, we first observe that,


(P̃ + i)−kA(P̃ + i)−` =
r∑


j=0


(P̃ + i)−kU−1
j AjUj


χ
j(P̃ + i)−`


where Aj = UjAU
−1
j can be written as,


Aj =
∑


|α|≤mk
|β|≤m`


(hDx)αaα,β,j(x;h)(hDx)β .


Then, by using (in addition to (5.3)-(5.4)) that,


(P̃ + i)−k = (1 + hR′)B′


where R′ is uniformly bounded, and B′ is of the form,


B′ =
r∑


ν=0


U−1
ν
χ


νOph((pν + i)−`)Uν
χ̃


ν ,


the same previous arguments show that (P̃ + i)−kA(P̃ + i)−` is bounded on
L2(IRn;H), uniformly with respect to h > 0.


Then, let N ≥ 1 and α1 . . . , αN ∈ C∞d (Ωj), such that α1ϕj = ϕj , α2α1 = α1,
... , αNαN−1 = αN−1, and αN (ψj − 1) = 0. We have,


Ujϕj(P̃ + i)−kA(P̃ + i)−`U−1
j ϕj


= Ujϕj(P̃ + i)−kAψj(P̃ + i)−`U−1
j ϕj


+Ujϕj(P̃ + i)−kA(ψj − 1)adα1 ◦ . . . ◦ adαN
((P̃ + i)−`)U−1


j ϕj


and thus, by (5.5),


Ujϕj(P̃ + i)−kA(P̃ + i)−`U−1
j ϕj


= Ujϕj(P̃ + i)−kAψj(P̃ + i)−`U−1
j ϕj +O(hN ).


Then, writing Aψj = U−1
j ψ̃jAjUjψj , with Aj = UjAU


−1
j and ψ̃j ∈ C∞d (Ωj)


such that ψ̃jψj = ψj , the result is obtained along the same lines as before. •


Proposition 5.5 The two operators ωQ−1
0 and Q−1


0 ω are U-twisted PDO’s of
degree m. Moreover, if A is a U-twisted PDO such that Q0A and AQ0 are
U-twisted PDO’s, too, of degree µ, then the operator h−1[ω, A] is a U-twisted
PDO of degree at most µ+m− 1.
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Proof Thank to (H4), the fact that ωQ−1
0 and Q−1


0 ω are U-twisted PDO’s of
degree m is obvious. Moreover, the fact that Q0A and AQ0 are both U-twisted
PDO’s implies that UjAU


−1
j can be written as,


UjAU
−1
j =


∑
|α|≤µ


aα,j(x;h)(hDx)α


with Q0aα,j and aα,jQ0 in S(Ωj ;L(H)). Then, using (H4), we have,


UjωAU
−1
j =


∑
|α|≤m
|β|≤µ


cα(x;h)(hDx)αaβ,j(x;h)(hDx)β


+h
∑


|α|≤m−1
|β|≤µ


ωα,j(x;h)(hDx)αaβ,j(x;h)(hDx)β


and


UjAωU−1
j =


∑
|α|≤m
|β|≤µ


aβ,j(x;h)(hDx)βcα(x;h)(hDx)α


+h
∑


|α|≤m−1
|β|≤µ


aβ,j(x;h)(hDx)βωα,j(x;h)(hDx)α.


Moreover, by (H4) (and the fact that UjωU
−1
j is symmetric), we know that cα


is scalar-valued, and Q−1
0 ωα,j , ωα,jQ


−1
0 are bounded operators on H (together


with all their derivatives). Thus, it is clear that h−1Uj [ω, A]U−1
j is a PDO of


degree ≤ µ+m− 1, and the result follows. •


6 Construction of a Quasi-Invariant Subspace


Theorem 6.1 Assume (H1)-(H4), and denote by U := (Uj ,Ωj)j=0,···,r the reg-
ular unitary covering of L2(IRn;H) constructed from the operators Uj and the
open sets Ωj defined in Section 2. Then, for any g ∈ C∞0 (IR), there exists a U-
twisted h-admissible operator Πg on L2(IRn;H), such that Πg is an orthogonal
projection that verifies,


Πg = Π̃0 +O(h) (6.1)


and, for any f ∈ C∞0 (IR) with Supp f ⊂ {g = 1}, and any ` ≥ 0,


P̃ `[f(P̃ ),Πg] = O(h∞). (6.2)


Moreover, Πg is uniformly bounded as an operator : L2(IRn;H) → L2(IRn;DQ)
and, for any ` ≥ 0, any N ≥ 1, and any functions χ1, · · · , χN ∈ C∞b (IRn), one
has,


P̃ `adχ
1
◦ · · · ◦ adχ


N
(Πg) = O(hN ). (6.3)
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Proof: We first perform a formal construction, by essentially following a pro-
cedure taken from [Ne1] (see also [BrNo] in the case L = 1). In the sequel, all
the twisted PDO’s that are involved are associated with the regular covering U
constructed in Section 2, and we will omit to specify it all the time. We say
that a twisted PDO is symmetric when it is formally selfadjoint with respect to
the scalar product in L2(IRn;H).


Since Q = Q̃(x) + ζ(x)W (x) commutes with Π̃0, we have,


[P̃ , Π̃0] = [ω, Π̃0]. (6.4)


Moreover, denoting by γ(x) a complex oriented single loop surrounding the set
{λ̃L′+1(x), . . . , λ̃L′+L(x)} and leaving the rest of the spectrum of Q̃(x) in its
exterior, we have,


Π̃0(x) =
1


2iπ


∫
γ(x)


(z − Q̃(x))−1dz, (6.5)


and thus, it results from Proposition 3.2 and assumption (H4) that Q0Π̃0(x) is
a U-twisted PDO of degree 0. Therefore, applying Proposition 5.5, we immedi-
ately obtain,


[P̃ , Π̃0] = −ihS0, (6.6)


where S0 is a symmetric twisted PDO (of degree m − 1). Moreover, setting
Π̃⊥


0 := 1− Π̃0, we observe that,


S0 = Π̃0S0Π̃⊥
0 + Π̃⊥


0 S0Π̃0. (6.7)


Then, we set,


Π̃1 := − 1
2π


∮
γ(x)


(z−Q̃(x))−1
[
Π̃⊥


0 (x)S0Π̃0(x)− Π̃0(x)S0Π̃⊥
0 (x)


]
(z−Q̃(x))−1dz.


(6.8)
Thus, Π̃1 is a symmetric U-twisted PDO (of degree m − 1), and is such that
Q0Π̃1 is a twisted PDO, too. Therefore, using Proposition 5.5 again, we have,


[P̃ , Π̃1] = [Q, Π̃1] + hB,


where B is a twisted PDO (of degree 2(m − 1)). Then, using that Q̃(x)(z −
Q̃(x))−1 = (z − Q̃(x))−1Q̃(x) = z(z − Q̃(x))−1 − 1, one computes,


[Q̃(x), Π̃1] =
1
2π


∮
γ(x)


[
Π̃⊥


0 (x)S0Π̃0(x)− Π̃0(x)S0Π̃⊥
0 (x)


]
(z − Q̃(x))−1dz


− 1
2π


∮
γ(x)


(z − Q̃(x))−1
[
Π̃⊥


0 (x)S0Π̃0(x)− Π̃0(x)S0Π̃⊥
0 (x)


]
dz


= i
[
Π̃⊥


0 (x)S0Π̃0(x)− Π̃0(x)S0Π̃⊥
0 (x)


]
Π̃0(x)


−iΠ̃0(x)
[
Π̃⊥


0 (x)S0Π̃0(x)− Π̃0(x)S0Π̃⊥
0 (x)


]
= i(Π̃⊥


0 S0Π̃0 + Π̃0S0Π̃⊥
0 ),
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that gives,
[Q, Π̃1] = i(Π̃⊥


0 S0Π̃0 + Π̃0S0Π̃⊥
0 ) + [ζW, Π̃1], (6.9)


and thus, using (6.7), one obtains,


[P̃ , Π̃1] = iS0 − ihS1, (6.10)


where S1 is a symmetric twisted PDO (of degree 2(m− 1)). Hence, setting,


Π(1) := Π̃0 + hΠ̃1,


we deduce from (6.6) and (6.10),


[P̃ ,Π(1)] = −ih2S1. (6.11)


Moreover,


(Π(1))2 −Π(1) = h(Π̃0Π̃1 + Π̃1Π̃0 − Π̃1) + h2Π̃2
1 = h2Π̃2


1 =: h2T1,


where T1 is a symmetric twisted PDO (of degree 2(m − 1)), such that Q0T1 is
a twisted PDO, too.


Now, by induction on M , suppose that we have constructed a symmetric
twisted PDO Π(M) as,


Π(M) =
M∑


k=0


hkΠ̃k,


where the Q0Π̃k’s are twisted PDO’s, such that,


(Π(M))2 −Π(M) = hM+1TM ; (6.12)
[P̃ ,Π(M)] = −ihM+1SM , (6.13)


with SM and Q0TM twisted PDO’s.
We set,


Π(M+1) = Π(M) + hM+1Π̃M+1,


with,


Π̃M+1 := − 1
2π


∮
γ(x)


(z − Q̃(x))−1
[
Π̃⊥


0 SM Π̃0 − Π̃0SM Π̃⊥
0


]
(z − Q̃(x))−1dz


+Π̃⊥
0 TM Π̃⊥


0 − Π̃0TM Π̃0. (6.14)


Then, Π(M+1) is again a symmetric twisted PDO, and, using the induction
assumption, we immediately see that Q̃(x)Π̃M+1 (and thus also Q0Π̃M+1) is a
twisted PDO. Moreover, since TM and Π(M) commute, we have,


Π(M)TM (1−Π(M)) = (1−Π(M))TMΠ(M) = −hM+1T 2
M ,


and thus, since Π(M) = Π̃0 + hRM with Q0RM twisted PDO, we first obtain,


Π̃⊥
0 TM Π̃0 + Π̃0TM Π̃⊥


0 = hR′M , (6.15)
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with Q0R
′
M twisted PDO. On the other hand, one can check that,


Π̃M+1 − (Π̃0Π̃M+1 + Π̃M+1Π̃0) = Π̃0TM Π̃0 + Π̃⊥
0 TM Π̃⊥


0 ,


and thus, with (6.15),


Π̃M+1 − (Π̃0Π̃M+1 + Π̃M+1Π̃0) = TM − hR′M .


As a consequence, we obtain,


(Π(M+1))2 −Π(M+1) = hM+2TM+1, (6.16)


where Q0TM+1 is a twisted PDO. Applying Proposition 5.5, we also have,


[ω, Π̃M+1] = hR′′M ,


with R′′M twisted PDO, and thus,


[P̃ , Π̃M+1] = [Q, Π̃M+1] + hR′′M


= i(Π̃0SM Π̃⊥
0 + Π̃⊥


0 SM Π̃0)


+Π̃⊥
0 [Q, TM ]Π̃⊥


0 − Π̃0[Q, TM ]Π̃0 + hR
(3)
M (6.17)


with R(3)
M twisted PDO, and, using the hypothesis of induction (and, again, the


twisted symbolic calculus),


Π̃⊥
0 [Q, TM ]Π̃⊥


0


= Π̃⊥
0 [P̃ , TM ]Π̃⊥


0 + hR
(4)
M


= h−(M+1)Π̃⊥
0 [P̃ , (Π(M))2 −Π(M)]Π̃⊥


0 + hR
(4)
M


= h−(M+1)Π̃⊥
0 ([P̃ ,Π(M)]Π(M) + Π(M)[P̃ ,Π(M)]− [P̃ ,Π(M)])Π̃⊥


0 + hR
(4)
M


= −iΠ̃⊥
0 (SMΠ(M) + Π(M)SM − SM )Π̃⊥


0 + hR
(4)
M


= iΠ̃⊥
0 SM Π̃⊥


0 + hR
(5)
M , (6.18)


and, in the same way,


Π̃0[Q, TM ]Π̃0 = −iΠ̃0SM Π̃0 + hR
(6)
M , (6.19)


where the operators R(k)
M ’s are all twisted PDO’s. Inserting (6.18)-(6.19) into


(6.17), we finally obtain,


[P̃ , Π̃M+1] = iSM + hR
(7)
M ,


that implies,
[P̃ ,Π(M+1)] = −ihM+2SM+1,


where SM+1 is a twisted PDO. Therefore, the induction is established.
From this point, we follow an idea of [So]. Let g ∈ C∞0 (IR). Using Propo-


sitions 5.2 and 4.16, and writing g(P̃ )Π̃k = g(P̃ )(P̃ + i)N (P̃ + i)−N Π̃k, we see
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that the operators g(P̃ )Π̃k (k ≥ 0) are all twisted h-admissible operators. In
particular, they are all bounded, uniformly with respect to h. Moreover, for any
`, `′ ≥ 0, any N ≥ 1, and any functions χ1, · · · , χN ∈ C∞b (IRn), by construction,
h−Nadχ


1
◦ · · · ◦ adχ


N
(Π̃k) is a twisted PDO, and thus, by Propositions 5.2 and


4.16, h−N P̃ `g(P̃ )adχ
1
◦ · · · ◦ adχ


N
(Π̃k)P̃ `′ is uniformly bounded. It is also easy


to show (e.g., by using (6.24) hereafter) that,


P̃ `adχ
1
◦ · · · ◦ adχ


N
(g(P̃ ))P̃ `′ = O(hN ), (6.20)


and therefore, we obtain,


h−N P̃ `adχ
1
◦ · · · ◦ adχ


N
(g(P̃ )Π̃k)P̃ `′ = O(1),


uniformly with respect to h. As a consequence, we can resum in a standard way
the formal series of operators


∑∞
k=0 h


kg(P̃ )Π̃k (see, e.g., [Ma2] Lemma 2.3.3),
in such a way that, if we denote by Π(g) such a resummation, we have,


‖P̃ `adχ
1
◦ · · · ◦ adχ


N
(Π(g)−


M−1∑
k=0


hkg(P̃ )Π̃k)P̃ `′‖L(L2(IRn;H)) = O(hM+N ),


(6.21)
for any `, `′ ≥ 0, M,N ≥ 0 and any χ1, · · · , χN ∈ C∞b (IRn) (with the conventions
adχ


1
◦ · · · ◦ adχ


N
(Π(g)) = Π(g) if N = 0, and


∑M−1
k=0 = 0 if M = 0).


