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Abstract


It is proved that the wave operators corresponding to Schrödinger operators with Aharo-
nov-Bohm type magnetic fields can be rewritten in terms of explicit functions of the generator
of dilations and of the Laplacian.


1 Introduction


In some recent works on scattering theory [KR1, KR2, KR3, KR5], it was conjectured and then
proved that, modulo a compact term, the wave operators for Schrödinger systems can be rewrit-
ten as a product of a function of the dilation operator A and a function of the Laplacian −∆.
Furthermore, the functions of the dilation operator are rather insensitive to a particular choice
of the perturbed operator and depend mainly on the free system and on the space dimension.


In this paper, we obtain a similar result for the five-parameter family of Hamiltonians de-
scribing the non-relativistic Aharonov-Bohm systems [AT, DS]. More precisely, we first show
that the wave operators for the original Aharonov-Bohm Hamiltonian [AB, R] can be rewritten
as explicit functions of A only. For the wave operators corresponding to other self-adjoint ex-
tensions, we prove that the additional terms are given by the product of a function of A and a
function of −∆. Let us already stress that the functions of the dilation operator depend on the
flux of the magnetic field, but not on the other parameters of the boundary condition at 0 ∈ R


2.
These new formulae might serve for various further investigations on scattering theory for


systems with less singular magnetic fields. In particular, it would interesting to study the
structure of the wave operators for Schrödinger operators with magnetic fields supported in small
sets, see for example [EIO, T1, T2]. These new expressions also lead to a topological approach
of Levinson’s theorem. In this respect, we mention two papers related to Levinson’s for the
original Aharonov-Bohm operator [L, SM]. We intend to address both subjects in forthcoming
publications.


The structure of this paper is the following: We first recall the constructions of the five-
parameter family of self-adjoint operators, mainly borrowed from [AT]. After a technical inter-
lude on the Fourier transform and on the generator of dilations, we show in Theorem 4 that
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the wave operators for the original Aharonov-Bohm system can be rewritten as functions of A
only. We then extend the analysis to the wave operators for arbitrary self-adjoint extensions,
and propose new formulae for them in Theorem 7.
Acknowledgments: This work is supported by the Swiss National Science Foundation. Its
author also thanks S. Nakamura for a two weeks invitation to Japan where part of the present
work was completed. This stay was made possible thanks to a grant from the Japan Society for
the Promotion of Science.


2 The family of self-adjoint extensions


In this section, we recall the construction of [AT] for the family of self-adjoint extensions cor-
responding to a Schrödinger operator with a singular magnetic field located at the origin. We
also refer to [DS] for a similar construction, and to [T1, T2] for more details.


Let us set H for the Hilbert space L2(R2) and denote its norm by ‖ · ‖. For any α ∈ (0, 1),
we define Aα : R


2 \ {0} → R
2 by


Aα(x1, x2) = −α
( −x2


x2
1 + x2


2


,
x1


x2
1 + x2


2


)


and consider the operator


Hα := (−i∇−Aα)2, D(Hα) = C∞
c


(


R
2 \ {0}


)


,


where C∞
c (Ξ) denotes the set of smooth functions on Ξ with compact support. The closure Hα


of this operator in H is symmetric and has deficiency indices (2, 2). The deficiency subspace
Σ+ := ker(H


∗
α − i) is spanned by the functions (in polar coordinates)


ψ0
+(r) := c0+Kα(e−iπ/4r) 1√


2π
and ψ−1


+ (r, θ) := c−1
+ K1−α(e−iπ/4r) e−iθ√


2π
,


and the deficiency subspace Σ− := ker(H
∗
α + i) is spanned by the functions


ψ0
−(r) := c0− e


iπα/2Kα(eiπ/4r) 1√
2π


and ψ−1
− (r, θ) := c−1


− eiπ(1−α)/2K1−α(eiπ/4r) e−iθ√
2π


.


