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Abstract


We analyze the dynamics of N interacting spins (quantum register) collectively
coupled to a thermal environment. Each spin experiences the same environment
interaction, consisting of an energy conserving and an energy exchange part.


We find the decay rates of the reduced density matrix elements in the energy
basis. We show that if the spins do not interact among each other, then the fastest
decay rates of off-diagonal matrix elements induced by the energy conserving inter-
action is of order N2, while that one induced by the energy exchange interaction
is of the order N only. Moreover, the diagonal matrix elements approach their
limiting values at a rate independent of N . For a general spin system the decay
rates depend in a rather complicated (but explicit) way on the size N and the
interaction between the spins.


Our method is based on a dynamical quantum resonance theory valid for small,
fixed values of the couplings. We do not make Markov-, Born- or weak coupling
(van Hove) approximations.


1 Introduction


Description of the problem. We consider a qubit register of size N whose Hamil-
tonian is of the form


HS =


N∑


i,j=1


JijS
z
i S


z
j +


N∑


j=1


BjS
z
j , (1.1)


where the Jij are pair interaction constants that can take positive or negative values,
and Bj ≥ 0 is an effective magnetic field at the location of spin j (Bj = ~


2γB
z
j , where
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~ is the Planck constant, γ is the value of the electron gyromagnetic ratio and Bz
j is


an inhomogeneous magnetic field, oriented in the positive z direction). Also,


Sz =


[
1 0
0 −1


]
(1.2)


is the Pauli spin 1/2 operator; Sz
j is the matrix Sz acting nontrivially only on the j-th


spin. The environment R is modelled by a bosonic thermal reservoir whose Hamiltonian
is


HR =


∫


R3


a∗(k)|k|a(k)d3k, (1.3)


where a∗(k) and a(k) are the usual bosonic creation and annihilation operators sat-
isfying the canonical commutation relations [a(k), a∗(l)] = δ(k − l). It is understood
that we consider R in the thermodynamic limit of infinite volume, fixed temperature
T = 1/β > 0, in a phase without Bose-Einstein condensate.


We consider a collective coupling: the distance between the N qubits is smaller
than the correlation length of the reservoir and consequently each qubit feels the same
interaction with the latter. The collective interaction between S and R is given by the
operator


v = λ1v1 + λ2v2 = λ1


N∑


j=1


Sz
j ⊗ φ(g1) + λ2


N∑


j=1


Sx
j ⊗ φ(g2). (1.4)


Here, φ(g) is the field operator smoothed out with a form factor (coupling function)
g = g(k), k ∈ R


3, see (B.1) in Appendix B. The coupling constants λ1 and λ2 measure
the strengths of the energy conserving (position-position) coupling, and the energy
exchange (spin flip) coupling, respectively. Spin-flips are implemented by the Sx


j in
(1.4), representing the Pauli matrix


Sx =


[
0 1
1 0


]
(1.5)


acting on the j-th factor of HS. The total Hamiltonian takes the form


H = HS +HR + v. (1.6)


The dynamics of a density matrix ρt of the system S+R is governed by the Liouville-von
Neumann equation


d


dt
ρt = −i[H, ρt],


with initial condition ρt|t=0 = ρ0. The solution to the Liouville-von Neumann equation
is given by ρt = e−itHρ0e


itH . We are interested only in information on the subsystem
S, so we trace out the degrees of freedom of R. The state of S is given by the reduced
density matrix


ρt = TrR(e−itHρ0e
itH), (1.7)


where ρ0 is the initial density matrix of the coupled system, and TrR is the partial
trace over the degrees of freedom of the reservoir. The operator ρt acts on the Hilbert
space HS = C


2 ⊗ · · · ⊗ C
2 = C


2N
of S only.