Then, we prove,


Lemma 6.2 For any ` ≥ 0, one has,


‖P̃ `(Π(g)−Π(g)∗)‖L(L2(IRn;H)) = O(h∞). (6.22)


Proof In view of (6.21), it is enough to show that, for any M ≥ 1, one has,


(P̃ + i)`[g(P̃ ),Π(M)] = O(hM+1). (6.23)


For N ≥ 1 large enough, we set gN (s) := g(s)(s+i)N ∈ C∞0 (IR), and we observe
that,


g(P̃ ) = gN (P̃ )(P̃ + i)−N =
1
π


∫
∂g̃N (z)(P̃ − z)−1(P̃ + i)−Ndz dz̄, (6.24)


where g̃N is an almost analytic extension of gN . Therefore, we obtain,


(P̃ + i)`[g(P̃ ),Π(M)]


=
1
π


∫
∂g̃N (z)(P̃−z)−1(P̃+i)`−N [Π(M), (P̃−z)(P̃+i)N ](P̃−z)−1(P̃+i)−Ndz dz̄,


(6.25)
and it follows from (6.13) and the twisted PDO calculus, that,


[Π(M), (P̃ − z)(P̃ + i)N ] = hM+1RM,N (6.26)
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where RM,N is a twisted PDO of degree µM +mN , with µM the degree of SM .
Therefore, if we choose N such that 2mN −m` ≥ µM +mN , that is, N ≥ `+
µM/m, then (6.25)-(6.26) and Proposition 5.2 tell us that h−(M+1)[g(P̃ ),Π(M)]
is a twisted h-admissible operator, and the result follows. •


We set,


Π̃g := Π(g)+Π(g)∗−1
2
(g(P̃ ))Π(g)∗+Π(g)g(P̃ ))+(1−g(P̃ ))Π̃0(1−g(P̃ )). (6.27)


Then, Π̃g is a selfadjoint twisted h-admissible operator, and since Π(g) =
g(P̃ )Π̃0 +O(h), we have,


‖Π̃g − Π̃0‖L(L2(IRn;H)) + ‖Π̃2
g − Π̃g‖L(L2(IRn;H)) = O(h). (6.28)


By construction, we also have P̃ `(g(P̃ )Π(g)∗ − Π(g)g(P̃ )) = O(h∞) for all
` ≥ 0, and thus, by Lemma 6.2,


P̃ `Π̃g = P̃ `
[
Π(g) + (1− g(P̃ ))


(
Π(g) + Π̃0(1− g(P̃ ))


)]
+O(h∞). (6.29)


Moreover, if f ∈ C∞0 (IR) is such that Supp f ⊂ {g = 1}, and if we denote
by Π(f) a resummation of the formal series


∑
k≥0 h


kf(P̃ )Π̃k as before, since
f(P̃ )(1− g(P̃ )) = 0, f(P̃ )Π(g)− Π(f) = O(h∞), and P̃ `(1 − g(P̃ )Π(g)f(P̃ ) =
P̃ `(1 − g(P̃ )Π(g)∗f(P̃ ) + O(h∞) = P̃ `(1 − g(P̃ )Π(f) + O(h∞) = O(h∞), we
deduce from (6.29) and Lemma 6.2,


P̃ `[f(P̃ ), Π̃g] = P̃ `
(
Π(f)−Π(g)∗f(P̃ )


)
+O(h∞) = P̃ ` (Π(f)−Π(f)∗)+O(h∞),


and thus,
‖P̃ `[f(P̃ ), Π̃g]‖L(L2(IRn;H)) = O(h∞). (6.30)


On the other hand, we deduce from Lemma 6.2 and (6.12),


P̃ `(Π(g)2 −Π(g2)) = P̃ `(Π(g)Π(g)∗ −Π(g2)) +O(h∞)
= P̃ `(Π(g)g(P̃ )−Π(g2)) +O(h∞)
= O(h∞), (6.31)


and thus, using (6.29)-(6.31),


P̃ `(Π̃2
g − Π̃g)f(P̃ ) = O(h∞). (6.32)


Then, following the arguments of [Ne1, Ne2, NeSo, So], for h small enough
we can define the following orthogonal projection:


Πg :=
1


2iπ


∫
|z−1|= 1


2


(Π̃g − z)−1 dz, (6.33)
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and it verifies (see [So], Formula (3.9), and [Ne1], Proposition 3),


Πg−Π̃g =
1


2iπ
(Π̃2


g−Π̃g)
∫
|z−1|= 1


2


(Π̃g−z)−1(2Π̃g−1)(1−Π̃g−z)−1(1−z)−1 dz.


(6.34)
In particular, we obtain from (6.32) and (6.34),


P̃ `(Πg − Π̃g)f(P̃ ) = O(h∞), (6.35)


and thus, we deduce from (6.28) and (6.30) that (6.1) and (6.2) hold.
In order to prove (6.3), we first observe that, by using (6.20), (6.21) and the


fact that adχ
k
(Π̃0) = 0, we obtain,


P̃ `adχ
1
◦ · · · ◦ adχ


N
(Π̃g) = O(hN ), (6.36)


for any N ≥ 1. On the other hand, we have,


Lemma 6.3 For any ` ≥ 0 and z ∈ C such that |z − 1| = 1/2, the operator
P̃ `(Π̃g − z)−1(P̃ + i)−` is uniformly bounded on L2(IRn;H).


Proof Writing, for ` > 0,


H` : = (P̃ + i)`(Π̃g − z)−1(P̃ + i)−`


= H`−1 + (P̃ + i)`−1[P̃ , (Π̃g − z)−1](P̃ + i)−`


= H`−1 +H`−1(P̃ + i)`−1[Π̃g, P̃ ](P̃ + i)−`H`,


and performing an easy induction, we see that it is enough to prove that (P̃ +
i)`−1[Π̃g, P̃ ](P̃ +i)−` is O(h). Due to (6.29), it is enough to study the two terms
(P̃ + i)`−1[Π̃(g), P̃ ](P̃ + i)−` and (P̃ + i)`−1[Π̃0, P̃ ](P̃ + i)−`. By (6.13), the first
one is O(h∞), while the second one is equal to (P̃ + i)`−1[Π̃0,ω](P̃ + i)−` and
thus, by Propositions 5.5 and 5.2, is O(h). •


Combining (6.36), (6.33) and Lemma 6.3, we easily obtain (6.3), and this
completes the proof of Theorem 6.1. •


Remark 6.4 Observe that the previous proof also provides a way of computing
the full symbol of Π̃g (and thus of Πg, too) up to O(hM ), for anyM ≥ 1. Indeed,
formulas (6.12), (6.13), and (6.14) permit to do it inductively.


Remark 6.5 For this proof, we did not succeed in adapting the elegant argu-
ment of [Sj2] (as this was done for smooth interactions in [So]), because of a
technical problem. Namely, this argument involves a translation in the spectral
variable z, of the type z 7→ z + ω(x, ξ), inside the symbol of the resolvent of
P̃ . In our case, this would have led to consider a symbol ã = (ãj)0≤j≤r of
the type ãj = aj(x, ξ, z + ωj(x, ξ)), where ωj is the symbol of UjωU


−1
j and


a(x, ξ, z) = (aj(x, ξ, z))0≤j≤r is the symbol of (z − P̃ )−1. But then, it is not
clear to us (and probably may be wrong) that the compatibility conditions (4.9)
are verified by ã, and this prevents us from quantizing it in order to continue
the argument.
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7 Decomposition of the Evolution for the Mod-
ified Operator


In this section we prove a general result on the quantum evolution of P̃ .


Theorem 7.1 Under the same assumtions as for Theorem 6.1, let g ∈ C∞0 (IR).
Then, one has the following results:
1) Let ϕ0 ∈ L2(IRn;H) verifying,


ϕ0 = f(P̃ )ϕ0, (7.1)


for some f ∈ C∞0 (IR) such that Supp f ⊂ {g = 1}. Then, with the projection
Πg constructed in Theorem 6.1, one has,


e−itP̃ /hϕ0 = e−itP̃ (1)/hΠgϕ0 + e−itP̃ (2)/h(1−Πg)ϕ0 +O(|t|h∞‖ϕ0‖) (7.2)


uniformly with respect to h small enough, t ∈ IR and ϕ0 verifying (7.1), with,


P̃ (1) := ΠgP̃Πg ; P̃ (2) := (1−Πg)P̃ (1−Πg).


2) Let ϕ0 ∈ L2(IRn;H) (possibly h-dependent) verifying ‖ϕ0‖ = 1, and,


ϕ0 = f(P̃ )ϕ0 +O(h∞), (7.3)


for some f ∈ C∞0 (IR) such that Supp f ⊂ {g = 1}. Then, one has,


e−itP̃ /hϕ0 = e−itP̃ (1)/hΠgϕ0 + e−itP̃ (2)/h(1−Πg)ϕ0 +O(〈t〉h∞) (7.4)


uniformly with respect to h small enough and t ∈ IR.
3) There exists a bounded operator W : L2(IRn;H) → L2(IRn)⊕L with the
following properties:


• For any j ∈ {0, 1, . . . , r}, and any ϕj ∈ C∞d (Ωj), the operator Wj :=
WU−1


j ϕj is an h-admissible operator from L2(IRn;H) to L2(IRn)⊕L;


• WW∗ = 1 and W∗W = Πg;


• The operator A := WP̃W∗ = WP̃ (1)W∗ is an h-admissible operator on
L2(IRn)⊕L with domain Hm(IRn)⊕L, and its symbol a(x, ξ;h) verifies,


a(x, ξ;h) = ω(x, ξ;h)IL +M(x) + ζ(x)W (x)IL + hr(x, ξ;h)


where M(x) is a L× L matrix depending smoothly on x, with spectrum
{λ̃L′+1(x), . . . , λ̃L′+L(x)}, and r(x, ξ : h) verifies,


∂αr(x, ξ;h) = O(〈ξ〉m−1)


for any multi-index α and uniformly with respect to (x, ξ) ∈ T ∗IRn and
h > 0 small enough.
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In particular, W
∣∣
RanΠg


: RanΠg → L2(IRn)⊕L is unitary, and e−itP̃ (1)/hΠg =
W∗e−itA/hWΠg = W∗e−itA/hW for all t ∈ IR.


Remark 7.2 In Section 10, we give a way of computing easily the expansion
of A up to any power of h. As an example, we compute explicitly its first three
terms (that is, up to O(h4)).


Proof 1) Setting ϕ := e−itP̃ /hϕ0, we have f(P̃ )ϕ = ϕ, and thus


ih∂tΠgϕ = ΠgP̃ f(P̃ )ϕ = Π2
gP̃ f(P̃ )ϕ. (7.5)


Moreover, writing [Πg, P̃ ]f(P̃ ) = [Πg, P̃ f(P̃ )] + P̃ [f(P̃ ),Πg], Theorem 6.1 tells
us that ‖[Πg, P̃ ]f(P̃ )‖ = O(h∞). Therefore, we obtain from (7.5),


ih∂tΠgϕ = ΠgP̃Πgf(P̃ )ϕ+O(h∞‖ϕ‖) = P̃ (1)Πgϕ+O(h∞‖ϕ0‖),


uniformly with respect to h and t. This equation can be re-written as,


ih∂t(eitP̃ (1)/hΠgϕ) = O(h∞‖ϕ0‖),


and thus, integrating from 0 to t, we obtain,


Πgϕ = e−itP̃ (1)/hΠgϕ0 +O(|t|h∞‖ϕ0‖),


uniformly with respect to h, t and ϕ0.
Reasoning in the same way with 1−Πg instead of Πg, we also obtain,


(1−Πg)ϕ = e−itP̃ (2)/h(1−Πg)ϕ0 +O(|t|h∞‖ϕ0‖),


and (7.2) follows.


2) Formula (7.4) follows exactly in the same way.


3) Since Πg − Π̃0 = O(h), for h small enough we can consider the operator
V defined by the Nagy formula,


V =
(
Π̃0Πg + (1− Π̃0)(1−Πg)


)(
1− (Πg − Π̃0)2


)−1/2


. (7.6)


Then, V is a twisted h-admissible operator, it differs from the identity by O(h),
and standard computations (using that (Πg − Π̃0)2 commutes with both Π̃0Πg


and (1− Π̃0)(1−Πg): see, e.g., [Ka] Chap.I.4) show that,


V∗V = VV∗ = 1 and Π̃0V = VΠg.


Now, with ũk as in Lemma 3.1, we define ZL : L2(IRn;H) → L2(IRn)⊕L by,


ZLψ(x) =
L′+L⊕


k=L′+1


〈ψ(x), ũk(x)〉H,
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and we set,
W := ZL ◦ V = ZL +O(h). (7.7)


Thanks to the properties of V, we see that WΠg = W, and, since Z∗LZL = Π̃0


and ZLZ
∗
L = 1, we also obtain:


W∗W = V∗Π̃0V = Πg ; WW∗ = 1.


Moreover, for any ϕj , χj ∈ C∞d (Ωj) such that χj = 1 near Supp ϕj , and for
any ψ ∈ L2(IRn;H), we have,


WU−1
j ϕjψ(x) =


L′+L⊕
k=L′+1


〈Vjψ(x), ũk,j(x)〉H,


with Vj := Uj
χ


jVU−1
j ϕj and ũk,j(x) := Uj(x)ũk(x) ∈ C∞(Ωj ,H). Therefore,


WU−1
j ϕj is an h-admissible operator from L2(IRn;H) to L2(IRn)⊕L, and the


first two properties stated on W are proved. (Actually, one can easily see that
W also verifies a property analog to the first one in Proposition 4.6, and thus,
with an obvious extension of the notion of twisted operator, that W is, indeed,
a twisted h-admissible operator from L2(IRn;H) to L2(IRn)⊕L.)


Then, defining
A := WP̃W∗ = WP̃ (1)W∗, (7.8)


we want to prove that A is an h-admissible operator and study its symbol. We
first need the following result:


Lemma 7.3 For any ` ≥ 0, any N ≥ 1 and any χ
1, · · · , χN ∈ C∞b (IRn), one


has,
‖P̃ `adχ


1
◦ · · · ◦ adχ


N
(W∗)‖L(L2(IRn);L2(IRn;H) = O(hN ). (7.9)


Proof Since W∗ = V∗Z∗L and Z∗L commutes with the multiplication by any
function of x, it is enough to prove,


P̃ `adχ
1
◦ · · · ◦ adχ


N
(V∗) = O(hN ),


on L2(IRn;H). Moreover, using (6.3) and and the fact that Π̃0 commutes with
the multiplication by any function of x, too, we see on (7.6) that it is enough
to show that,


(P̃ + i)`(1− (Πg − Π̃0)2)−1/2(P̃ + i)−` = O(1); (7.10)


P̃ `adχ
1
◦ · · · ◦ adχ


N


(
(1− (Πg − Π̃0)2)−1/2


)
= O(hN ). (7.11)


By construction, we have P̃ `(Π(g)−g(P̃ )Π̃0) = O(h), and thus, we immediately
see on (6.29) that P̃ `(Π̃g − Π̃0) = O(h). Then, writing


Πg − Π̃0 =
1


2iπ


∫
|z−1|= 1


2


(Π̃g − z)−1(Π̃0 − Π̃g)(Π̃0 − z)−1 dz,
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and using Lemma 6.3, we also obtain,


P̃ `(Πg − Π̃0) = O(h), (7.12)


for all ` ≥ 0. In particular, (P̃ + i)`(Πg − Π̃0)(P̃ + i)−` = O(h), and therefore,
for h sufficiently small, we can write,


(P̃+i)`(1−(Πg−Π̃0)2)−1/2(P̃+i)−` =
(
1− [(P̃ + i)`(Πg − Π̃0)(P̃ + i)−`]2


)−1/2


,


and (7.10) follows.
To prove (7.11), we write (1− (Πg − Π̃0)2)−1/2 as,


(1− (Πg − Π̃0)2)−1/2 = 1 +
∞∑


k=1


αk(Πg − Π̃0)k,


where the radius of convergence of the power series
∑∞


k=1 αkz
k is 1. Thus,


P̃ `adχ
1
◦ · · · ◦ adχ


N


(
(1− (Πg − Π̃0)2)−1/2


)
=


∞∑
k=1


αkAN,k


where AN,k := P̃ `adχ
1
◦ · · · ◦ adχ


N
((Πg − Π̃0)k) is the sum of kN terms of the


form,


P̃ `[adχ
i1,1


· · · adχ
i1,n1


(Πg − Π̃0)] . . . [adχ
ik,1


· · · adχ
ik,nk


(Πg − Π̃0)],


with n1, . . . , nk ≥ 0, n1 + . . . + nk = N . Then, using (6.21) together with
(7.12), we see that all these terms have a norm bounded by (CN )khk+N , for
some constant CN > 0 independent of k. Therefore, ‖AN,k‖ ≤ kN (CN )khk+N ,
and (7.11) follows. •