Here, Kµ is the modified Bessel function of the second kind and of order µ, and the real constants
c0± and c−1


± are chosen such that ‖ψ0
±‖ = ‖ψ−1


± ‖ = 1.
By the standard theory of Krein, all self-adjoint extensions of Hα are parameterized by the


set of unitary maps from one deficiency subspace to the other one. Therefore, for η ∈ R and
a, b ∈ C satisfying |a|2 + |b|2 = 1, let us set


U = U(η, a, b) = eiη
(


a −b
b a


)
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for a general unitary map from Σ+ to Σ−. These spaces are endowed with their respective bases
{ψ0


+, ψ
−1
+ } and {ψ0


−, ψ
−1
− }. Then, for any such U , there exists a self-adjoint extension HU


α of Hα


defined by


D(HU
α ) =


{


f ∈ H | f = g + ψ+ + Uψ+ with g ∈ D(Hα), ψ+ ∈ Σ+


}


and
HU


α f = Hαg + iψ+ − iUψ+ .


In particular, the special choice U(0,−1, 0) coincides with the original operator HAB
α introduced


by Aharonov and Bohm and thoroughly studied in [R].
The generalized eigenfunctions of these operators have been calculated in [AT], and we shall


come back to them subsequently. Some useful tools and notations have first to be introduced.


3 Fourier transform and dilation operator


In this section we briefly recall the necessary background on the Fourier transform and the
dilation operator.


Let us first decompose the Hilbert space H with respect to polar coordinates: For any m ∈ Z,
let φm be the complex function defined by [0, 2π) ∋ θ 7→ φm(θ) := eimθ√


2π
. Then, by taking the


completeness of the family {φm}m∈Z in L2(S1) into account, one has the canonical decomposition


H =
⊕


m∈Z


Hm ,


where Hm =
{


f ∈ H | f(r, θ) = g(r)φm(θ) a.e. for some g ∈ Hr


}


, Hr := L2(R+, rdr) and R+ is
the open interval (0,∞).


Let F be the usual Fourier transform, explicitly given on any f ∈ H and k ∈ R
2 by


[Ff ](k) =
1


2π
l.i.m.


∫


R2


f(x)e−ix·k dx


where l.i.m. denotes the convergence in the mean. Its inverse is denoted by F∗. Since the
Fourier transform maps the subspace Hm of H onto itself, we naturally set Fm : Hr → Hr by
the relation F(gφm) = Fm(g)φm for any g ∈ Hr. More explicitly, the application Fm is the
unitary map from Hr to Hr given on any g ∈ Hr and κ ∈ R+ by


[Fmg](κ) = (−i)|m| l.i.m.
∫


R+


rJ|m|(rκ)g(r)dr ,


where J|m| denotes the Bessel function of the first kind and of order |m|. The inverse Fourier


transform F∗
m is given by the same formula, with (−i)|m| replaced by i|m|.


Let us now consider the unitary dilation group {Uτ}τ∈R defined on any f ∈ H and x ∈ R
2


by
[Uτf ](x) = eτf(eτx) .
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Its self-adjoint generator A is formally given by 1
2(X ·(−i∇)+(−i∇)·X), where X is the position


operator and −i∇ is its conjugate operator. All these operators are essentially self-adjoint on
the Schwartz space on R


2.
It is easily observed that the formal equality F AF∗ = −A holds. More precisely, for any


essentially bounded function ϕ on R, one has Fϕ(A)F∗ = ϕ(−A). Furthermore, since A acts
only on the radial coordinate, the operator ϕ(A) leaves each Hm invariant. So, for any m ∈ Z,
let ϕm be an essentially bounded function on R. Assume furthermore that the family {ϕm}m∈Z


is bounded. Then the operator ϕ(A) : H → H defined on Hm by ϕm(A) is a bounded operator.
Let us finally recall a general formula about the Mellin transform.


Lemma 1. Let ϕ be an essentially bounded function on R such that its inverse Fourier transform


is a distribution on R. Then, for any f ∈ C∞
c


(


R
2 \ {0}


)


one has


[ϕ(A)f ](r, θ) =
(


1
2π


)1/2
∫ ∞


0
ϕ̌
(


− ln( s
r )
)


f(s, θ) ds
r ,


where the r.h.s. has to be understood in the sense of distributions.


Proof. The proof is a simple application for n = 2 of the general formulae developed in [Jen,
p. 439]. Let us however mention that the convention of this reference on the minus sign for the
operator A in its spectral representation has not been adopted.