2







Our goal is to analyze the time evolution of matrix elements of the reduced density
matrix (1.7) in the energy basis, which plays a special role in quantum information
theory. The energy basis consists of eigenvectors ϕσ of HS, indexed by spin configura-
tions


σ = {σ1, . . . , σN} ∈ {+1,−1}N , ϕσ = ϕσ1 ⊗ · · · ⊗ ϕσN
. (1.8)


Here,


ϕ+ =


[
1
0


]
, ϕ− =


[
0
1


]
, (1.9)


so that


HSϕσ = E(σ)ϕσ with E(σ) =


N∑


i,j=1


Jijσiσj +


N∑


j=1


Bjσj . (1.10)


We denote the reduced density matrix elements as


[ρt]σ, τ =
〈
ϕσ, ρtϕ τ


〉
. (1.11)


The dynamics of the register alone (without coupling to the environment) is given
by ρt = e−itHSρ0e


itHS , where ρ0 = TrR(ρ0), so matrix elements of ρt have the time
dependence


[ρt]σ, τ = eit{E( τ)−E( σ)}[ρ0]σ, τ . (1.12)


We view the energy differences


e(σ, τ) := E(σ) − E( τ ) =
N∑


i,j=1


Jij(σiσj − τiτj) +
N∑


j=1


Bj(σj − τj) (1.13)


as being eigenvalues of the Liouville operator


LS = HS ⊗ 1l − 1l ⊗HS, (1.14)


acting on the doubled space


HS ⊗HS = (C2 ⊗ C
2) ⊗ · · · ⊗ (C2 ⊗ C


2), (1.15)


where the j-th pair C
2 ⊗ C


2 is the doubled space of the j-th qubit.


Discussion of main results. In the resonance approach used in this work,
we examine the influence of the interaction (1.4) on the free dynamics (1.12) for small
coupling parameters λ1, λ2. Under the perturbation, the phase factors e = E( τ )−E(σ)
in (1.12) become complex resonance energies, εe = εe(λ1, λ2) ∈ C. The latter encode
properties of irreversibility of the reduced dynamics of S (decay of observables and
matrix elements – the dynamics of the entire system S + R is unitary, by contrast).
We consider the regime where the resonance energies εe(λ1, λ2) do not overlap as the
perturbation is switched on, so that each resonance energy can be followed separately.
This means that the coupling parameters must be small with respect to the gap between
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differences of energies of HS, see condition (A1) in Section 2 below.1 We make as well a
technical assumption (A2) on the regularity of form factors g1 and g2 which we explain
in Section 2.


Dynamics of S. Our first result is a detailed description of the evolution of the
reduced density matrix elements (and hence of all observables). Set


〈〈[ρ∞]σ, τ 〉〉 = lim
T→∞


1


T


∫ T


0
[ρt]σ, τ dt. (1.16)


We show in Theorem 2.1 that this limit exists, and that for all t ≥ 0,


[ρt]σ, τ − 〈〈[ρ∞]σ, τ 〉〉 =
∑


{e,s: ε
(s)
e 6=0}


eitε
(s)
e


[∑


σ′, τ ′


∗
wε


(s)
e


σ, τ ;σ′, τ ′ [ρ0]σ′, τ ′ +O(λ2
1 + λ2


2)
]


+O
(
(λ2


1 + λ2
2)e


−ω′t
)
, (1.17)


where Imε
(s)
e ≥ 0 and ω′ satisfies 2max{Imε(s)e } ≤ ω′ < τ , with τ > 0 a constant


depending on the regularity of g1, g2 (see Condition (A2) in Section 2, and also [16]).
The ∗ in the sum (1.17) means that we sum only over configurations σ′, τ ′ such that
e(σ′, τ ′) = −e. The coefficents w are overlaps of resonance eigenstates (see Section


2.1), which vanish unless e(σ, τ) = −e, in which case they are O(1) in λ1, λ2. The ε
(s)
e


are eigenvalues of a certain explicit operator K(ω′), a “spectrally deformed Liouville
operator” (see Section 3.1). They have the expansion


ε(s)e = e+ δ(s)e +O(λ4
1 + λ4


2), (1.18)


where the label s = 1, . . . , ν(e) indexes the splitting of the eigenvalue e of LS, hav-
ing multiplicity d(e), into ν(e) ≤ d(e) distinct resonance energies. The lowest order


corrections δ
(s)
e satisfy


δ(s)e = O(λ2
1 + λ2


2). (1.19)