Then, proceeding as in the proof of Lemma 4.11, we deduce from Lemma
7.9 that, if χ, ψ ∈ C∞b (IRn) are such that dist ( Supp χ, Supp ψ) > 0, then
‖P̃ `χW∗ψ‖ = O(h∞). As a consequence, taking a partition of unity (χj)j=0,...,r


on IRn with χj ∈ C∞d (Ωj), and choosing ϕj ∈ C∞d (Ωj) such that dist ( Supp (ϕj−
1), Supp χj) > 0 (j = 0, . . . , r), we have (using also that P̃ is local in the vari-
able x),


A =
r∑


j=0


Wχ
jP̃W∗ =


r∑
j=0


ϕjWχ
jP̃ϕ


2
jW∗ϕj +R(h),


with ‖R(h)‖L(L2(IRn)) = O(h∞). Thus,


A =
r∑


j=0


ϕjWU−1
j
χ


jP̃jUjϕjW∗ϕj +R(h),


where P̃j = UjP̃U
−1
j ϕj is an h-admissible (differential) operator from


Hm(IRn;DQ) to L2(IRn;H), while UjϕjW∗ϕj is an h-admissible operator from
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Hm(IRn)⊕L to Hm(IRn;DQ) and ϕjWU−1
j
χ


j is an h-admissible operator from
L2(IRn;H) to L2(IRn)⊕L. Therefore, A is an h-admissible operator fromHm(IRn)⊕L


to L2(IRn)⊕L, and, if we set,


p̃j(x, ξ;h) = ω(x, ξ;h) + Q̃j(x) + ζ(x)W (x) + h
∑


|β|≤m−1


ωβ,j(x;h)ξβ ,


and if we denote by vj(x, ξ) (resp. v∗j (x, ξ)) the symbol of UjVU−1
j ) (resp.


UjVU−1
j ), then, the (matrix) symbol a = (ak,`)1≤k,`≤L of A, is given by,


ak,`(x, ξ, h) =
r∑


j=0


〈χj(x)vj(x, ξ)]p̃j(x, ξ)]v∗j (x, ξ)]ũL′+k,j(x), ũL′+`,j(x)〉H.


In particular, since ∂α(vj − 1) and ∂α(v∗j − 1) are O(h), we obtain,


ak,`(x, ξ, h) =
r∑


j=0


〈χj(x)(ω(x, ξ)+Q̃j(x)+ζ(x)W (x))ũL′+k,j(x), ũL′+`,j(x)〉H+rk,`(h)


with ∂αrk,`(h) = O(h〈ξ〉m−1), and thus, using the fact that


〈Q̃j(x)ũL′+k,j(x), ũL′+`,j(x)〉 = ϕj(x)〈Q̃(x)ũL′+k(x), ũL′+`(x)〉,


this finally gives,


ak,`(x, ξ, h) =
r∑


j=0


χ
j(x)(ω(x, ξ)δk,` +mk,`(x) + ζ(x)W (x)δk,`) + rk,`(h)


= (ω(x, ξ) + ζ(x)W (x))δk,` +mk,`(x) + rk,`(h),


withmk,`(x) := 〈Q̃(x)ũL′+k(x), ũL′+`(x)〉. This completes the proof of Theorem
7.1. •


8 Proof of Theorem 2.1


In view of Theorem 7.1, it is enough to prove,


Theorem 8.1 Let ϕ0 ∈ L2(IRn;H) such that ‖ϕ0‖ = 1, and,


‖ϕ0‖L2(Kc
0 ;H) + ‖(1−Πg)ϕ0‖+ ‖(1− f(P ))ϕ0‖ = O(h∞), (8.1)


for some K0 ⊂⊂ Ω′ ⊂⊂ Ω, f, g ∈ C∞0 (IR), gf = f , and let P̃ be the operator
constructed in Section 2 with K = Ω′, and Πg be the projection constructed in
Theorem 6.1. Then, with the notations of Theorem 7.1, we have,


e−itP/hϕ0 = W∗e−itA/hWϕ0 +O (〈t〉h∞) , (8.2)


uniformly with respect to h > 0 small enough and t ∈ [0, TΩ′(ϕ0)).
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Proof : Denote by χ ∈ C∞0 (Ω′K) (where Ω′K is the same as in Proposition 3.2)
a cutoff function such that χ = 1 on K. We first prove,


Lemma 8.2
‖(f(P )− f(P̃ ))χ‖L(L2(IRn;H) = O(h∞).


Proof Using (4.8), we obtain,


(f(P )− f(P̃ ))χ =
1
π


∫
∂f̃(z)(P − z)−1(P̃ − P )(P̃ − z)−1χdz dz̄.


Moreover, if ψ ∈ C∞0 (Ω′K) is such that ψ = 1 on a neighborhood of Supp χ,
Corollary 4.15 and Lemma 4.11 tell us,


(ψ − 1)(P̃ − z)−1χ = O(hN | Im z|−(N+1)),


for any N ≥ 1. As a consequence,


(f(P )− f(P̃ ))χ =
1
π


∫
∂f̃(z)(P − z)−1(P̃ − P )ψ(P̃ − z)−1χdz dz̄ +O(h∞),


and since (P̃ − P )ψ = (Q̃−Q)ψ = 0, the result follows. •


Now, by (8.1), we have,


ϕ0 = f(P )ϕ0 +O(h∞) = f(P )χϕ0 +O(h∞),


and thus, by Lemma 8.2,


ϕ0 = f(P̃ )χϕ0 +O(h∞) = f(P̃ )ϕ0 +O(h∞).


This means that (7.3) is satisfied, and thus, by Theorem 7.1, the decomposition
(7.4) is true. Using (8.1) again, this gives,


e−itP̃ /hϕ0 = e−itP̃ (1)/hΠgϕ0 +O(|t|h∞) = W∗e−itA/hWϕ0 +O(〈t〉h∞), (8.3)


uniformly with respect to h and t.
On the other hand, if we set ϕ(t) := e−itP/hϕ0, then, by assumption, ϕ(t) =


f(P )ϕ(t) + O(h∞) and ϕ(t) = χϕ(t) + O(h∞) uniformly for t ∈ [0, TΩ′(ϕ0)].
Therefore, applying Lemma 8.2 again, we obtain as before, ϕ(t) = f(P̃ )ϕ(t) +
O(h∞), and thus also,


ϕ(t) = f(P̃ )χϕ(t) +O(h∞), (8.4)


uniformly with respect to h and t ∈ [0, TΩ′(ϕ0)]. Moreover, since P and P̃
coincide on the support of χ, we can write,


ih∂tf(P̃ )χϕ(t) = f(P̃ )χPϕ(t) = f(P̃ )P̃χϕ(t) + f(P̃ )[χ, P̃ ]ϕ(t),


and thus, since f(P̃ )[χ, P̃ ] = f(P̃ )[χ,ω] is bounded, and [χ,ω] is a differential
operator with coefficients supported in Supp ∇χ (where ϕ isO(h∞)), we obtain,


ih∂tf(P̃ )χϕ(t) = f(P̃ )χPϕ(t) = P̃ f(P̃ )χϕ(t) +O(h∞).
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As a consequence,


f(P̃ )χϕ(t) = e−itP̃ /hf(P̃ )χϕ0 +O(|t|h∞),


and therefore, by (8.4),


ϕ(t) = e−itP̃ /hϕ0 +O(〈t〉h∞), (8.5)


uniformly with respect to h and t ∈ [0, TΩ′(ϕ0)). Then, Theorem 8.1 follows
from (8.3) and (8.5). •


9 Proof of Corollary 2.6


First of all, let us recall the (standard) notion of frequency set FS(v) of some
(possibly h-dependent) v ∈ L2


loc(Ω) (see, e.g., [Ma2] and references therein). It
is said that a point (x0, ξ0) ∈ T ∗Ω is not in FS(v) if there exist χ1 ∈ C∞0 (ω)
and χ


2 ∈ C∞0 (IRn) such that χ1(x0) = χ
2(ξ0) = 1 and ‖χ2(hDx)χ1v‖L2(IRn) =


O(h∞). This is also equivalent to say that there exists an open neighborhood
N of (x0, ξ0) in T ∗IRn, such that, for any χ ∈ C∞0 (N ) and any χ


1 ∈ C∞0 (Ω),
one has ‖Oph(χ)χ1v‖L2(IRn) = O(h∞).


As one can see, this notion can be extended in an obvious way to functions
in L2


loc(Ω;H), and it is easy to see (e.g., as in [Ma2] Section 2.9) that the latter
property still holds with operator-valued functions χ ∈ C∞0 (N ;L(H)), or even
more generally, χ ∈ C∞0 (N ;L(H;H′)) where H′ is an arbitrary Hilbert-space.


We first prove,


Lemma 9.1 Let W : L2(IRn;H) → L2(IRn) be the operator given in Theorem
7.1. Then, for any j ∈ {0, 1, . . . , r}, any ϕ ∈ L2(IRn;H) and v ∈ L2(IRn), such
that ‖ϕ‖ = ‖v‖ = 1, one has,


FS(Wϕ) ∩ T ∗Ωj = FS(UjΠgϕ) ∩ T ∗Ωj ;
FS(UjW∗v) ∩ T ∗Ωj = FS(v) ∩ T ∗Ωj .


Proof Since WW∗ = 1 and W∗W = Πg, it is enough to prove the two inclusions
FS(Wϕ)∩T ∗Ωj ⊂ FS(UjΠgϕ)∩T ∗Ωj and FS(UjW∗v)∩T ∗Ωj ⊂ FS(v)∩T ∗Ωj .


Therefore, let (x0, ξ0) ∈ T ∗Ωj , and assume first that (x0, ξ0) /∈ FS(UjΠgϕ).
In particular, this implies that, ifN ⊂⊂ T ∗Ωj is a small enough neighborhood of
(x0, ξ0), then ‖Oph(χ1)UjΠgϕ‖ = O(h∞) for all χ1 ∈ C∞0 (N ;L(H;C )). Then,
taking χ ∈ C∞0 (N ) and ψj ∈ C∞0 (Ωj) such that ψj(x) = 1 near πx( Supp χ)
and χ(x0, ξ0) = 1, we write,


Oph(χ)Wϕ = Oph(χ)WΠgϕ = Oph(χ)Wψ2
j Πgϕ+O(h∞)


= Oph(χ)WU−1
j ψjUjψjΠgϕ+O(h∞),


and since Oph(χ)WU−1
j ψj is an h-admissible operator from L2(IRn;H) to L2(IRn),


with symbol supported in N (that is, modulo O(h∞) in C∞b (IRn;L(H;C ))), we
obtain ‖Oph(χ)Wϕ‖ = O(h∞), and thus (x0, ξ0) /∈ FS(Wϕ).
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Now, assume that (x0, ξ0) /∈ FS(v). Since UjψjW∗ is an h-admissible
operator, we obtain in the same way that ‖Oph(χ)UjψjW∗v‖ = O(h∞), and
thus (x0, ξ0) /∈ FS(UjW∗v). •


Without loss of generality, we can assume TΩ′(ϕ0) < +∞. By Theorem 8.1,
we have,


e−itP/hϕ0 = W∗e−itA/hWϕ0 +O (h∞) ,


uniformly for t ∈ [0, TΩ′(ϕ0)], where W and A are given in Theorem 7.1. Thus,
by Lemma 9.1, we immediately obtain,


FS(Uje
−itP/hϕ0) ∩ T ∗Ωj = FS(e−itA/hWϕ0) ∩ T ∗Ωj .


On the other hand, since A is an h-admissible operator on L2(IRn), a well-known
result of propagation (see, e.g., [Ma2] Section 4.6, Exercise 12) tells us,


FS(e−itA/hWϕ0) = exp tHa0(FS(Wϕ0)).


Therefore, applying Lemma 9.1 again, we obtain,


FS(Uje
−itP/hϕ0) ∩ T ∗Ωj = T ∗Ωj ∩ exp tHa0 (∪r


k=0FS(UkΠgϕ0) ∩ T ∗Ωk) .
(9.1)


By assumption, we also have,


∪r
k=0FS(UkΠgϕ0) = ∪r


k=1FS(Ukϕ0) ⊂ K0 × IRn. (9.2)


In order to conclude, we need the following result:


Lemma 9.2 For any f ∈ C∞0 (IR), ψ ∈ C∞0 (IRn), χj ∈ C∞0 (Ωj), ε > 0, and
ρ ∈ C∞b (IR) with Supp ρ ⊂ [Cf − γ+ ε,+∞) (where Cf is as in Corollary 2.6),
one has,


‖ρ(χjωχj)ψf(Uj
χ


jP̃U
−1
j
χ


j)‖ = O(h∞).


Proof We set ωj := χ
jωχj and P̃j := Uj


χ
jP̃U


−1
j
χ


j . Using Assumptions (H1),
(H2), (H4) and Proposition 3.2, we see that P̃j ≥ (1−Ch)ωj +γ−Ch for some
constant C > 0 independent of h. As a consequence, we have,


ρ(ωj)P̃jρ(ωj) ≥ ρ(ωj)((1− Ch)ωj + γ − Ch)ρ(ωj) ≥ (Cf + ε− C ′h)ρ(ωj)2,


with C ′ = C + CCf . Therefore, we can write,


‖ρ(ωj)ψf(P̃j)u‖2 ≤
1


Cf + ε− C ′h
〈P̃jρ(ωj)ψf(P̃j)u, ρ(ωj)ψf(P̃j)u〉,


for any u ∈ L2(IRn;H), and thus,


‖ρ(ωj)ψf(P̃j)‖ ≤ 1
Cf + ε− C ′h


‖P̃jρ(ωj)ψf(P̃j)‖


≤ 1
Cf + ε− C ′h


(
‖ρ(ωj)ψP̃jf(P̃j)‖+ ‖[P̃j , ρ(ωj)ψ]f(P̃j)‖


)
.


(9.3)
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Now, on the one hand, since Supp f is included in [−Cf , Cf ], we have,


1
Cf + ε− C ′h


‖ρ(ωj)ψP̃jf(P̃j)‖ =
1


Cf + ε− C ′h
‖P̃jf(P̃j)ψρ(ωj)‖


≤ Cf


Cf + ε− C ′h
‖f(P̃j)ψρ(ωj)‖. (9.4)


On the other hand, since P̃j and ωj are both differential operators with respect
to x with smooth (operator-valued) coefficients, and ρ(ωj)ψ is a scalar operator,
by standard symbolic calculus, we have,


[P̃j , ρ(ωj)ψ]f(P̃j) = O(h)ρ1(ωj)ψ1f(P̃j) +O(h∞), (9.5)


where ρ1 ∈ C∞b (IR) and ψ1 ∈ C∞0 (IRn) are arbitrary functions verifying ρ1ρ = ρ
and ψ1ψ = ψ. Inserting (9.4)-(9.5) into (9.3), we obtain,


‖ρ(ωj)ψf(P̃j)‖ = O(h‖ρ1(ωj)ψ1f(P̃j)‖) +O(h∞).