As already mentioned ϕ(A) leaves Hm invariant. And more precisely, if f = gφm for some
g ∈ C∞


c (R+), then ϕ(A)gφm = [ϕ(A)g]φm with


[ϕ(A)g](r) =
(


1
2π


)1/2
∫ ∞


0
ϕ̌
(


− ln( s
r )
)


g(s) ds
r , (1)


where the r.h.s. has again to be understood in the sense of distributions.


4 The original Aharonov-Bohm operator


Let us now come back to the original Aharonov-Bohm operator HAB
α . We shall recall some


formulae gathered in the paper [R]. For shortness, the index α will be omitted in certain
expressions. Since the operator HAB


α leaves each subspace Hm invariant, it gives rise to a
sequence of channel operators HAB


α,m acting on Hm. The usual operator −∆ admitting a similar
decomposition, the wave operators


ΩAB
± := s− lim


t→±∞
eiH


AB
α t e−i(−∆)t .


can be defined in each channel, i.e. separately for each m ∈ Z. Let us immediately observe that
the angular part does not play any role for defining such operators. Therefore, we shall omit
it as long as it does not lead to any confusion, and consider the channel wave operators ΩAB


±,m


4







from Hr to Hr. It is proved in [R, Thm. A1] that these operators exist and are isometric maps
from Hr onto Hr. Furthermore, they are given for any g ∈ Hr and r ∈ R+ by


[ΩAB
±,m g](r) = i|m| l.i.m.


∫


R+


κJ|m+α|(κr)e
∓iδα


m [Fmg](κ)dκ , (2)


where


δα
m = 1


2π
(


|m| − |m+ α|
)


=


{


−1
2πα if m ≥ 0
1
2πα if m < 0


.


Since the wave operators admit a decomposition into channel wave operators, so does the
scattering operator. The channel scattering operator SAB


m := (ΩAB
+,m)∗ΩAB


−,m : Hr → Hr is simply
given by [R, eq. 4.6] :


SAB
m = e2iδα


m .


Let us now concentrate on the channel wave operators. Since C∞
c (R+) is contained in Hr,


one has for any g ∈ C∞
c (R+) and r ∈ R+:


[ΩAB
±,mg](r) = s− lim


N→∞
i|m|


∫ N


0
κJ|m+α|(κr)e


∓iδα
m [Fmg](κ)dκ


= s− lim
N→∞


e∓iδα
m


∫ N


0
κJ|m+α|(κr)


[


∫ ∞


0
sJ|m|(sκ)g(s)ds


]


dκ


= s− lim
N→∞


e∓iδα
m


∫ ∞


0
sg(s)


[


∫ N


0
κJ|m|(sκ)J|m+α|(κr)dκ


]


ds


= s− lim
N→∞


e∓iδα
m


∫ ∞


0


s
r g(s)


[


∫ Nr


0
κJ|m|(


s
r κ)J|m+α|(κ)dκ


]


ds
r


= e∓iδα
m


∫ ∞


0


s
r


[


∫ ∞


0
κJ|m|(


s
r κ)J|m+α|(κ)dκ


]


g(s) ds
r , (3)


where the last term has to be understood in the sense of distributions on R+.
Our interest in rewriting the channel wave operators in this form is twofold. Firstly, by


comparing (3) with (1), one observes that the channel wave operator ΩAB
±,m is equal, at least on a


dense set in Hr, to ϕ±
m(A) for a function ϕ±


m whose inverse Fourier transform satisfies for y ∈ R:


ϕ̌±
m(y) =


√
2π e∓iδα


m e−y
[


∫ ∞


0
κJ|m|(e


−y κ)J|m+α|(κ)dκ
]


.


Secondly, the distribution between brackets has been explicitly computed in [KR4, Prop. 2]. We
recall here the general result (the notation δ is used for the Dirac measure centered at 0 and Pv
denotes the principal value integral).