They are the (complex) eigenvalues of an operator Λe, called the level shift operator
associated to e (Λe is related to the Lindblad generator). This operator acts on the
eigenspace of LS associated to the eigenvalue e (a subspace of the qubit register Hilbert
space; see equation (3.21) for the formal definition of Λe). It governs the lowest order


shift of eigenvalues under perturbation. One can see by direct calculation that Im δ
(s)
e ≥


0.2


Discussion of (1.17). To lowest order in the perturbation, the group of reduced
density matrix elements [ρt]σ, τ associated to a fixed e = e(σ, τ) evolve in a coupled
way, while groups of matrix elements associated to different e evolve independently. The
density matrix elements of a given group mix and evolve in time according to the weight


functions w and the exponentials eitε
(s)
e . In the absence of interaction (λ1 = λ2 = 0) all


1Our method is applicable as well if this condition is not imposed. Work on this is in progress.
2This can also be inferred from general considerations [14]: If the imaginary part was negative, then


the average of some observables would explode as time increases, contradicting the fact that the total
dynamics, a group of automorphisms, cannot increase indefinitely the average of any observable.


4







the ε
(s)
e are real. As the interaction is switched on, the ε


(s)
e typically migrate into the


upper complex plane, but they may stay on the real line in certain cases. The matrix
elements [ρt]σ, τ of a group e approach their ergodic means (1.16) if and only if all the


nonzero ε
(s)
e have strictly positive imaginary part. In this case the convergence takes


place on a time scale of the order 1/γe, where


γe = min
{


Im ε(s)e : s = 1, . . . , ν(e) s.t. ε(s)e 6= 0
}


(1.20)


is the decay rate of the group associated to e. If an ε
(s)
e stays real then the matrix


elements of the coresponding group oscillate in time. A sufficient condition for decay


of the group associated to e is γe > 0, i.e. Imδ
(s)
e > 0 for all s, and λ1, λ2 small.


Decoherence rates. We illustrate our results on decoherence rates for a qubit
register with Jij = 0 (the general case is treated in Section 2.3). We consider generic
magnetic fields defined as follows. For nj ∈ {0,±1,±2}, j = 1, . . . ,N , we have


N∑


j=1


Bjnj = 0 ⇐⇒ nj = 0 ∀j. (1.21)


Condition (1.21) is satisfied generically in the sense that only for very special choices
of Bj does it not hold (one such special choice is Bj = constant). For instance, if the
Bj are chosen independent, and uniformly random from an interval [Bmin, Bmax], then
(1.21) is satisfied with probability one. We show in Theorem 2.3 that the decoherence
rates (1.20) are given by


γe =


{
λ2


1y1(e) + λ2
2y2(e) + y12(e), e 6= 0


λ2
2y0, e = 0


}
+O(λ4


1 + λ4
2). (1.22)


Here, y1 is a contributions coming from the energy conserving interaction, y0 and y2


are due to the spin flip interaction. The term y12 is due to both interactions and is
of O(λ2


1 + λ2
2). We give explicit expressions for y0, y1, y2 and y12 in equations (2.23),


(2.13), (2.15) and (2.24).


- Properties of y1(e): y1(e) vanishes if either e is such that e0 :=
∑n


j=1(σj−τj) = 0,
or the infra-red behaviour of the coupling function g1 is too regular (in three
dimensions g1 ∝ |k|p with p > −1/2). Otherwise y1(e) > 0. Moreover, y1(e) is
proportional to the temperature T .


- Properties of y2(e): y2(e) > 0 if g2(2Bj ,Σ) 6= 0 for all Bj (form factor g2(k) =
g2(|k|,Σ) in spherical coordinates). For low temperatures T , y2(e) ∝ T , for high
temperatures y2(e) approaches a constant.