Iterating the procedure, we clearly obtain the lemma. •


Now, using, e.g., (8.4), we know that e−itP/hϕ0 = f(P̃ )e−itP/hϕ0 +O(h∞).
Moreover, if χj , ψj ∈ C∞0 (Ωj) are such that χj = 1 near Supp ψj , by Lemma
4.11, we have,


Ujψjf(P̃ ) = Ujψjf(P̃ )χ2
j +O(h∞) = Ujψjf(P̃ )U−1


j
χ


jUj
χ


j +O(h∞),


and therefore,


Ujψje
−itP/hϕ0 = Ujψjf(P̃ )U−1


j
χ


jUj
χ


je
−itP/hϕ0 +O(h∞).


Then, using lemma 15.1, we obtain,


Ujψje
−itP/hϕ0 = ψjf(P̃j)Uj


χ
je
−itP/hϕ0 +O(h∞),


with P̃j = Uj
χ


jP̃U
−1
j
χ


j . Therefore, using Lemma 9.2, this gives,


‖ρ(χjωχj)Ujψje
−itP/hϕ0‖ = O(h∞),


and thus, by Lemma 15.2,


‖ρ(ω)Ujψje
−itP/hϕ0‖ = O(h∞). (9.6)


Since the principal symbol of ρ(ω) is ρ(ω), we deduce from (9.2), (9.6), and
standard results on FS, that,


∪r
k=0FS(UkΠgϕ0) ⊂ K(f) := {(x, ξ) ; x ∈ K0 , ω(x, ξ) ≤ Cf − γ},


and thus, by (9.1),


FS(Uje
−itP/hϕ0) ∩ T ∗Ωj ⊂ exp tHa0 (K(f)) ∩ T ∗Ωj , (9.7)
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for all t ≥ 0.
Then, for any j ∈ {0, 1, . . . , r}, ψj , ψ̃j ∈ C∞0 (Ωj) with ψ̃jψj = ψj , and any


α ∈ C∞0 (IRn), we write,


Ujψje
−itP/hϕ0 = α(hDx)ψ̃j(x)Ujψje


−itP/hϕ0 + (1− α(hDx))Ujψje
−itP/hϕ0,


and therefore, if α(ξ) = 1 in a sufficiently large compact set,


Ujψje
−itP/hϕ0 = α(hDx)ψ̃j(x)Ujψje


−itP/hϕ0 +O(h∞).


Finally, if Supp ψ̃j ∩ πx (exp tHa0 (K(f))) = ∅ (or, more generally, Supp ψ̃j ∩
πx (∪r


k=0 exp tHa0(FS(UkΠgϕ0))) = ∅), then, (9.1) and (9.7) tell us,


‖α(hDx)ψ̃j(x)Ujψje
−itP/hϕ0‖ = O(h∞),


and thus, by the unitarity of Uj ,


‖ψje
−itP/hϕ0‖ = ‖Ujψje


−itP/hϕ0‖ = O(h∞),


uniformly for t ∈ [0, TΩ′(ϕ0)]. Since we also know that ‖e−itP/hϕ0‖Kc = O(h∞)
for some compact set K ⊂ IRn (by definition of TΩ′(ϕ0)), this proves that we can
actually take for K any compact neighborhood of πx (exp tHa0 (K(f))). Thus,
if TΩ′(ϕ0) < sup{T > 0 ; πx(∪t∈[0,T ] exp tHa0(K(f))) ⊂ Ω′}, clearly (e.g., by
using Theorem 14.1), one can find T > TΩ′(ϕ0) and KT ⊂⊂ Ω′, such that
supt∈[0,T ] ‖e−itP/hϕ0‖Kc


T
= O(h∞). This is in contradiction with the definition


of TΩ′(ϕ0), and therefore, necessarily,


TΩ′(ϕ0) ≥ sup{T > 0 ; πx(∪t∈[0,T ] exp tHa0(K(f))) ⊂ Ω′}.


This proves Corollary 2.6, and also Remark 2.8 since, in the last argument, one
can replace K(f) by ∪r


k=0 exp tHa0(FS(UkΠgϕ0)) everywhere. •


10 Computing the Effective Hamiltonian


Now that we know the existence of an effective Hamiltonian describing the
evolution of those states ϕ0 that verify (2.4), the problem remains of computing
its symbol up to any arbitrary power of h (in Theorem 2.1, only the principal
symbol of A is given). Because of the conditions of localization (2.4), it is
clear that such an effective Hamiltonian is not unique (for instance, the three
operators A, Af(A) or Wf(P̃ )W∗AWf(P̃ )W∗ could indifferently be taken).
However, its symbol is certainly uniquely determined in the relevant region of
the phase space where ϕ̃(t) := We−itP/hϕ0 lives (that is, on FS(ϕ̃(t)) in the
sense of the previous section, and for t ∈ [0, TΩ′(ϕ0))). Therefore, as long
as we deal with h-admissible operators (that is, with operators that do not
move the Frequency Set), or even with twisted h-admissible operators (that
become standard h-admissible operators once conjugated with W or ZL) it is
enough, for computing the symbol A in this region, to start by performing
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formal computations on the operators themselves (instead of immediately using
the twisted symbolic calculus, that appears to be a little bit too heavy at the
beginning).


In this section, we describe a rather easy way to perform these computa-
tions, and we give a simple expression of the effective Hamiltonian up to O(h4).
Moreover, as an example, we also compute its symbol, up to O(h3), in the case
L = 1. Let us inform the reader that the results of this section are not used
in the rest of the paper (except for Theorem 12.3), and thus can be skipped
without problem at a first reading.


We start from the definition of A given in Section 7 (in particular (7.8)):


A = WP̃W∗ = ZLVP̃V∗Z∗L.


Since ZL is rather explicit, the problem mainly consists in determining the
expansion of V. Setting,


∆ := h−1(Πg − Π̃0),


and using that Π2
g −Πg = Π̃2


0 − Π̃0 = 0, we immediately obtain,


Πg∆ + ∆Πg = ∆ + h∆2. (10.1)


Thus, we deduce from (7.6),


V = ((Πg − h∆)Πg + (1−Πg + h∆)(1−Πg))(1− h2∆2)−
1
2


= (1 + h[Πg,∆]− h2∆2)(1− h2∆2)−
1
2 .


Then, using the (convergent) series expansion,


(1− h2∆2)−
1
2 = 1 +


∞∑
k=1


νkh
2k∆2k,


with,


νk =
1
2
(
1
2


+ 1)(
1
2


+ 2) . . . (
1
2


+ k − 1)
1
k!


=
(2k − 1)!


22k−1k!(k − 1)!
,


we obtain,
V = 1− ihV1 + h2V2,


where the two selfadjoint operators V1 and V2 are given by,


V1 = i[Πg,∆](1 +
∞∑


k=1


νkh
2k∆2k);


V2 = −1
2
∆2 +


∞∑
k=1


(νk+1 − νk)h2k∆2(k+1),


that is, observing that νk − νk+1 = νk/(2k + 2),


V1 = i[Πg,∆]F1(∆2);
V2 = F2(∆2),
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with, (setting also ν0 := 1),


F1(s) =
∞∑


k=0


νkh
2ksk;


F2(s) = −
∞∑


k=0


νk


2(k + 1)
h2ksk+1.


As a consequence,
V∗ = 1 + ihV1 + h2V2,


and therefore,


VP̃V∗ = P̃+ih[P̃ ,V1]+h2(V1P̃V1+V2P̃+P̃V2)+ih3(V2P̃V1−V1P̃V2)+h4V2P̃V2,


that is,


A = ZL(P̃+ih[P̃ ,V1]+h2(V1P̃V1+V2P̃+P̃V2)+ih3(V2P̃V1−V1P̃V2)+h4V2P̃V2)Z∗L.
(10.2)


From now on, we work modulo O(h5) error-terms, and, as we observed at the
beginning of this section, if we restrict our attention to the relevant region of
the phase space, then formal computations are sufficient and Πg can be replaced
by the formal series Π̃ :=


∑
k≥0 h


kΠ̃k constructed in Section 6. In particular,
P̃ formally commutes with Π̃ and thus, since [P̃ , Π̃0] = −ihS0 (see Section 6),


[P̃ , [Π̃,∆]] = −h−1[P̃ , [Π̃, Π̃0]] = −h−1[Π̃, [P̃ , Π̃0]] = i[Π̃, S0], (10.3)


where, from now on, ∆ stands for h−1(Π̃− Π̃0) =
∑


k≥1 h
kΠ̃k.


Moreover, from the identities [P̃ , Π̃] = 0, Π̃ = Π̃0 + h∆, we deduce,


[P̃ ,∆] = −h−1[P̃ , Π̃0] = iS0,


and therefore,


[P̃ ,V1] = [S0, Π̃]F1(∆2) + i[Π̃,∆][P̃ , F1(∆2)];


[P̃ , F1(∆2)] = i
∞∑


k=1


νkh
2k


2k−1∑
j=0


∆jS0∆2k−1−j .


Since ν0 = 1 and ν1 = 1/2, this gives,


[P̃ ,V1] = [S0, Π̃](1 +
h2


2
∆2)− h2


2
[Π̃,∆](S0∆ + ∆S0) +O(h4) (10.4)


Moreover, (10.1) implies Π̃∆Π̃ = h∆2Π̃ = hΠ̃∆2, and thus, in particular,
∆2 commutes with Π̃. As a consequence, we can write,


V1P̃V1 = F1(∆2)[Π̃,∆]P̃ [∆, Π̃]F1(∆2)
= [Π̃,∆]P̃ [∆, Π̃] + h2 Re ∆2[Π̃,∆]P̃ [∆, Π̃] +O(h4),
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and, still using (10.1), we have,


[Π̃,∆]P̃ [∆, Π̃] = Π̃∆P̃∆Π̃ + ∆Π̃P̃ Π̃∆− Π̃∆P̃ Π̃∆−∆Π̃P̃∆Π̃
= (Π̃∆ + ∆Π̃)P̃ (∆Π̃ + Π̃∆)− 2Π̃∆P̃ Π̃∆− 2∆Π̃P̃∆Π̃
= (∆ + h∆2)P̃ (∆ + h∆2)− 2hΠ̃∆2P̃∆− 2h∆P̃∆2Π̃
= ∆P̃∆ + h(1− 2Π̃)∆2P̃∆ + h∆P̃∆2(1− 2Π̃)


=
1
2
(∆2P + P∆2) +


i


2
[∆, S0] + 2h Re ∆2(1− 2Π̃)P̃∆.


Therefore,


V1P̃V1 = Re ∆2P+
i


2
[∆, S0]+2h Re ∆2(1−2Π̃)P̃∆+h2 Re ∆2( Re ∆2P+


i


2
[∆, S0])+O(h3).


and, since V2 = − 1
2∆2 − 1


8h
2∆4 +O(h4), we obtain,


V1P̃V1 + V2P̃ + P̃V2 =
i


2
[∆, S0] + 2h Re ∆2(1− 2Π̃)P̃∆


+h2


(
Re ∆2( Re ∆2P +


i


2
[∆, S0])−


1
4


Re ∆4P̃


)
+O(h3)


=
i


2
[∆, S0] + 2h Re ∆2(1− 2Π̃)P̃∆


+
1
2
h2


(
Re (i∆2[∆, S0]) + ∆2P̃∆2 +


1
4


Re ∆4P̃


)
+O(h3)


Finally, since, obviously, ∆2 also commutes with ∆, thus with [Π̃,∆], too, we
see that V1 and V2 commute together, and therefore,


V2P̃V1 − V1P̃V2 = [P̃ ,V1]V2 − [P̃ ,V2]V1


= −1
2
[S0, Π̃]∆2 +


i


2
[P̃ ,∆2][Π̃,∆] +O(h2)


= −1
2
[S0, Π̃]∆2 − 1


2
(S0∆ + ∆S0)[Π̃,∆] +O(h2).


Summing up, we have found,


VP̃V∗ = B0 + hB1 + h2B2 + h3B3 + h4B4 +O(h5),


with,


B0 = P̃


B1 = i[S0, Π̃]


B2 =
i


2
[∆, S0]


B3 = − Re i[Π̃,∆](S0∆ + ∆S0) + 2 Re ∆2(1− 2Π̃)P̃∆


B4 =
1
2


(
Re (i∆2[∆, S0]) + ∆2P̃∆2 +


1
4


Re ∆4P̃


)


47







Then, writing Π̃ =
∑3


k=0 h
kΠ̃k + O(h4) and ∆ =


∑3
k=1 h


k−1Π̃k + O(h3), we
obtain,


VP̃V∗ = C0 + hC1 + h2C2 + h3C3 + h4C4 +O(h5),


with,


C0 = P̃


C1 = i[S0, Π̃0]


C2 =
i


2
[S0, Π̃1]


C3 =
i


2
[S0, Π̃2]− Re i[Π̃0, Π̃1](S0Π̃1 + Π̃1S0) + 2 Re Π̃2


1(1− 2Π̃0)P̃ Π̃1


C4 =
i


2
[S0, Π̃3]− Re i[Π̃0, Π̃2](S0Π̃1 + Π̃1S0)− Re i[Π̃0, Π̃1](S0Π̃2 + Π̃2S0)


+2 Re (Π̃1Π̃2 + Π̃2Π̃1)(1− 2Π̃0)P̃ Π̃1 − 4 Re Π̃3
1P̃ Π̃1 + 2 Re Π̃2


1(1− 2Π̃0)P̃ Π̃2


+
1
2


(
Re (iΠ̃2


1[Π̃1, S0]) + Π̃2
1P̃ Π̃2


1 +
1
4


Re Π̃4
1P̃


)
Now, due to (6.7)-(6.8), we observe that Π̃0S0Π̃0 = Π̃⊥


0 S0Π̃⊥
0 = Π̃0Π̃1Π̃0 =


Π̃⊥
0 Π̃1Π̃⊥


0 = 0. As a consequence,


Π̃0C1Π̃0 = iΠ̃0[S0, Π̃0]Π̃0 = 0,


and,


Π̃0[Π̃0, Π̃1](S0Π̃1 + Π̃1S0)Π̃0 = Π̃0[Π̃0, Π̃1]Π̃0(S0Π̃1 + Π̃1S0)Π̃0 = 0;


Π̃0Π̃2
1(1− 2Π̃0)P̃ Π̃1Π̃0 = Π̃0Π̃2


1Π̃
⊥
0 P̃ Π̃1Π̃0 + Π̃0Π̃2


1(1− 2Π̃0)[P̃ , Π̃⊥
0 ]Π̃1Π̃0


= ihΠ̃0Π̃2
1(1− 2Π̃0)S0Π̃1Π̃0


= −ihΠ̃0Π̃2
1S0Π̃1Π̃0.