Proposition 2. For any µ, ν ∈ R satisfying ν + 2 > |µ| and µ+ 2 > |ν|, and s ∈ R+ one has
∫∞
0 κJµ(sκ)Jν(κ)dκ = cos(π(ν − µ)/2)δ(s − 1) + 2


π sin(π(ν − µ)/2)s−1 Pv
(


1
1


s
−s


)


(4)


+

















2
π sin(π(ν − µ)/2) s−1


1


s
−s


[


sµ Γ(µ+ν
2


+1)Γ(µ−ν
2


+1)


Γ(µ+1) 2F1


(µ+ν
2 , µ−ν


2 ;µ+ 1; s2
)


− 1
]


if s < 1,


2
π sin(π(ν − µ)/2) s−1


1


s
−s


[


s−ν Γ( ν+µ
2


+1)Γ( ν−µ
2


+1)


Γ(ν+1) 2F1


(ν+µ
2 , ν−µ


2 ; ν + 1; s−2
)


− 1
]


if s > 1,
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as an equality between two distributions on R+. The last term belongs to L1
loc(R+).


Thus, let us define the following distributions for y ∈ R:


ϕ̌±
m,1(y) =


√
2π e∓iδα


m cos(δα
m)δ(y) ,


ϕ̌±
m,2(y) = −


√


2
π e


∓iδα
m sin(δα


m)Pv
(


1
sinh(y)


)


.


For y < 0 let us also set


ϕ̌±
m,3(y) = −


√


2
π e


∓iδα
m sin(δα


m) 1
sinh(y)


[


eνy Γ( ν+µ
2


+1)Γ( ν−µ
2


+1)


Γ(ν+1) 2F1


(ν+µ
2 , ν−µ


2 ; ν + 1; e2y
)


− 1
]


,


and for y > 0


ϕ̌±
m,3(y) = −


√


2
π e


∓iδα
m sin(δα


m) 1
sinh(y)


[


e−µy Γ(µ+ν
2


+1)Γ(µ−ν
2


+1)


Γ(µ+1) 2F1


(µ+ν
2 , µ−ν


2 ;µ+ 1; e−2y
)


− 1
]


,


where the notation µ = |m| and ν = |m + α| has been used for shortness. The sum of these
distributions is clearly equal to ϕ̌±


m. These distributions are the inverse Fourier transforms of
continuous functions, as proved in the next lemma. We use the notation T for the set of complex
numbers of modulus 1.


Lemma 3. One has:


1. ϕ±
m,1 = e∓iδα


m cos(δα
m),


2. ϕ±
m,2 = ie∓iδα


m sin(δα
m) tanh


(


π
2 ·
)


,


3. ϕ±
m,3 ∈ C0(R) with supy∈R |ϕ±


m,3(y)| ≤ 2 independently of m ∈ Z.


In particular, one has ϕ±
m := ϕ±


m,1 + ϕ±
m,2 + ϕ±


m,3 ∈ C
(


[−∞,+∞],T
)


, with ϕ±
m(±∞) = 1 and


ϕ±
m(∓∞) = e∓2iδα


m .


Proof. The Fourier transform of ϕ̌±
m,1 and ϕ̌±


m,2 are well known. For ϕ̌±
m,3, let us first recall that


the two hypergeometric functions appearing in its definition are bounded functions for y < 0
and y > 0, respectively. Thus, the function y → ϕ̌±


m,3(y) goes exponentially rapidly to 0 as


|y| → ∞. Finally, it follows from the L1
loc-property mentioned in the above proposition that


ϕ̌±
m,3 is also locally L1 in a neighbourhood of y = 0. Altogether one has obtained that ϕ̌±


m,3


belongs to L1(R), and thus its Fourier transform belongs to C0(R).
The L∞-norm of ϕ±


m,3 and the remaining statements follow from the unitarity of the channel
wave operators and some straightforward computations.


By the density of C∞
c (R+) in Hr, one has thus obtained:


Theorem 4. For each m ∈ Z, one has


ΩAB
±,m = ϕ±


m(A) ,


with ϕ±
m ∈ C


(


[−∞,+∞],T
)


. These functions are explicitly defined in Lemma 3 and above.
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5 Stationary scattering theory


In this section, we shall be concerned with the wave operators ΩU
± for any pair (HU


α ,−∆). For
simplicity, we shall treat in details only the operator ΩU


−.
Similarly to (2), the wave operators are expressed in terms of the generalized eigenfunctions


ΨU
α of HU


α through the following formula, for f ∈ H, r ∈ R+ and θ ∈ [0, 2π):


[ΩU
−f ](r, θ) := l.i.m. 1


2π


∫


R+


∫ 2π


0
κΨU


α (r, θ, κ, ω) [Ff ](κ, ω)dωdκ .