- Properties of y12(e): If either of λ1, λ2 or e0 vanish, or if g1 is infra-red regular
as mentioned above, then y12(e) = 0. Otherwise y12(e) > 0, in which case y12(e)
approaches constant values for both T → 0,∞.
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- Full decoherence: If γe > 0 for all e 6= 0 then all off-diagonal matrix elements
approach their limiting values exponentially fast. In this case we say that full
decoherence occurs. It follows from the above points that we have full decoherence
if λ2 6= 0 and g2(2Bj ,Σ) 6= 0 for all j, and provided λ1, λ2 are small enough (so
that the remainder term in (1.22) is small). Note that if λ2 = 0 then matrix
elements associated to energy differences e such that e0 = 0 will not decay on the
time scale given by the second order in the perturbation (λ2


1).
We point out that generically, S + R will reach a joint equilibrium as t → ∞,
which means that the final reduced density matrix of S is its Gibbs state modulo
a peturbation of the order of the interaction between S and R, see [16]. Hence
generically, the density matrix of S does not become diagonal in the energy basis
as t→ ∞.


- Properties of y0: y0 depends on the energy exchange interaction only. This
reflects the fact that for a purely energy conserving interaction, the populations
are conserved [16, 17]. If g2(2Bj ,Σ) 6= 0 for all j, then y0 > 0 (this is sometimes
called the “Fermi Golden Rule Condition”). For small temperatures T , y0 ∝ T ,
while y0 approaches a finite limit as T → ∞.


In terms of complexity analysis, it is important to discuss the dependence of γe on
the register size N .


- We see from (2.23) that y0 is independent of N . This means that the thermal-
ization time, or relaxation time of the diagonal matrix elements (corresponding
to e = 0), is O(1) in N .


- To determine the order of magnitude of the decay rates of the off-diagonal density
matrix elements (corresponding to e 6= 0) relative to the register size N , we
assume the magnetic field to have a certain distribution denoted by 〈 〉. It follows
from the explicit expressions for y1, y2 and y12 (see (2.13), (2.15) and (2.24)) that


〈y1〉 = y1 ∝ e20, 〈y2〉 = CBD(σ − τ), and 〈y12〉 = cB(λ1, λ2)N0(e), (1.23)


where CB and cB = cB(λ1, λ2) are positive constants (independent of N), with
cB(λ1, λ2) = O(λ2


1 +λ2
2). Here, N0(e) is the number of indices j such that σj = τj


for each (σ, τ) s.t. e(σ, τ ) = e, and


D(σ − τ) :=


N∑


j=1


|σj − τj| (1.24)


is the Hamming distance between the spin configurations σ and τ (which depends
on e only).


- Consider e 6= 0. It follows from (1.22)-(1.24) that for purely energy conserving
interactions (λ2 = 0), γe ∝ λ2


1e
2
0 = λ2


1[
∑N


j=1(σj − τj)]
2, which can be as large as


O(λ2
1N


2). On the other hand, for purely energy exchanging interactions (λ1 = 0),
we have γe ∝ λ2


2D(σ− τ), which cannot exceed O(λ2
2N). If both interactions are
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acting, then we have the additional term 〈y12〉, which is of order O((λ2
1 + λ2


2)N).
This shows the following:


The fastest decay rate of reduced off-diagonal density matrix elements due to the
energy conserving interaction alone is of order λ2


1N
2, while the fastest decay rate


due to the energy exchange interaction alone is of the order λ2
2N . Moreover, the


decay of the diagonal matrix elements is of oder λ2
1, i.e., independent of N .


- The same discussion is valid for the interacting register (Jij 6= 0), see Section 2.3.