(In the last two steps we have used that Π̃0Π̃2
1Π̃


⊥
0 = Π̃⊥


0 S0Π̃1Π̃0 = 0.) Since we
also have ZL = ZLΠ̃0 and Z∗L = Π̃0Z


∗
L, we deduce,


ZLC1Z
∗
L = 0;


ZLC3Z
∗
L =


i


2
ZL[S0, Π̃2]Z∗L + 2h Im Π̃0Π̃2


1S0Π̃1Π̃0. (10.5)


In particular, since A = ZLVP̃V∗Z∗L, we have proved,


Proposition 10.1 The effective Hamiltonian A verifies,


A = A0 + h2A2 + h3A3 +O(h4), (10.6)


with,


A0 = ZLP̃Z
∗
L


A2 =
i


2
ZL[S0, Π̃1]Z∗L


A3 =
i


2
ZL[S0, Π̃2]Z∗L.
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It is interesting to observe that, at this level, the absence of a term in h (that
is, an extra-term of the form hA1) is completely general and, in particular, is
not related to any particular form of ω (however, some term in h may be hidden
in A0, as we shall see in the sequels).


Here, we have stopped the computation of A at the third power of h, but
it is clear from the expression of C4 and (10.5) that the coefficient of h4 can
be written down, too (but has a more complicated form). Of course, pushing
forward the series and spending more time in the calculation would permit to
also obtain the next terms.


From that point, in order to have an even more explicit expression of A (in
particular to compute its symbol), one must use the expressions of Π̃1 and Π̃2


obtained in Section 6. Let us do it in the case L = 1. In that case, setting
λ(x) := λL′+1(x), one has Π̃0(z − Q̃(x))−1 = (z − λ(x))−1Π̃0, and thus,


Π̃⊥
0 Π̃1Π̃0 = − 1


2π


∮
γ(x)


(z − Q̃(x))−1Π̃⊥
0 (x)S0Π̃0(x)


z − λ(x)
dz = −iR′(λ(x))S0,


where R′(x, z) := Π̃⊥
0 (x)(z− Q̃(x))−1Π̃⊥


0 (x) is the so-called reduced resolvent of
Q̃(x).


As a consequence,


Π̃0[S0, Π̃1]Π̃0 = S0Π̃⊥
0 Π̃1Π̃0 − Π̃0Π̃1Π̃⊥


0 S0 = −2iS0R
′(x, λ(x))S0,


that leads to,
A2 = Z1S0R


′(x, λ(x))S0Z
∗
1 .


In the same way,
Π̃⊥


0 Π̃2Π̃0 = −iR′(x, λ(x))S1Π̃0,


and therefore,
A3 = Re Z1S0R


′(x, λ(x))S1Z
∗
1 .


Now, we can start to use the twisted symbolic calculus introduced in Section
4. We denote by s0 = (sj


0)0≤j≤r and π0 = (πj
0)0≤j≤r the (twisted) symbols of


S0 and Π̃0 respectively. We also set ω̃ = (ω̃j)0≤j≤r, where,


ω̃j(x, ξ) := ω(x, ξ) + h
∑


|β|≤m−1


ωβ,j(x)ξβ , ((x.ξ) ∈ T ∗Ωj),


is the symbol of the operator introduced in (2.3) (we remind that we work with
the standard quantization of symbols, as described in Section 13). From (6.4)-
(6.6) and the considerations of Section 4 (and since πj


0 = πj
0(x) does not depend


on ξ), it s easy to see that,


sj
0 = ∂ξω̃j∂xπ


j
0 + i


∑
|β|≤m−1


[ωβ,j(x), π
j
0(x)]ξ


β − ih


2


∑
|α|=2


(∂α
ξ ω)(∂α


x π
j
0) +O(h2)
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Also setting Q̃j(x) := Uj(x)Q̃(x)Uj(x)−1, the symbol ρ = (ρj)0≤j≤r of
R′(x, λ(x)) is simply given by,


ρj(x) = (1− πj
0(x))(λ(x)− Q̃j(x))−1(1− πj


0(x)),


and thus, the symbol σ2 = (σj
2)0≤j≤r of S0R


′(x, λ(x))S0 verifies,


σj
2(x, ξ) = sj


0(x, ξ)ρj(x)s
j
0(x, ξ) +


h


i
∂ξs


j
0(x, ξ)∂x(ρj(x)s


j
0(x, ξ)) +O(h2).


From (6.8)-(6.10), we also obtain,


Π̃1 = i[S0, R
′(x, λ(x))]


S1 =
i


h
[ω + ζW, Π̃1].


Therefore, since ω and ζW are scalar operators, the respective symbols π1 =
(πj


1)0≤j≤r and s1 = (sj
1)0≤j≤r of Π̃1 and S1, verify,


πj
1(x, ξ) = i[sj


0(x, ξ), ρj(x)] +O(h) = i∂ξω(x, ξ)[∂xπ
j
0(x), ρj(x)] +O(h)


sj
1 = {ω + ζW, πj


1}+O(h) = ∂ξω · ∂xπ
j
1 − ∂ξπ


j
1 · ∂x(ω + ζW ) +O(h),


and thus,


sj
1 = i


n∑
k,`=1


(
(∂ξk


ω)∂xk
(∂ξ`


ω[∂x`
πj


0, ρj ])− (∂ξk
∂ξ`
ω)[∂x`


πj
0, ρj ]∂xk


(ω + ζW )
)


+O(h). (10.7)


This permits to compute the symbol σ3 = (σj
3)0≤j≤r of Re S0R


′(x, λ(x))S1,
through the formula,


σj
3(x, ξ) =


1
2
∂ξω ·


(
(∂xπ


j
0)ρjs


j
1 + sj


1ρj(∂xπ
j
0)
)


+O(h). (10.8)


Observe that one also has,


∂xπ
j
0(x) = 〈·,∇xuj(x)〉Huj(x) + 〈·, uj(x)〉H∇xuj(x),


where 〈·, u〉H stands for the operator w 7→ 〈w, u〉H, and uj =: Uj(x)uL′+1(x) is
the normalized eigenfunction of Q̃j(x) associated with λ(x).


Finally, we use the following elementary remark: let B is a twisted h-
admissible (or PDO) operator on L2(IRn;H), with symbol b = (bj)0≤j≤r, and let
u(x), v(x) ∈ H such that, for all j = 0, . . . , r, uj(x) := Uj(x)u(x) and vj(x) :=
Uj(x)v(x) are in C∞(Ωj ;H). Denote by Zu, Zv the operators L2(IRn;H) →
L2(IRn) defined by ,


Zuw := 〈w, u〉H ; Zvw := 〈w, v〉H.
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Then, the symbol b̌ of the (standard) h-admissible operator ZvBZ∗u verifies,


∀ (x, ξ) ∈ T ∗Ωj , b̌(x, ξ) = 〈bj(x, ξ)]uj(x), vj(x)〉H,


where the operation ] is defined in an obvious way, by substituting the usual
product with the action of an operator (here, the various derivatives of bj(x, ξ))
on a function (here, the various derivatives of uj(x)).


We can clearly apply this remark to compute the symbol of A2 and A3, but
also that of A0, since we have,


A0 = Z1P̃Z
∗
1 = ZuP̃Z∗u = ZQ0uQ


−1
0 P̃Z∗u,


with u := ũL′+1 (defined in Section 3), and, by Proposition 5.5, we know that
Q−1


0 P̃ is a twisted PDO.
Combining all the previous computations, using that Q̃j(x)uj(x) = λ(x)uj(x)


for all j = 0, . . . , r and x ∈ Ωj , and gathering (as far as possible) the terms with
same homogeneity in h, we finally arrive to the following result (leaving some
details to the reader):


Proposition 10.2 In the case RankΠ0(x) = 1, the effective Hamiltonian A
verifies (10.6) with,


A0 = Z1P̃Z
∗
1 ;


A2 =
1
h2
Z1[P̃ , Π̃0]R′(x, λ(x))[Π̃0, P̃ ]Z∗1 ; (10.9)


A3 =
1
h3


Re Z1[P̃ , Π̃0]R′(x, λ(x))[[[P̃ , Π̃0], R′(x, λ(x))],ω + ζW ]Z∗1 ,


where λ(x) is the (only) eigenvalue of Q̃(x)Π̃0, and R′(x, λ(x)) = Π̃⊥
0 (x)(λ(x)−


Q̃(x))−1Π̃⊥
0 (x) is the reduced resolvent of Q̃(x).


Moreover, the symbol a(x, ξ;h) of A verifies,


a(x, ξ;h) = a0(x, ξ) + ha1(x, ξ) + h2a2(x, ξ) +O(h3),


with, for any (x, ξ) ∈ T ∗Ωj (j = 0, . . . , r arbitrary),


a0(x, ξ) = ω(x, ξ;h) + λ(x) + ζ(x)W (x);


a1(x, ξ) =
∑


|β|≤m−1


〈ωβ,j(x)uj(x), uj(x)〉ξβ − i〈∇ξω(x, ξ)∇xuj(x), uj(x)〉;


a2(x, ξ) =
n∑


k,`=1


(∂ξk
ω)(∂ξ`


ω)〈ρj(x)∂xk
uj , ∂x`


uj〉 −
1
2


∑
|α|=2


(∂α
ξ ω)〈∂α


x uj , uj〉


−i
∑


|β|≤m−1


〈ωβ,j(x)∇xuj(x), uj(x)〉 · ∇ξ(ξβ)


−2 Im
∑


|β|≤m−1


∇ξω(x, ξ)〈ωβ,j(x)ρj(x)∇xuj(x), uj(x)〉ξβ


+
∑


|β|,|γ|≤m−1


〈ωβ,j(x)ρj(x)uj(x), ωβ,j(x)uj(x)〉ξβ+γ .
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Remark 10.3 Although some of these terms may seem to depend on the choice
of j verifying (x, ξ) ∈ T ∗Ωj , actually we know that this cannot be the case. In
fact, the independency with respect to j is due to the compatibility conditions
(4.9) satisfied by the symbols of twisted pseudodifferential operators.


Remark 10.4 Actually, it results from the previous computations that (10.9) is
still valid in the (slightly) more general case where L is arbitrary and λL′+1(x) =
. . . = λL′+L(x) for all x ∈ Ω.


Remark 10.5 Using (10.7)-(10.8), one can find an expression for the h3-term
of the symbol of A, too. We leave it as an exercise to the reader.


11 Propagation of Wave-Packets


In this section, we assume L = 1 and we make the following additional assump-
tion on the coefficients cα of ω:


cα(x;h) ∼
∞∑


k=0


hkcα,k(x), (11.1)


with cα,k independent of h. Then, in a similar spirit as in [Ha6], we investigate
the evolution of an initial state of the form,


ϕ0(x) = (πh)−n/4f(P )Πg(eixξ0/h−(x−x0)
2/2huL′+1(x)), (11.2)


where (x0, ξ0) ∈ T ∗Ω is fixed, f, g ∈ C∞0 (IR) are such that f = 1 near a0(x0, ξ0)
(here, a0(x, ξ) is the same as in Corollary 2.6), g = 1 near Supp f , and Πg is
constructed as in Section 6, starting from the operator P̃ constructed in Section
3 with K 3 x0. In particular, since e−(x−x0)


2/2h is exponentially small for x
outside any neighborhood of x0, by Lemma 8.2, we have,


ϕ0(x) = (πh)−n/4f(P̃ )Πg(eixξ0/h−(x−x0)
2/2hũL′+1(x)) +O(h∞),


in L2(IRn;H). Moreover, due to the properties of Πg, and the fact that the
coherent state φ0 := (πh)−n/4eixξ0/h−(x−x0)


2/2h is normalized in L2(IRn), we
also obtain,


ϕ0(x) = (πh)−n/4f(P̃ )eixξ0/h−(x−x0)
2/2hũL′+1(x) +O(h),


and thus, in particular, ‖ϕ0‖ = 1 +O(h). Actually, we even have the following
better result:


Proposition 11.1 The function ϕ0 admits, in L2(IRn;H), an asymptotic ex-
pansion of the form,


ϕ0(x) ∼ (πh)−n/4eixξ0/h−(x−x0)
2/2h


∞∑
k=0


hkvk(x) +O(h∞), (11.3)
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with vk ∈ L∞(IRn;H) (k ≥ 0), and v0(x) = ũL′+1(x) + O(|x − x0|) in H,
uniformly with respect to x ∈ IRn. Moreover, for any j ∈ {0, 1, . . . , r} and
any χ


j ∈ C∞d (Ωj), the function Uj
χ


jϕ0 admits, in C∞d (Ωj ;H), an asymptotic
expansion of the form,


Uj(x)χj(x)ϕ0(x) ∼ (πh)−n/4eixξ0/h−(x−x0)
2/2h


∞∑
k=0


hkχ
j(x)vj,k(x) +O(h∞),


(11.4)
with vj,k ∈ C∞(Ωj ;H), vj,0(x) = Uj(x)ũL′+1(x) +O(|x− x0|).


Proof For j = 0, 1, . . . , r, let χj ∈ C∞d (Ωj), such that
∑
χ


j = 1, and let
χ̃


j ∈ C∞d (Ωj), such that χ̃j = 1 near Supp χj . Then, since f(P̃ ) and Πg are
twisted h-admissible operators, have,


ϕ0 =
∑


j


χ
jϕ0


=
∑


j


U−1
j
χ̃


jUj
χ


jf(P̃ )χ̃
2


jΠg
χ̃2


j (φ0(x)ũL′+1(x)) +O(h∞)


=
∑


j


U−1
j
χ̃


jUj
χ


jf(P̃ )U−1
j
χ̃


jUj
χ̃


jΠg
χ̃2


j (φ0(x)ũL′+1(x)) +O(h∞),


and thus, by Lemma 15.1, and setting P̃j := Uj
χ̃


jP̃U
−1
j
χ̃


j , Πg,j := Uj
χ̃


jΠgU
−1
j
χ̃


j ,
and uL′+1,j(x) := Uj(x)χ̃j(x)ũL′+1(x) ( ∈ C∞d (Ωj ;H)), we obtain,


ϕ0 =
r∑


j=0


U−1
j
χ


jf(P̃j)Πg,j(φ0(x)uL′+1,j(x)) +O(h∞). (11.5)


Now, using the results of Sections 4 and 6, we see that f(P̃j)Πg,j is an h-
admissible operator on L2(IRn;H), with symbol bj verifying,


bj(x, ξ;h) ∼
∞∑


k=0


hkbj,k(x, ξ);


bj,0(x, ξ) = f(χ̃j(x)2(ω0(x, ξ) + Q̃j(x) +W (x)))χ̃j(x)2Π̃0,j(x),


where ω0(x, ξ) :=
∑


|α|≤m cα,0(x)ξα, Q̃j(x) = Uj(x)Q̃(x)Uj(x)−1, and Π̃0,j(x) =
Uj(x)Π̃0(x)Uj(x)−1. Moreover, we have,


Oph(bj)(φ0uL′+1,j)(x;h) =
1


(2πh)n


∫
ei(x−y)ξ/h+iyξ0/hρ(x, y, ξ;h)dydξ,


with,
ρ(x, y, ξ;h) = (πh)−n/4e−(y−x0)


2/2hbj(x, ξ;h)uL′+1,j(y),


and it is easy to check that, for any α, β ∈ INn, one has,


‖(hDy)α(hDξ)βρ(x, y, ξ;h)‖H = O(h|α|/2+|β|),
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uniformly for (x, y, ξ) ∈ IR3nand h > 0 small enough. As a consequence, we
can perform a standard stationary phase expansion in the previous (oscillatory)
integral (see, e.g., [DiSj1, Ma2]), and since the unique critical point is given by
y = x and ξ = ξ0, we obtain,


Oph(bj)(φ0vj)(x;h) = eixξ0/hwj(x;h) +O(h∞),


with,


wj(x;h) ∼
∞∑


k=0


hk


ikk!
(∇y · ∇ξ)kρ(x, y, ξ;h)


∣∣∣ y=x
ξ=ξ0


.