Furthermore, the functions ΨU
α have been calculated explicitly in [AT]. But before writing the


rather complicated formulae obtained in this reference, let us introduce a new decomposition of
H.


We set Hint := H0 ⊕ H−1 which is clearly isomorphic to G := Hr ⊗ C
2, and consider the


decomposition H = Hint ⊕ H⊥
int


. It easily follows from [AT] that for any U , the operator ΩU
−


is reduced by this decomposition, and that the restriction of the wave operator ΩU
− to H⊥


int
is


equal to ΩAB
− . More generally, this is a consequence to the fact that the functions ψ0


± and ψ−1
±


introduced in Section 2 belong to Hint. Since ΩAB
− has already been analyzed in the previous


section, we shall concentrate only on the restriction of ΩU
− to Hint.


For that purpose, let us recall the explicit form of ΨU
α restricted to Hint. It is proved in [AT]


that, modulo our rearrangement, one has:


1
2π ΨU


α (r, θ, κ, ω)
∣


∣


∣


Hint


=
∑


m∈{0,−1}
i|m| eiδ


α
m J|m+α|(κr)φm(θ)φm(ω)


+
[


1
2 i


αH(1)
α (κr)


]


4 i cos
(


π
2α
)


p00(κ)(−κ2)αφ0(θ)φ0(ω)


+
[


1
2 i


αH(1)
α (κr)


]


2e2iπα
√


2 sin(πα)p−10(κ)κφ0(θ)φ−1(ω)


−
[


1
2 i


1−αH
(1)
1−α(κr)


]


2e−2iπα
√


2 sin(πα)p0−1(κ)κφ−1(θ)φ0(ω)


−
[


1
2 i


1−αH
(1)
1−α(κr)


]


4 i sin
(


π
2α
)


p−1−1(κ)(−κ2)1−αφ−1(θ)φ−1(ω) ,


where pjk are functions explicitly calculated in [AT], and H
(1)
ν is the Hankel function of the first


kind and of order ν. We mention that the functions pjk depend on α and U . In order to rewrite
this expression and the wave operator ΩU


− in a more friendly form, let us introduce a matrical
notation: We set for κ and r in R+:


Tα(κr) =


(


1
2 i


αH
(1)
α (κr) 0


0 1
2 i


1−αH
(1)
1−α(κr)


)


,


and


S
U
α (κ) =


(


4i cos
(


π
2α
)


p00(κ)(−κ2)α 2e2iπα
√


2 sin(πα)p−10(κ)κ


−2e−2iπα
√


2 sin(πα)p0−1(κ)κ −4i sin
(


π
2α
)


p−1−1(κ)(−κ2)1−α


)


.
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By using this notation and the isomorphism between Hint and G, the restriction of wave operator
to Hint, seen as a map from G to G, can be rewritten for f ≡


( f0


f−1


)


∈ G and r ∈ R+ as:


[ΩU
−f ](r) = [ΩAB


− f ](r) + l.i.m.


∫


R+


κ Tα(κr)S U
α (κ) [Ff ](κ)dκ , (5)


where Ff =
(


F0f0


F−1f−1


)


.


In the remaining part of this section, we shall show that the second term can be rewritten
as a product of a function of A and a function of −∆.


5.1 The operator Tm


We consider first the function of the dilation group. The construction is very similar to the one
already encountered in Section 4 for the original Aharonov-Bohm operator. For that purpose,
let us consider for m ∈ {0,−1}, g ∈ C∞


c (R+) and r ∈ R+ the following equalities:


[Tmg](r) := s− lim
N→∞


1
2 i


|m+α|
∫ N


1/N
κH


(1)
|m+α|(κr) [Fmg](κ)dκ


= s− lim
N→∞


1
2 e


−iδα
m


∫ N


1/N
κH


(1)
|m+α|(κr)