Remarks. 1. For λ2 = 0 the model can be solved explicitly [17], and one shows that
the fastest decaying matrix elements have decay rate proportional to λ2


1N
2. Further-


more, the model with a non-collective, energy-conserving interaction, where each qubit
is coupled to an independent reservoir, can also be solved explicitly [17]. The fastest
decay rate in this case is shown to be proportional to λ2


1N .
2. As mentioned at the beginning of this section, we take the coupling constants


λ1, λ2 so small that the resonances do not overlap (Condition (A1) in Section 2).
Consequently λ2


1N
2 and λ2


2N are bounded above by ∆ = 2minj=1,...,N Bj (see also
Remark 4 after Condition (A1)) and thus the decay rates γe do not increase indefinitely
with increasing N in the regime considered here. Rather, the γe are attenuated by small
coupling constants for large N . They are of the order γe ∼ ∆. We have shown that
modulo an overall, common (N -dependent) prefactor, the decay rates originating from
the energy conserving and exchanging interactions differ by a factor N .


In this paper we prove the results only for sufficiently high temperatures. The
general case will be treated elsewhere.


3. The decay of off-diagonal matrix elements in the energy basis does not relate
directly to measurements of entanglement, [18, 19]. We plan on elucidating the interplay
between entanglement and decay of matrix elements in a subsequent work.


Literature. Collective decoherence has been studied extensively in the literature.
Among the many theoretical, numerical and experimental works we mention here only
[1, 2, 4, 7, 8, 17, 20], which are closest to the present work. We are not aware of
any prior work giving explicit decoherence rates of a register for not explicitly solvable
models, and without making master equation technique approximations.


2 Results


As mentioned in the introduction, we assume that


(A1) We have C0(|λ1| + |λ2|)N < ∆ for some constant C0 (depending only on g1, g2,
Jij and Bj). Here, ∆ := min{e − e′ : e, e′ ∈ spec(LS), e 6= e′} is the gap in the
spectrum of LS.


We implement a dynamical theory of resonances in a setting of spectral deformation
(see Section 3.1). This leads to the following regularity requirement which we assume
to be fulfilled throughout the paper.
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(A2) The function form factors g1, g2 in (1.4) satisfy the following condition. For
h = g1 or h = g2,


hβ(u, σ) :=


√
u


1 − e−βu
|u|1/2


{
h(u, σ) if u ≥ 0


eiφh(−u, σ) if u < 0


is such that ω 7→ hβ(u + ω, σ) has an analytic continuation, as a map C →
L2(R×S2,du×dσ), into {|ω| < τ}, for some τ > 0. Here, φ is an arbitrary fixed
phase.


Remarks. 1. Typically, the gap ∆ depends on N . We have ‖HS‖ < CN2 and
‖LS‖ < CN2, for some constant C. Therefore, if the 2N (= dimHS ⊗HS) eigenvalues
of LS are roughly simple and equally distributed, then the gap ∆ is of the order N22−N .
In this case, Condition (A1) implies that the coupling constants λ1 and λ2 have to be
exponentially small in the size N of the qubit register. However, the gap ∆ tends to
become larger as the multiplicities of the eigenvalues of LS increase: ∆ is the minimal
distance between distinct eigenvalues of LS, spread over an interval of size ‖LS‖. Due
to the increase of multiplicities, the gap may become independent of N , as it happens
in the following examples.


– For HS = J
∑N


j=1 S
z
jS


z
j+1 (nearest neighbour interaction; and say Sz


N+1 ≡ Sz
1),


we have spec(LS) = J{−2N,−2N + 1, . . . , 2N − 1, 2N}. It follows that ∆ = |J | is
independent of N .


– For HS =
∑N


j=1BjS
z
j , the difference between two eigenvalues of LS is given by


e − e′ =
∑N


j=1Bj(nj − n′j), where nj, n
′
j ∈ {−2, 0, 2}. Hence (for Bj > 0), ∆ =


2minj=1,...,N Bj.


2. Examples of form factors satisfying (A2) are g(k) = h1(σ)|k|pe−|k|2, where
p = −1/2 + n, n = 0, 1, 2, . . ., and h1(σ) = eiφh1(σ). They include the physically most
important cases, see also [16, 17]. We point out that it is possible to weaken condition
(A2) considerably, at the expense of a mathematically more involved treatment, as
mentioned in [16]. The phase φ has been introduced, and its physical interpretation
has been given, in [9].