Therefore, since e(y−x0)
2/2h∇ye


−(y−x0)
2/2h = ∇y − y−x0


h , and, for any k ∈ IN ,
|y − x0|ke−(y−x0)


2/2h = O(hk/2), we also obtain,


Oph(bj)(φ0uL′+1,j)(x;h) = (πh)−n/4eixξ0/h−(x−x0)
2/2hw̃j(x;h),


with,


w̃j(x, h) =
N∑


k=0


hk


ikk!
((∇y−h−1(y−x0))·∇ξ)kbj(x, ξ;h)uL′+1,j(y)


∣∣∣ y=x
ξ=ξ0


+O(hN/2),


(11.6)
for any N ≥ 0. Then, taking a ressummation of the formal series in (x − x0)
obtained for each degree of homogeneity in h in (11.6), we obtain an asymptotic
expansion of w̃j , of the form,


w̃j(x, h) ∼
∞∑


k=0


hkw̃j,k(x).


(Alternatively – and equivalently – one could have used instead the stationary
phase theorem with complex-valued phase function [MeSj1] Theorem 2.3, with
the phase (x − y)ξ + yξ0 + i(y − x0)2/2.) In particular, the first coefficient
w̃j,0(x) is obtained as a resummation of the formal series


∑
k≥0


ik


k! ((y − x0)) ·
∇ξ)kbj(x, ξ;h)uL′+1,j(y)


∣∣∣ y=x
ξ=ξ0


, and thus,


w̃j,0(x)(x) = bj(x, ξ0;h)uL′+1,j(x) +O(|x− x0|)
= f(χ̃j(x)2(ω0(x, ξ0) + Q̃j(x) +W (x)))χ̃j(x)2uL′+1,j(x)


+O(|x− x0|)
= f(χ̃j(x)2(ω0(x, ξ0) + λL′+1(x) +W (x)))χ̃j(x)2uL′+1,j(x)


+O(|x− x0|)
= f(χ̃j(x)2(a0(x0, ξ0))χ̃j(x)2uL′+1,j(x) +O(|x− x0|).


Going back to (11.5), this gives an asymptotic expansion for ϕ0 of the form
(11.3), with,


v0(x) =
r∑


j=0


Uj(x)−1χ
j(x)f(χ̃j(x)2a0(x0, ξ0))uL′+1,j(x) +O(|x− x0|)
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=
r∑


j=0


Uj(x)−1χ
j(x)f(a0(x0, ξ0))uL′+1,j(x) +O(|x− x0|)


=
r∑


j=0


Uj(x)−1χ
j(x)uL′+1,j(x) +O(|x− x0|)


= ũL′+1(x) +O(|x− x0|).


The asymptotic expansion (11.4) is obtained exactly in the same way. •


As a consequence, we also obtain,


Proposition 11.2 For any j ∈ {0, 1, . . . , r}, one has,


FS(Ujϕ0) = {(x0, ξ0)} ∩ T ∗Ωj .


Proof For χj ∈ C∞d (Ωj) fixed, we denote by wj(x;h) a resummation of the for-
mal series


∑
k≥0 h


kUj(x)χj(x)vj,k(x) in C∞d (Ωj ;H), where the vj,k’s are those
in (11.4). Then, defining,


A = A(x, hDx) := (hDx − ξ0)2 + (x− x0)2


= (hDx − ξ0 + i(x− x0)) · (hDx − ξ0 − i(x− x0)) + nh,


a straightforward computation gives,


A(Ujϕ0) = A(φ0(x)wj(x;h)) +O(h∞) = hφ0(x)Bwj(x;h) +O(h∞)


with Bwj(x;h) := 2i(x− x0) · ∂xwj − ih∂2
xwj + nwj , and thus, by an iteration,


AN (φ0(x)wj(x;h)) = hNφ0(x)BNwj +O(h∞),


for any N ≥ 1. In particular, due to the form of B, and since ‖(x− x0)αφ0‖ =
O(1) for any α ∈ INn (actually, O(h|α|/2)), we obtain,


‖AN (Ujϕ0)‖L2(Ω′
j
,H) = O(hN ),


for any Ω′j ⊂⊂ Ωj . Now, if (x1, ξ1) ∈ T ∗Ωj is different from (x0, ξ0), then AN


is elliptic at (x1, ξ1) and thus, given any χ ∈ C∞0 (T ∗Ωj) with χ(x1, ξ1) = 1,
the standard construction of a microlocal parametrix (see, e.g., [DiSj1]) gives
an uniformly bounded operator A′N , such that,


A′N ◦AN = χ(x, hDx) +O(h∞).


As a consequence, we obtain,


‖χ(x, hDx)(Ujϕ0)‖L2(Ω′
j
,H) = O(hN ),


for all N ≥ 1. Therefore (x1, ξ1) /∈ FS(φ0(x)vj(x)), and thus, we have proved,


FS(Ujϕ0) ⊂ {(x0, ξ0)} ∩ T ∗Ωj .
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This means that FS(Ujϕ0) consists in at most one point. Conversely, if x0 ∈ Ωj


and FS(Ujϕ0) = ∅, by the ellipticity of AN as |ξ| → ∞, we would have (see,
e.g., [Ma2] Prop. 2.9.7),


‖Ujϕ0‖Ω′
j


= O(h∞),


for any Ω′j ⊂⊂ Ωj . But this contradicts the fact that ‖Ujϕ0‖Ω′
j


= ‖ϕ0‖Ω′
j


=
1 +O(h) if x0 ∈ Ω′j . •


Now, applying Theorem 2.1 and Corollary 2.6 (or rather Remark 2.8), we
obtain,


eitP/hϕ0 = W∗e−itA/hWϕ0 +O(〈t〉h∞), (11.7)


uniformly for t ∈ [0, TΩ′(x0, ξ0)),where Ω′ ⊂⊂ Ω is the same as the one used to
define P̃ in Section 3, and


TΩ′(x0, ξ0) := sup{T > 0 ; πx(∪t∈[0,T ] exp tHa0(x0, ξ0)) ⊂ Ω′}. (11.8)


Moreover, by Lemma 9.1 and Proposition 11.2, we see that,


FS(Wϕ0) = {(x0, ξ0)}. (11.9)


Assuming, e.g., that x0 ∈ Ω1, and taking χ1 ∈ C∞0 (Ω1) such that χ1 = 1 in a
neighborhood of x0, we also have,


Wϕ0 = Wχ2
1ϕ0 +O(h∞) = WU−1


1
χ


1U1
χ


1ϕ0 +O(h∞),


and therefore, using (11.4), (7.7), and the fact that WU−1
1
χ


1 is an h-admissible
operator from L2(IRn;H) to L2(IRn) (see Theorem 7.1), we obtain as before (by
a stationary phase expansion),


Wϕ0(x;h) ∼ (πh)−n/4eixξ0/h−(x−x0)
2/2h


∞∑
k=0


hkwk(x) +O(h∞), (11.10)


with wk ∈ C∞b (IRn), w0(x) = 〈ũL′+1(x), ũL′+1(x)〉+O(|x−x0|) = 1+O(|x−x0|),
and where the asymptotic expansion takes place in C∞b (IRn).


This means that Wϕ0 is a coherent state in L2(IRn), centered at (x0, ξ0),
and from this point we can apply all the standard (and less standard) results
of semiclassical analysis for scalar operators, in order to compute e−itA/hWϕ0


(see, e.g., [CoRo, Ha1, Ro1, Ro2] and references therein). In particular, we learn
from [CoRo] Theorem 3.1 (see also [Ro2]), that, for any N ≥ 1,


e−itA/hWϕ0 = eiδt/h


3(N−1)∑
k=0


ck(t;h)Φk,t +O(eNC0thN/2), (11.11)


where Φk,t is a (generalized) coherent state centered at (xt, ξt) := exp tHa0(x0, ξ0),
δt :=


∫ t


0
(ẋsξs − a0(xs, ξs))ds+ (x0ξ0 − xtξt)/2, C0 > 0 is a constant, the coeffi-


cients ck(t;h)’s are of the form,


ck(t;h) =
Nk∑
`=0


h`ck,`(t), (11.12)
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with ck,` universal polynomial with respect to (∂γa0(xt, ξt))|γ|≤Mk
, and where


the estimate is uniform with respect to (t, h) such that 0 ≤ t < TΩ′(x0, ξ0) and
heC0t remains bounded (h > 0 small enough). In particular, (11.11) supplies
an asymptotic expansion of e−itA/hWϕ0 if one restricts to the values of t such
that 0 ≤ t << ln 1


h .
Now, applyingW∗ to (11.11), and observing thatW∗Φk,t = V∗(Φk,tũL′+1) =


U−1
j V∗j (Φk,tuL′+1,j), where j = j(t) is chosen in such a way that exp tHa0(x0, ξ0) ∈


Ωj , and where V∗j := UjV∗U−1
j is an h-admissible operator on L2(Ωj ;H) (that


is, becomes an h-admissible operator on L2(IRn;H) once sandwiched by cutoff
functions supported in Ωj), we deduce from (11.7),


Theorem 11.3 Let ϕ0 be as in (11.2), and let TΩ′(x0, ξ0) defined in (11.8).
Then, there exists C > 0 such that, for any N ≥ 1, one has,


e−itP/hϕ0 = eiδt/h


3(N−1)∑
k=0


ck(t;h)Φk,tU
−1
j(t)ṽk,j(t)(x) +O(hN/4),


where Φk,t is a coherent state centered at (xt, ξt) := exp tHa0(x0, ξ0), j(t) ∈
{1, . . . , r} is such that exp tHa0(x0, ξ0) ∈ Ωj(t), ṽk,j(t) ∈ C∞(Ωj(t);H), ck(t;h)
is as in (11.12), δt :=


∫ t


0
(ẋsξs − a0(xs, ξs))ds + (x0ξ0 − xtξt)/2, and where the


estimate is uniform with respect to (t, h) such that h > 0 is small enough and
t ∈ [0,min(TΩ′(x0, ξ0), C−1 ln 1


h )).


Remark 11.4 Actually, the coherent state Φk,t is of the form,


Φk,t = ck(t)fk(x,
√
h)h−n/4eixξt/h−qt(x−xt)/h,


where ck(t) is a normalizing factor, fk is polynomial in 2 variables, and qt
is a t-dependent quadratic form with positive-definite real part, that can be
explicitly computed by using a classical evolution involving the Hessian of a0


at (xt, ξt) (see [CoRo]). More precisely, one has qt(x) = −i〈Γtx, x〉/2 with
Γt = (Ct + iDt)(At + iBt)−1, where the 2n× 2n matrix,


Ft =
(
At Bt


Ct Dt


)
is, by definition, the solution of the classical problem,


Ḟt = JHessa0(xt, ξt)Ft ; F (0) = I2n.


Here, J :=
(


0 In
− In 0


)
, and Hessa0 stands for the Hessian of a0. (We


are grateful to M. Combescure and D. Robert for having explained to us this
construction and the main result of [CoRo].)


Remark 11.5 As in [CoRo], one can also consider more general initial states,
of the form,


ϕ0(x) = ei(ξ0·x−x0·hDx)/hf


(
x√
h


)
,
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where f ∈ S(IRn) (we refer to [CoRo] Theorem 3.5 for more details). In the
same way, a similar result can also be obtained for oscillating initial states of
the form,


ϕ0(x) = f(x)eiS(x)/h,


where f ∈ C∞0 (IRn) and S ∈ C∞(IRn; IR) (see [CoRo] Remark 3.9).


Remark 11.6 In principle, all the terms of the asymptotic series can be com-
puted explicitly by an inductive procedure (although, in practical, this task
may result harder than expected since the simplifications are sometimes quite
tricky). Indeed, all our constructions mainly rely on symbolic pseudodifferential
calculus, that provides very explicit inductive formulas.


12 Application to Polyatomic Molecules


In this section, we apply all the previous results to the particular case of a
polyatomic molecule with Coulomb-type interactions, imbedded in an electro-
magnetic field. Denoting by x = (x1, . . . , xn) ∈ IR3n the position of the n nuclei,
and by y = (y1, . . . , yp) ∈ IR3p the position of the p electrons, the corresponding
Hamiltonian takes the form,


H =
n∑


j=1


1
2Mj


(Dxj −A(xj))2 +
p∑


k=1


1
2mk


(Dyk
−A(yk))2 + V (x, y), (12.1)


where the magnetic potential A is assumed to be in C∞b (IR3), and where the
electric potential V can be written as,


V (x, y) = Vnu(x) + Vel(y) + Vel-nu(x, y) + Vext(x, y) = Vint(x, y) + Vext(x, y).
(12.2)


Here, Vnu ( resp. Vel, resp. Vel-nu) stands for sum of the nucleus-nucleus (resp.
electron-electron, resp. electron-nucleus) interactions, and Vext stands for the
external electric potential. Actually, our techniques can be applied to a slightly
more general form of Hamiltonian (also allowing, somehow, a strong action of
the magnetic field upon the nuclei), namely,


H =
n∑


j=1


1
2Mj


(Dxj
− ajAj(x))2 +


p∑
k=1


1
2mk


(Dyk
−Bk(x, y))2 + V (x, y), (12.3)


where A1, . . . , An (respectively B1, . . . , Bp) are assumed to be in C∞b (IRn; IR)
(respectively C∞b (IRn+p; IR)), the aj ’s are extra parameters, and V is as in (12.2)
with,


Vnu(x) =
∑


1≤j<j′≤n


αj,j′


|xj − xj′ |
; Vel(y) =


∑
1≤k<k′≤p


βk,k′


|yk − yk′ |
;


Vel-nu(x, y) =
∑


1≤j≤n
1≤k≤p


−γj,k


|xj − yk|
; Vext ∈ C∞b (IRn+p; IR), (12.4)
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αj,j′ , βk,k′ , γj,k > 0 constant. In fact, as in [KMSW], more general forms can
be allowed for the interaction potentials, e.g., by replacing any function of the
type |zj − z′k|−1 (where the letters z and z′ stand for x or y indifferently) by
some Vj,k(zj − z′k), where Vj,k is assumed to be ∆-compact on L2(IR3) and to
verify some estimates on its derivatives (see [KMSW] Section 2). In the same
way, one could also have admitted singularities of the same kind for the exterior
potentials. However, here we keep the form (12.4) since it is more concrete and
corresponds to the usual physical situation.


Then, we consider the Born-Oppenheimer limit in the following sense: We
set,


Mj = h−2bj ; aj = h−1cj + dj , (12.5)


and we consider the limit h→ 0+ for some fix bj ,mk > 0, cj , dj ∈ IR. By scaling
the time variable, too, the quantum evolution of the molecule is described by
the Schrödinger equation,


ih
∂ϕ


∂t
= P (h)ϕ,


where,


P (h) :=
n∑


j=1


1
2bj


(hDxj −(cj +hdj)Aj(x))2+
p∑


k=1


1
2mk


(Dyk
−Bk(x, y))2+V (x, y).