[


∫ ∞


0
sJ|m|(sκ)g(s)ds


]


dκ


= s− lim
N→∞


1
2 e


−iδα
m


∫ ∞


0
s
[


∫ N


1/N
κH


(1)
|m+α|(κr)J|m|(sκ)dκ


]


g(s)ds


= s− lim
N→∞


1
2 e


−iδα
m


∫ ∞


0


s
r


[


∫ Nr


r/N
κH


(1)
|m+α|(κ)J|m|(


s
r κ)dκ


]


g(s) ds
r


= 1
2 e


−iδα
m


∫ ∞


0


s
r


[


∫ ∞


0
κH


(1)
|m+α|(κ)J|m|(


s
r κ)dκ


]


g(s) ds
r (6)


where the last term has to be understood in the sense of distributions on R+.
As in the previous section, by comparing (6) with (1), one observes that this operator is


equal, at least on a dense set in Hr, to ϕ̃m(A) for a function ϕ̃m whose inverse Fourier transform
satisfies for y ∈ R:


ˇ̃ϕm(y) = 1
2


√
2πe−iδα


m e−y
[


∫ ∞


0
κH


(1)
|m+α|(κ)J|m|(e


−y κ)dκ
]


= 1
2


√
2πe−iδα


m ey
[


∫ ∞


0
κH


(1)
|m+α|(e


y κ)J|m|(κ)dκ
]


.


And again, the distribution between brackets has been explicitly computed in [KR4, Prop. 1].
We recall first the general result.
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Proposition 5. For any µ, ν ∈ R satisfying ν + 2 > |µ| and s ∈ R+ one has


∫∞
0 κH


(1)
µ (sκ)Jν(κ)dκ = eiπ(ν−µ)/2 δ(s − 1) + 2


iπ e
iπ(ν−µ)/2 s−1 Pv


(


1
1


s
−s


)


(7)


+ 2
iπ e


iπ(ν−µ)/2
(


s−1


1


s
−s


)


[


s−ν Γ( ν+µ
2


+1)Γ( ν−µ
2


+1)


Γ(ν+1) 2F1


(ν+µ
2 , ν−µ


2 ; ν + 1; s−2
)


− 1
]


as an equality between two distributions on R+. The last term belongs to L1
loc(R+).


We now state the main properties of the operator Tm:


Proposition 6. For m ∈ {0,−1}, one has Tm = ϕ̃m(A) with ϕ̃m ∈ C
(


[−∞,+∞],C
)


. Further-


more these functions satisfy ϕ̃m(−∞) = 0 and ϕ̃m(+∞) = 1.


Proof. Let us define the following distributions for y ∈ R:


ˇ̃ϕm,1(y) = 1
2


√
2π δ(y), ˇ̃ϕm,2(y) = 1


2 i
√


2
π Pv


(


1
sinh(y)


)


and


ˇ̃ϕ±
m,3(y) = 1


2 i
√


2
π


1
sinh(y)


[


e−νy Γ( ν+µ
2


+1)Γ( ν−µ
2


+1)


Γ(ν+1) 2F1


(ν+µ
2 , ν−µ


2 ; ν + 1; e−2y
)


− 1
]


,


where the notation µ = |m + α| and ν = |m| has been used for shortness. The sum of these
distributions is clearly equal to ˇ̃ϕm, and it is well know that ϕ̃m,1 + ϕ̃m,2 = 1


2


[


1 + tanh
(


π
2 ·
)]


.
One can already observe that these terms give the correct values at ±∞.


For ϕ̃m,3, it follows from Proposition 5 that ˇ̃ϕm,3 belongs L1
loc(R). For y ∈ [0,+∞), the


hypergeometric function is bounded, and therefore the map y 7→ ˇ̃ϕm,3(y) has an exponential
decrease as y → +∞, driven by the inverse of the hyperbolic sinus. For y → −∞, an asymptotic
development of the hypergeometric function is necessary. Borrowing such a development from
[AS, Sec. 15.3], one easily obtains that the leading term of ˇ̃ϕm,3(y) for y → −∞ is of the form
e−y(|m+α|−1), which is exponentially decreasing if and only if m ∈ {0,−1}. It thus follows that
ˇ̃ϕm,3 belongs to L1(R), and its Fourier transform is then in C0(R). The statement follows then
from the density of C∞


c (R+) in Hr.


5.2 New formula for the wave operators


We shall now collect all information obtained so far, and propose a new formula for ΩU
−.