2.1 Effective dynamics of S


The main result of this section is Theorem 2.1, in which we describe the effective
dynamics of S and identify the dominant part.


The evolution of reduced density matrix elements is governed by exponentials


eitε
(s)
e (λ1,λ2), where ε


(s)
e (λ1, λ2) are resonance energies, lying in the upper complex plane.


The subindex e is the eigenvalue of LS which the resonance branches out of: ε
(s)
e (0, 0) =


e, and the index s = 1, . . . , ν(e) ≤ d(e) distinguishes different resonance energies as-
sociated to the same e (d(e) is the degeneracy of e as an eigenvalue of LS). Using
perturbation theory (we employ the Feshbach projection method (see Section 3.1 and
[5, 16])), one obtains (1.18).


Let {η(s,r)
e }R


r=1 and {η̃(s,r)
e }R


r=1 be bases of the eigenspaces of the level shift operator
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Λe and its adjoint Λ∗
e (see (3.21) for the formal definition of Λe),


Λeη
(s,r)
e = δ(s)e η(s,r)


e , r = 1, . . . R, (2.1)


Λ∗
e η̃


(s,r)
e = δ


(s)
e η̃(s,r)


e , r = 1, . . . R, (2.2)


where R = R(e, s) is the geometric multiplicity of the eigenvalue δ
(s)
e of Λe. We choose


bases that are dual to each other,3 meaning that
〈
η(s,r)


e , η̃(s,r′)
e


〉
= δr,r′ . (2.3)


We define the projection


q(s)e =
R∑


r=1


|η(s,r)
e 〉〈η̃(s,r)


e |, (2.4)


acting on the eigenspace of LS associated to e.4


Theorem 2.1 (Dynamics of matrix elements) Denote by β the inverse tempera-
ture of R. There is a λ0 > 0 such that if max{|λ1|, |λ2|} < λ0/β then the limit (1.16)
exists for all σ, τ , and we have for t ≥ 0


[ρt]σ, τ − 〈〈[ρ∞]σ, τ 〉〉 = (2.5)


∑


{e,s: ε
(s)
e 6=0}


eitε
(s)
e




∑


σ′, τ ′


∗ 〈
ϕ τ ′, σ′ , q(s)e ϕ τ , σ


〉
[ρ0]σ′, τ ′ +R1



+R2(t).


The ∗ in the last sum indicates that we only sum over spin configurations σ′, τ ′ such
that e(σ′, τ ′) = −e. The remainders satisfy


|R1| ≤ CN2(λ2
1 + λ2


2) and |R2(t)| ≤ CN2(λ2
1 + λ2


2)e
−ω′t, (2.6)


where C is a constant, N is the register size, and where ω′ satisfies 2maxe,s{Imε(s)e } <
ω′ < τ/2, with τ given in Condition (A2).


Remarks. 1. Since q
(s)
e is a projection with range in the eigenspace associated


to the eigenvalue e of LS, we have q
(s)
e ϕ τ , σ = 0 unless e(σ, τ) = −e (see the scalar


product in (2.5)).
2. The condition max{|λ1|, |λ2|} < λ0/β stems from the particular complex defor-


mation we choose in this work (translation). A mathematically more sophisticated
treatment, involving a combination of spectral translation and dilation, and an itera-
tive renormalization group analysis will yield the theorem for small λ1, λ2, but with a
temperature independent upper bound (see also [14, 15] and remarks in [16]).


3. We mention again that in this work, we consider the regime of non-overlapping
resonances, described by Condition (A1) at the beginning of Section (2). This means
that λ1, λ2 ∼ 1/N .


3This is always possible, see Proposition A.2 in Appendix A.
4This projection is the same for all choices of bases η


(s,r)
e and eη


(s,r)
e satisfying (2.3), as is easily


verified using Proposition A.2 of Appendix A.
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2.2 Non-interacting qubit register in magnetic field


We consider the qubit register Hamiltonian (1.1) with Jij = 0 and Bj > 0, with a
coupling to the reservoir given by (1.4). In this section we determine the resonance


eigenvectors η
(s,r)
e , η̃


(s,r)
e explicitly, as well as the resonance energies ε


(s)
e to lowest order


in the interaction, see Theorem 2.2. Those quantities are the key ingredients entering
the dynamics which we describe in Theorem 2.4 below.