(12.6)
In particular, we see that P (h) satisfies to Assumptions (H1) and (H2), with,


ω =
n∑


j=1


1
2bj


(hDxj
− (cj + hdj)Aj(x))2,


ω(x, ξ;h) =
n∑


j=1


1
2bj


[
(ξj − (cj + hdj)Aj(x))2 + ih(cj + hdj)(∂xj


Aj)(x)
]
,


Q(x) =
p∑


k=1


1
2mk


(Dyk
−Bk(x, y))2 + Vel(y) + Vel-nu(x, y) + Vext(x, y),


W (x) = Vnu(x).


Now, following the terminology of [KMSW], we denote by


C :=
⋃


1≤j,k≤n
j 6=k


{x = (x1, . . . , xn) ∈ IR3n ; xj = xk}


the so-called collision set of nuclei, and we make on Q(x) the following gap
condition:


(H3′) There exists a contractible bounded open set Ω ⊂ IR3n such that Ω∩C = ∅,
and, for all x ∈ Ω, the L′+L first values λ1(x), . . . , λL′+L(x), given by the Mini-
Max principle for Q(x) on L2(IR3p), are discrete eigenvalues of Q(x), and verify,


inf
x∈Ω


dist (σ(Q(x))\{λL′+1(x), . . . , λL′+L(x)}, {λL′+1(x), . . . , λL′+L(x)}) > 0.
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As it is well known (see [CoSe]), under these assumptions the spectral pro-
jections Π−


0 (x) and Π0(x) of Q(x), corresponding to {λ1(x), . . . , λL′(x)} and
{λL′+1(x), . . . , λL′+L(x)} respectively, are twice differentiable with respect to
x ∈ Ω. In particular, the whole assumption (H3) is indeed satisfied in that case
(and even with a slightly larger open subset of IR3n).


Now, in order to be able to apply the results of the previous sections to this
molecular Hamiltonian, it remains to construct a family (Ωj , Uj(x))1≤j≤r that
verifies Assumption (H4). We do it by following [KMSW].


More precisely, for any fixed x0 = (x0
1, . . . , x


0
n) ∈ IR3n\C, we choose n func-


tions f1, . . . , fn ∈ C∞0 (IR3; IR), such that,


fj(x0
k) = δj,k (1 ≤ j, k ≤ n),


and, for x ∈ IR3n, s ∈ IR3, and y = (y1, . . . , yp) ∈ IR3p, we set,


Fx0(x, s) := s+
n∑


k=1


(xk − x0
k)fk(s) ∈ IR3,


Gx0(x, y) := (Fx0(x, y1), . . . , Fx0(x, yp)) ∈ IR3p.


Then, by the implicit function theorem, for x in a sufficiently small neighborhood
Ωx0 of x0, the application y 7→ Gx0(x, y) is a diffeomorphism of IR3p, and we
have,


xk = Fx0(x, x
0
k),


Gx0(x, y) = y for |y| large enough.


Now, for v ∈ L2(IR3p) and x ∈ Ωx0 , we define,


Ux0(x)v(y) := |detdyGx0(x, y)|
1
2 v(Gx0(x, y))|,


and we see that Ux0(x) is a unitary operator on L2(IR3p) that preserves both
DQ = H2(IR3p) and C∞0 (IR3p). Moreover, denoting by Ux0 the operator on
L2(Ωx0 × IR3p) induced by Ux0(x), we have the following identities:


Ux0hDxU
−1
x0


= hDx + hJ1(x, y)Dy + hJ2(x, y),


Ux0DyU
−1
x0


= J3(x, y)Dy + J4(x, y),


Ux0


1
|yk − y′k|


U−1
x0


=
1


|Fx0(x, yk)− Fx0(x, y′k), |


Ux0


1
|xj − yk|


U−1
x0


=
1


|Fx0(x, x0
j )− Fx0(x, yk)|


, (12.7)


where the (matrix or operator-valued) functions Jν ’s (1 ≤ ν ≤ 4) are all smooth
on Ωx0 × IR3p. Indeed, denoting by G̃x0(x, ·) the inverse diffeomorphism of
Gx0(x, ·), one finds,


J1(x, y) = (tdxG̃x0)(x, y
′ = Gx0(x, y)),
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J2(x, y) = |detdyGx0(x, y)|
1
2Dx


(
|detdy′G̃x0(x, y


′)| 12
) ∣∣∣y′=Gx0 (x,y)) ,


J3(x, y) = (tdy′G̃x0)(x, y
′ = Gx0(x, y)),


J4(x, y) = |detdyGx0(x, y)|
1
2Dy′


(
|detdy′G̃x0(x, y


′)| 12
) ∣∣∣y′=Gx0 (x,y)) .


The key-point in (12.7) is that the (x-dependent) singularity at yk = xj has been
replaced by the (fix) singularity at yk = x0


j . Then, as in [KMSW], one can easily
deduce that the map x 7→ Ux0Q(x)U−1


x0
is in C∞(Ωx0 ;L(H2(IR3p), L2(IR3p)).


Moreover, so is the map x 7→ Ux0∆yU
−1
x0


, and we also see that Ux0ωU
−1
x0


can
be written as in (2.3) (with Ωx0 instead of Ωj , m = 2, and Q0 = −∆y + C0,
C0 > 0 large enough). Indeed, with the notations of (12.7), and setting J (x) =
(J1(x), . . . ,Jn(x)) := J1(x, y)Dy + J2(x, y), we have,


Ux0ωU
−1
x0


=
n∑


k=1


1
2bk


(hDxk
+ hJk(x)− (ck + hdk)Ak(x))2


= ω + h
n∑


k=1


1
bk
Jk(hDxk


− ckAk) (12.8)


+h2
n∑


k=1


1
2bk


(J 2
k − i(∇xJk)− 2dkAkJk).


To complete the argument, we just observe that the previous construction
can be made around any point x0 of Ω, and since this set is compact, we can
cover it by a finite family Ω̃1, . . . , Ω̃r of open sets such that each one corresponds
to some Ωx0 as before. Denoting also U1(x), . . . , Ur(x) the corresponding op-
erators Ux0(x), and setting Ωj = Ω̃j ∩ Ω, we can conclude that the family
(Ωj , Uj(x))1≤j≤r verifies (H4) with H∞ = C∞0 (IR3p). As a consequence, we can
apply to this model all the results of the previous sections, and thus, we have
proved,


Theorem 12.1 Let P (h) be as in (12.6) with V given by (12.2) and (12.4),
A1, . . . , An ∈ C∞b (IRn; IR), and B1, . . . , Bp ∈ C∞b (IRn+p; IR). Assume also
(H3’). Then, the conclusions of Theorem 2.1 are valid for P = P (h).


We also observe that, in this case, we have,


ω(x, ξ;h) = ω0(x, ξ) + hω1(x, ξ) + h2ω2(x),


with,


ω0(x, ξ) =
n∑


k=1


1
2bk


(ξk − ckAk(x))2


ω1(x, ξ) =
n∑


k=1


1
2bk


[2dkAk(x)(ckAk(x)− ξk) + ick(∂xk
Ak)(x)] (12.9)


ω2(x) =
n∑


k=1


1
2bk


[
d2


kAk(x)2 + idk(∂xk
Ak)(x)


]
.
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In particular, the conditions (2.6) and (11.1) are satisfied, and thus, we also
have,


Theorem 12.2 Let P (h) be as in (12.6) with V given by (12.2) and (12.4),
A1, . . . , An ∈ C∞b (IRn; IR), and B1, . . . , Bp ∈ C∞b (IRn+p; IR). Assume also (H3’)
and L = 1. Then, the conclusions of Corollary 2.6 and Theorem 11.3 are valid
for P = P (h).


Moreover, concerning the symbol of the effective Hamiltonian, in that case we
have,


Theorem 12.3 Let P (h) be as in (12.6) with V given by (12.2) and (12.4),
A1, . . . , An ∈ C∞b (IRn; IR), and B1, . . . , Bp ∈ C∞b (IRn+p; IR). Assume also (H3’)
and L = 1. Then, the symbol a(x, ξ;h) of the effective Hamiltonian verifies,


a(x, ξ;h) = a0(x, ξ) + ha1(x, ξ) + h2a2(x, ξ) +O(h3),


with, for (x, ξ) ∈ T ∗(Ω),


a0(x, ξ) = ω0(x, ξ) + λL′+1(x) +W (x);
a1(x, ξ) = ω1(x, ξ)− i∇ξω0(x, ξ)〈∇xu(x), u(x)〉


a2(x, ξ) =
n∑


k=1


1
2bk


〈(Dxk
− dkAk(x))2u(x), u(x)〉


+
n∑


k,`=1


1
bkb`


(ξk − ckAk)(ξ` − c`A`)〈R′(x, λ(x))∇xk
u,∇x`


u〉,


where ω0 and ω1 are defined in (12.9).


Proof A possible proof may consist in using Proposition 10.2. Then, observing
(with the notations of (12.8)) that, by definition,


J = Ux0DxU
−1
x0


−Dx, (12.10)


and, exploiting the fact that the (L′ + 1)-th normalized eigenstate u(x) of Q(x)
is a twice differentiable function of x with values in L2(IR2p) (see , e.g., [CoSe],
but this is also an easy consequence of (12.10) and the fact that x 7→ Ux0(x)u(x)
is smooth), and setting v(x) = Ux0(x)u(x), one can write,


〈J v, v〉H = 〈Dxu, u〉H − 〈Dxv, v〉H.


As a consequence, one also finds,


n∑
k=1


1
bk


(ξk − ckAk)〈Jkv, v〉H − i〈∇ξω0∇xv, v〉H = −i〈∇ξω0∇xu, u〉H.


where ω` (0 ≤ ` ≤ 2) are defined in (12.9), and this permits to make appear
many cancellations in the expression of a(x, ξ;h) given in Proposition 10.2,
leading to the required formulas.
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However, there is a much simpler way to prove it, using directly the expres-
sions (10.9) given in Proposition 10.2 for the operator A. Indeed, since in our
case x 7→ u(x) is twice differentiable, for all w ∈ L2(IRn+p), we can write,


[Dx, Π̃0]w = −i〈w,∇xu(x)〉u(x)− i〈w, u(x)〉∇xu(x),


and, for all w ∈ C1(IR3n;L2(IR3p)),


[D2
x, Π̃0]w = [Dx, Π̃0] ·Dxw +Dx · [Dx, Π̃0]w


= −2i〈Dxw,∇xu(x)〉u(x)− 2i〈Dxw, u(x)〉 · ∇xu(x)
−〈w,∇xu(x)〉 · ∇xu(x)− 〈w, u(x)〉∇x · ∇xu(x).


This permits to write explicitly the operator [Π̃0, P̃ ] = [Π̃0,ω] as,


[Π̃0, P̃ ]w = ih
n∑


k=1


1
bk
〈(hDxk


− (ck + hdk)Ak)w,∇xk
u(x)〉u(x)


+ih
n∑


k=1


1
bk
〈(hDxk


− (ck + hdk)Ak)w, u(x)〉 · ∇xk
u(x)


+h2
n∑


k=1


1
2bk


(
〈w,∇xk


u(x)〉 · ∇xk
u(x) + 〈w, u(x)〉∇2


xk
u(x)


)
.


In particular, taking w = Z∗1α(x) = α(x)u(x), α ∈ H1(IR3n)), and using the
fact that R′(x, λ(x))u(x) = 0, one finds,


R′(x, λ(x))[Π̃0, P̃ ]Z∗1α = ih
n∑


k=1


1
bk


((hDxk
− ckAk)α)R′(x, λ(x))∇xk


u(x)


+O(h2‖α‖),


and then,


Z1[P̃ , Π̃0]R′(x, λ(x))[Π̃0, P̃ ]Z∗1α


= h2
n∑


k,`=1


1
bkb`


((hDxk
− ckAk)(hDx`


− c`A`)α)×


×〈R′(x, λ(x))∇xk
u(x),∇x`


u(x)〉+O(h3‖α‖),


This obviously permits to compute the principal symbol of the partial differential
operator A2 appearing in (10.9). The (full) symbol of A1 = Z1P̃Z


∗
1 is even easier


to compute, and the result follows. •


Remark 12.4 The smoothness with respect to x of all the coefficients appear-
ing in a(x, ξ;h) is a priori known, but can also be recovered directly by using
(12.10). For instance, writing 〈∇xu(x), u(x)〉 as,


〈∇xu(x), u(x)〉 = 〈∇xUx0u(x), Ux0u(x)〉+ i〈J (x)Ux0u(x), Ux0u(x)〉,


permits to see its smoothness near x0.
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Remark 12.5 Using the expression of A3 appearing in (10.9), one could also
compute the next term (i.e., the h3-term) in a(x, ξ;h).


Remark 12.6 Analogous formulas can be obtained in a very similar way in the
case where L is arbitrary but λL′+1 = . . . = λL′+L.


Remark 12.7 Although we did not do it here, we can also treat the case of
unbounded magnetic potential (e.g., constant magnetic field). Then, the esti-
mates on the coefficients cα’s in Assumption (H1) are not satisfied anymore,
but, since we mainly work in a compact region of the x-space, it is clear that
an adaptation of our arguments lead to the same results.


Remark 12.8 In the case of a free molecule (or, more generally, if the external
electromagnetic field is invariant under the translations of the type (x, y) 7→
(x1 + α, . . . , xn + α, y1 + α, . . . , yp + α) for any α ∈ IR3), one can factorize
the quantum motion, e.g., by using the so-called center of mass of the nuclei
coordinate system , as in [KMSW]. Then, denoting by R the position of the
center of mass of the nuclei, the operator takes the form,


P (h) = H0(DR) + P ′(h) + h2p(Dy),


where H0(DR) stands for the quantum-kinetic energy of the center of mass of
the nuclei, P ′(h) has a form similar to that of P (h) in (12.6) (but now, with


x ∈ IR3(n−1) denoting the relative positions of the nuclei), and p(Dy) is a PDO
of order 2 with respect to y, with constant coefficients (the so-called isotopic
term). Therefore, one obtains the factorization,


e−itP (h)/h = e−itH0(DR)/he−it(P ′(h)+h2p(Dy))/h, (12.11)


and it is easy to verify that our previous constructions can be performed with
Q(x) replaced by Q(x)+h2p(Dy). In particular, under the same assumptions as
in Theorem 12.1, the quantum evolution under P ′(h)+h2p(Dy) of an initial state
ϕ0 verifying (2.4) with P replaced by P ′(h) (that is, a much weaker assumption)
can be expressed in terms of the quantum evolution associated to a L×L matrix
of h-admissible operators on L2(IR3(n−1)). In that case, (12.11) provides a way
to reduce the evolution of ϕ0 under P (h), too.