Since the wave operators ΩU
± are reduced by the decomposition of H into Hint⊕H⊥


int
, so does


the scattering operator SU
α ≡ SU


α (−∆) :=
(


ΩU
+


)∗
ΩU
−. Furthermore, by looking at the restriction


of SU
α to Hint and by considering it as a map from G to G, one naturally observes that there exists


a close relation between this map and the family S U
α (·) introduced before. Indeed, by comparing


the expression of S U
α (·) with the formula obtained in [AT] for the scattering amplitude fU


α , and
by taking into account the relation between the scattering amplitude and the scattering operator
[T1, R], one observes that the following equality holds on G:


S
U
α (


√
−∆) = SU


α (−∆) −
(


e−iπα 0
0 eiπα


)
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where S U
α (


√
−∆) is given by F∗S U


α (k)F and S U
α (k) is the operator of multiplication by S U


α (·)
in G.


The following new description of the wave operators is now an easy consequence of the above
observation and of the results obtained before for ϕm and ϕ̃m.


Theorem 7. For any U , the restriction of the wave operator ΩU
− to Hint, seen as a map from


G to G, satisfies the equality


ΩU
− =


(


ϕ−


0
(A) 0


0 ϕ−


−1
(A)


)


+
(


ϕ̃0(A) 0
0 ϕ̃−1(A)


)[


SU
α (−∆) −


(


e−iπα 0
0 eiπα


)]


. (8)


Proof. It has been proved in Section 4 that the term ΩAB
− in (5) takes the form of the first term


on the r.h.s. of (8). Then, the second term of (5) is also equal to


l.i.m.


∫


R+


κ Tα(κr)
[


F
(


F∗
S


U
α (k)F


)


f
]


(κ)dκ


=
(


T0 0
0 T−1


)[


(


F∗
S


U
α (k)F


)


f
]


(r) ,


which implies the statement.


Remark 8. A similar formula holds for ΩU
+. The precise formula can either be calculated again


from ΨU
α or from the equality ΩU


+ = ΩU
−
(


SU
α (−∆)


)∗
.
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[DS] L. Da̧browski, P. Šťov́ıček, Aharonov-Bohm effect with δ-type interaction, J. Math. Phys.
39 no. 1 (1998), 47–62.


[EIO] G. Eskin, H. Isozaki, S. O’Dell, Gauge Equivalence and Inverse Scattering for Aharonov-


Bohm Effect, Preprint ArXiv: math-ph 0809.3291.


[Jen] A. Jensen, Time-delay in potential scattering theory, some ”geometric” results, Comm.
Math. Phys. 82 no. 3 (1981/82), 435–456.


[KR1] J. Kellendonk, S. Richard, Levinson’s theorem for Schrödinger operators with point in-


teraction: a topological approach J. Phys. A 39 no. 46 (2006), 14397–14403.


10







[KR2] J. Kellendonk, S. Richard, Topological boundary maps in physics: General theory and


applications, in Perspectives in Operator Algebras and Mathematical Physics, 105–121,
Theta, Bucharest, 2008.


[KR3] J. Kellendonk, S. Richard, The topological meaning of Levinson’s theorem, half-bound


states included, J. Phys. A: Math. Theor. 41 (2008), 295207.


[KR4] J. Kellendonk, S. Richard, Weber-Schafheitlin type integrals with exponent 1, to appear
in Integral Transforms and Special Functions 20 no. 2 (2009).


[KR5] J. Kellendonk, S. Richard, On the structure of the wave operators in one dimensional


potential scattering, submitted.


[L] De-H. Lin, Levinson theorem with the nonlocal Aharonov-Bohm effect, Phys. Rev. A 68


(2003), 052705.


[SM] D. Sheka, F. Mertens, Levinson theorem for Aharonov -Bohm scattering in two dimensions,
Phys. Rev. A 74 (2006), 052703.


[T1] H. Tamura, Magnetic scattering at low energy in two dimensions, Nagoya Math. J. 155


(1999), 95–151.


[T2] H. Tamura, Norm resolvent convergence to magnetic Schrödinger operators with point in-


teractions, Rev. Math. Phys. 13 no. 4 (2001), 465–511.


[R] S.N.M. Ruijsenaars, The Aharonov-Bohm effect and scattering theory, Ann. Physics 146


no. 1 (1983), 1–34.


11