13 Appendix A: Smooth Peudodifferential Cal-
culus with Operator-Valued Symbol


We recall the usual definition of h-admissible operator with operator-valued
symbol. In some sense, this corresponds to a simple case of the more general
definitions given in [Ba, GMS]. For m ∈ IR and H a Hilbert space, we denote
by Hm(IRn;H) the standard m-th order Sobolev space on IRn with values in
H.
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Definition 13.1 Let m ∈ IR and let H1 and H2 be two Hilbert space. An
operator A = A(h) : Hm(IRn;H1) → L2(IRn;H2) with h ∈ (0, h0] is called
h-admissible (of degree m) if, for any N ≥ 1,


A(h) =
N∑


j=0


hjOph(aj(x, ξ;h)) + hNRN (h), (13.1)


where RN is uniformly bounded from Hm(IRn;H1) to L2(IRn;H2) for h ∈
(0, h0], and, for all h > 0 small enough, aj ∈ C∞(T ∗IRn;L(H1;H2)), with


‖∂αaj(x, ξ;h)‖L(H1;H2) ≤ Cα〈ξ〉m (13.2)


for all α ∈ IN2n and some positive constant Cα, uniformly for (x, ξ) ∈ T ∗IRn


and h > 0 small enough. In that case, the formal series,


a(x, ξ;h) =
∑
j≥0


hjaj(x, ξ;h), (13.3)


is called the symbol of A (it can be resummed up to a remainder in O(h∞〈ξ〉m)
together with all its derivatives). Moreover, in the case m = 0 and H2 = H1, A
is called a (bounded) h-admissible operator on L2(IRn;H1).


Here, we have denoted by Oph(a) the standard quantization of a symbol a,
defined by the following formula:


Oph(a)u(x) :=
1


(2πh)n


∫
ei(x−y)ξ/ha (x, ξ)u(y)dydξ, (13.4)


valid for any tempered distribution u, and where the integral has to be in-
terpreted as an oscillatory one. Actually, by the Calderón-Vaillancourt Theo-
rem (see, e.g., [GMS, DiSj1, Ma2, Ro1]), the estimate (13.2) together with the
quantization formula (13.4), permit to define Oph(a) as a bounded operator
Hm(IRn;H1) → L2(IRn;H2). Let us also observe that, very often, the formal
series (13.3) are indeed identified with one of their resummations (and thus,
the symbol is considered as a function, rather than a formal series). Indeed,
since the various resummations (together with all their derivatives) differ by
uniformly O(h∞〈ξ〉m) terms, in view of (13.1) and the Calderón-Vaillancourt
Theorem, it is clear that this has no real importance.


As it is well known (see, e.g., [Ba, DiSj1, GMS, Ma2]), to such a type of
quantization is associated a full and explicit symbolic calculus that permits to
handle these operators in a very easy and pleasant way. In particular, we have
the following results:


Proposition 13.2 (Composition) Let A and B be two bounded h-admissible
operators on L2(IRn;H1), with respective symbols a and b. Then, the composi-
tion A ◦B is an h-admissible operators on L2(IRn;H1), too, and its symbol a]b
is given by the formal series,


a]b(x, ξ;h) =
∑


α∈INn


h|α|


i|α|α!
∂α


ξ a(x, ξ;h)∂
α
x b(x, ξ;h).
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Remark 13.3 There is a similar result for the composition of unbounded h-
admissible operators, but it requires more conditions on the remainder RN (h)
appearing in (13.1) (see [Ba, GMS]).


Proposition 13.4 (Parametrix) LetA be an h-admissible operator on L2(IRn;H1),
such that any resummation a of its symbol is elliptic, in the sense that a(x, ξ;h)
is invertible on H∞ for any (x, ξ;h), and its inverse verifies,


‖a(x, ξ;h)−1‖L(H1) = O(1),


uniformly for (x, ξ) ∈ T ∗IRn and h > 0 small enough. Then, A is invertible on
L2(IRn;H1), its inverse A−1 is h-admissible, and its symbol b verifies,


b = a−1 + hr,


with r =
∑


j≥0 h
jrj , ‖∂αrj‖L(H1) = O(1) uniformly.


Remark 13.5 It is easy to see that the ellipticity of any resummation of the
symbol is equivalent to the ellipticity of the function a0(x, ξ;h) appearing in
(13.1) (and thus, to the ellipticity of at least one resummation).


Remark 13.6 Of course, the rj ’s can actually be all determined recursively, by
using the identity a]b = 1 (this gives a possible choice for them, but this choice
is not unique since we have allowed them to depend on h).


Proposition 13.7 (Functional Calculus) LetA be a self-adjoint h-admissible
operator on L2(IRn;H1), and let f ∈ C∞0 (IR). Then, f(A) is h-admissible, and
its symbol b verifies,


b = f( Re a) + hr,


where Re a := (a+ a∗)/2, and r =
∑


j≥0 h
jrj , ‖∂αrj‖L(H1) = O(1) uniformly.


14 Appendix B: Propagation of the Support


Theorem 14.1 Let P be as in (2.2) with (H1)-(H2), and let K0 be a compact
subset of IRn


x , f ∈ C∞0 (IR) and ϕ0 ∈ L2(IRn;H), such that ‖ϕ0‖ = 1, and,


‖(1− f(P ))ϕ0‖L2(IRn;H) + ‖ϕ0‖L2(Kc
0 ;H) = O(h∞).


Then, for any ε > 0, any T > 0, and any g ∈ C∞0 (IR) such that gf = f , the
compact set defined by,


KT,ε := {x ∈ IRn ; dist (x,K0) ≤ ε+ C1T},


with


C1 :=
1
2
‖∇ξω(x, hDx)g(P )‖,


verifies,
sup


t∈[0,T ]


‖e−itP/hϕ0‖L2(Kc
T,ε


;H) = O(h∞),


as h→ 0.
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Proof First, we need the following lemma:


Lemma 14.2 For any χ ∈ C∞b (IRn), such that suppχ ⊂ Kc
0, and for any


g ∈ C∞0 (IR), one has,
‖χ(x)g(P )ϕ0‖ = O(h∞).


Proof Consider a sequence (χj)j∈IN ⊂ C∞b (IRn), suppχj ⊂ Kc
0 and such that


χ
j+1


χ
j = χ


j , χ
j
χ = χ.


Then, in view of (4.8), it is sufficient to show that, for any N ≥ 0,


‖χj(x)(P − λ)−1ϕ0‖ = O(hN | Im λ|−(N+1)),


uniformly as h, | Im λ| → 0+.
We set uj = χ


j(x)(P − λ)−1ϕ0, and we observe that, for all j ∈ IN , one has
‖uj‖ = O(| Im λ|−1). By induction on N , let us suppose, for all j ∈ IN ,


‖χj(x)(P − λ)−1ϕ0‖ = O(hN | Im λ|−(N+1)).


Since χj+1 = 1 on Supp χj , and P is differential in x, we have,


(P − λ)uj = χ
jϕ0 + [P, χj ]χj+1(P − λ)−1ϕ0,


and thus,
uj = (P − λ)−1χ


jϕ0 + (P − λ)−1[ω, χj ]uj+1.


Now, by assumption, we have ‖χjϕ0‖ = O(h∞), and therefore, ‖(P−λ)−1χ
jϕ0‖ =


O(h∞| Im λ|−1). Moreover, using (H1)-(H2), it is easy to see that the operator
| Im λ|h−1(P − λ)−1[ω, χj ] is uniformly bounded on L2(IRn;H). Hence, using
the induction hypothesis, we obtain,


‖uj‖ = O(h∞| Im λ|−1) +O(hN+1| Im λ|−(N+2)) = O(hN+1| Im λ|−(N+2))


for any j ∈ IN , and the lemma follows. •


Now, for any F ∈ C∞(IR+ × IRn
x ; IR), let us compute the quantity,


∂t〈F (t, x)f(P )e−itP/hϕ0, f(P )e−itP/hϕ0〉
= Re 〈(∂tF − ih−1FP )f(P )e−itP/hϕ0, f(P )e−itP/hϕ0〉


= 〈(∂tF −
i


2h
[F, P ])f(P )e−itP/hϕ0, f(P )e−itP/hϕ0〉


= 〈(∂tF +
i


2h
[ω, F ])f(P )e−itP/hϕ0, f(P )e−itP/hϕ0〉. (14.1)


Then, we fix g ∈ C∞0 (IR) such that gf = f , and, for j ∈ IN , we set,


Fj(t, x) := ϕj( dist (x,K0)− C1t), (14.2)
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where C1 = 1
2‖∇ξω(x, hDx)g(P )‖, and the ϕj ’s are in C∞b (IR; IR+) with support


in [ε,+∞), verify ϕj(s) = 1 for s ≥ ε+ 1
j , ϕj+1 = 1 near Supp ϕj , and are such


that,
ϕ′j := φ2


j ≥ 0 with φj ∈ C∞b (IR; IR).


In particular, Fj ∈ C∞b (IR+ × IRn
x ; IR+), and, setting d(x) := dist (x,K0), we


have,


∇xFj = ϕ′j(d(x)− C1t)∇d(x), ∂tFj = −C1ϕ
′
j(d(x)− C1t).


Moreover, since ω = ω(x, hDx) is a differential operator with respect x, of
degree m, we see that,


i


h
[ω, Fj ] = ∇xFj · ∇ξω(x, hDx) + hRj , (14.3)


where Rj = Rj(t, x, hDx) is a differential operator of degree m − 2 in x, with
coefficients in C∞b (IR+ × IRn


x) and supported in {Fj+1 = 1}.


Lemma 14.3 For any N ≥ 1,


‖Rjf(P )u‖ = O(
N∑


k=0


hk‖Fj+k+1f(P )u‖+ hN+1‖u‖).


Proof We writeRjf(P ) = RjFj+1f(P ) = Rjg(P )Fj+1f(P )+Rj [Fj+1, g(P )]f(P ).
Then, using (4.8) and the fact that [P, Fj+1] = [ω, Fj+1], we obtain,


Rj [Fj+1, g(P )]


=
1
π


∫
∂g̃(z)Rj(P − z)−1[ω, Fj+1](P − z)−1dz dz̄


=
1
π


∫
∂g̃(z)Rj(P − z)−1[ω, Fj+1]Fj+2(P − z)−1dz dz̄


=
1
π


∫
∂g̃(z)Rj(P − z)−1[ω, Fj+1](P − z)−1Fj+2dz dz̄


+
1
π


∫
∂g̃(z)Rj(P − z)−1[ω, Fj+1](P − z)−1[ω, Fj+2](P − z)−1dz dz̄,


and thus, by iteration,


Rj [Fj+1, g(P )]


=
N∑


k=1


1
π


∫
∂g̃(z)Rj(P − z)−1


(
k∏


`=1


(
[ω, Fj+`](P − z)−1


))
Fj+k+1dz dz̄


+
1
π


∫
∂g̃(z)Rj(P − z)−1


N+1∏
`=1


(
[ω, Fj+`](P − z)−1


)
dz dz̄.


Since ‖Rj(P−z)−1‖ = O(1) and ‖[ω, Fj+`](P−z)−1‖ = O(h), the result follows.
•
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As a consequence, we deduce from (14.3),


i


h
[ω, Fj ]f(P )e−itP/hϕ0


= ϕ′j(d(x)− C1t)∇d(x)∇ξω(x, hDx)f(P )e−itP/hϕ0


+O(
N∑


k=0


hk+1‖Fj+k+1f(P )e−itP/hϕ0‖+ hN+2)


= φj(d(x)− C1t)∇d(x)∇ξω(x, hDx)g(P )φj(d(x)− C1t)f(P )e−itP/hϕ0


+φj(d(x)− C1t))∇d(x)[φj(d(x)− C1t),∇ξω(x, hDx)]f(P )e−itP/hϕ0


+φj(d(x)− C1t))∇d(x)∇ξω(x, hDx)[φj(d(x)− C1t), g(P )]f(P )e−itP/hϕ0


+O(
N∑


k=0


hk+1‖Fj+k+1f(P )e−itP/hϕ0‖+ hN+2),


and thus, since φj is supported in {Fj+1 = 1}, as in the proof of Lemma 14.3,
we obtain,


i


h
[ω, Fj ]f(P )e−itP/hϕ0


= φj(d(x)− C1t)∇d(x)∇ξω(x, hDx)g(P )φj(d(x)− C1t)f(P )e−itP/hϕ0


+O(
N∑


k=0


hk+1‖Fj+k+1f(P )e−itP/hϕ0‖+ hN+2),


for any fixed N ≥ 1.
Going back to (14.1), and using the fact that ‖∇d(x)∇ξω(x, hDx)g(P )‖ ≤


C1, this gives,


∂t〈Fj(t, x)f(P )e−itP/hϕ0, f(P )e−itP/hϕ0〉


≤ O(
N∑


k=0


hk+1‖Fj+k+1f(P )e−itP/hϕ0‖2 + hN+2),


and therefore, integrating between 0 and t, and using Lemma 14.2,


〈Fj(t, x)f(P )e−itP/hϕ0, f(P )e−itP/hϕ0〉


= O(
N∑


k=0


hk+1


∫ t


0


‖Fj+k+1f(P )e−isP/hϕ0‖2ds+ thN+2),


In particular, since


‖Fj(t, x)f(P )e−itP/hϕ0‖2 ≤ 〈Fj(t, x)f(P )e−itP/hϕ0, f(P )e−itP/hϕ0〉,


we have ‖Fj(t, x)f(P )e−itP/hϕ0‖2 = O(h) for any j ∈ IN, and then, by induc-
tion, ‖Fj(t, x)f(P )e−itP/hϕ0‖2 = O(hN ) for all N ∈ IN . Due to the definition
(14.2) of Fj , this proves the theorem. •
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15 Appendix C: Two Technical Lemmas


Lemma 15.1 Let ψj , χj ∈ C∞0 (IRn), such that χj = 1 near Supp ψj . Then,
for any f ∈ C∞0 (IR), one has,


Ujψjf(P̃ )U−1
j
χ


j = ψjf(Uj
χ


jP̃U
−1
j
χ


j) +O(h∞).


Proof By (4.8), and taking the adjoint, it is enough to prove, for any N ≥ 1,


Uj
χ


j(P̃ − z)−1U−1
j ψj = (Uj


χ
jP̃U


−1
j
χ


j − z)−1ψj +O(hN | Im z|−N ′
),


locally uniformly for z ∈ C , and with some N ′ = N ′(N) < +∞. Let v ∈
L2(IRn) and set u := (P̃ − z)−1U−1


j ψjv. By Lemma 4.11 (and its proof), we
know that,


u = χ
ju+O(hN | Im z|−N ′


‖v‖), (15.1)


for some N ′ = N ′(N) < +∞. On the other hand, we have,


(Uj
χ


jP̃U
−1
j
χ


j − z)Uj
χ


ju = Uj
χ


jP̃ u− zUj
χ


ju+ Uj
χ


jP̃ (χ2
j − 1)u


= Uj
χ


j(zu+ U−1
j ψjv)− zUj


χ
ju+ Uj


χ
jP̃ (χ2


j − 1)u


= ψjv + Uj
χ


jP̃ (χ2
j − 1)u,


and thus, using (15.1),


Uj
χ


ju = (Uj
χ


jP̃U
−1
j
χ


j − z)−1(ψjv + Uj
χ


jP̃ (χ2
j − 1)u)


= (Uj
χ


jP̃U
−1
j
χ


j − z)−1ψjv +O(hN | Im z|−N ′′
‖v‖),


for some other N ′′ = N ′′(N) < +∞. Then, the result follows. •


Lemma 15.2 Let ψ, χ ∈ C∞0 (IRn), such that χ = 1 near Supp ψ. Then, for
any ρ ∈ C∞0 (IR), one has,


ρ(χωχ)ψ = ρ(ω)ψ +O(h∞).


Proof The proof is very similar to (but simpler than) the one of Lemma 15.1,
and we omit it. •
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admissibles à symbole opérateurs et applications, PhD Thesis, Université de
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