Let σ, τ be spin configurations of the form (1.8). Then


ϕσ, τ = ϕσ1τ1 ⊗ · · · ⊗ ϕσN τN
with ϕστ = ϕσ ⊗ ϕτ ∈ C


2 ⊗ C
2 (2.7)


is an eigenvector of LS with eigenvalue e(σ, τ) =
∑


j Bj(σj − τj). The genericness
condition (1.21) implies that if ϕσ, τ and ϕσ′, τ ′ are eigenvectors associated to the same
eigenvalue, then σj − τj = σ′j − τ ′j for all j. If σj − τj = ±2 then σj = ±1 and
τj = ∓1 are determined uniquely, while if σj − τj = 0, then there are two choices,
σj = τj = ±1. Consequently, an orthonormal basis of eigenvectors of LS associated
to a given eigenvalue e can be constructed as follows. Take any one eigenvector ϕσ, τ


associated to e and adjoin all linearly independent vectors ϕσ′, τ ′ with the property
{σj − τj = 0} ⇔ {σ′j − τ ′j = 0}. Thus, with each eigenvalue e we associate the number


N0(e) = {number of indices j s.t. σj = τj in any (σ, τ) with e(σ, τ) = e}, (2.8)


and the degeneracy of the eigenvalue e of LS is d(e) = 2N0(e). To each eigenvalue e of
LS there corresponds a unique sequence of N0(e) indices indicating the locations j at
which σj = τj for all σ, τ associated with e. In other words, given e there is a unique


sequence {µk}N0(e)
k=1 ,


1 ≤ µ1 < µ2 < · · · < µN0(e) ≤ N, (2.9)


having the property that any eigenvector ϕσ, τ associated to e satisfies


σj = τj ⇐⇒ j ∈ {µk : k = 1, . . . ,N0(e)}. (2.10)


Given an energy difference e (1.13), and a sequence ̺ = (̺j)
N0(e)
j=1 , ̺j ∈ {+1,−1},


we set


δ
(̺)
e = λ2


1[x1(e) + iy1(e)] + λ2
2


[
x2(e) + iy2(e)


]
+


N0(e)∑


j=1


z
̺j


j , (2.11)


where


x1(e) = −e0 P.V.
〈
g1, ω


−1g1
〉 ∑


{j: σj=τj}
σj (2.12)


y1(e) =
πe20
2β


γ+, (2.13)


x2(e) = −
∑


{j: σj 6=τj}
σj P.V.


∫


R


u2G2(2u) coth(β|u|) 1


u −Bj
du (2.14)


y2(e) = 2π
∑


{j: σj 6=τj}
B2


jG2(2Bj) coth(βBj), (2.15)


z±j =
1


2


[
ibj(cj + 1) ±


√
−b2j (cj + 1)2 + 4a[a− ibj(cj − 1)]


]
, (2.16)
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with


a = −λ2
1e0 P.V.


〈
g1, ω


−1g1
〉
, bj = 4πλ2


2


B2
jG2(2Bj)


e2βBj − 1
, cj = e2βBj , (2.17)


and


e0 = e0(e) =


N∑


j=1


(σj − τj), Gk(u) =


∫


S2


|gk(|u|,Σ)|2dΣ, γ+ = lim
u→0+


uG1(u). (2.18)


The form factors g1, g2 (see (1.4)) are represented in spherical coordinates in (2.18)
and P.V. stands for principal value. Note that e0 is the same for all spin configurations
σ, τ associated to the same energy e = e(σ, τ). This follows from the genericness of
the magnetic field, (1.21), see paragraph after (2.7). We show in Theorem 3.5 that
Imz±j ≥ 0. Let us define the vectors


η
(̺)
e = ϕσ1τ1 ⊗ · · · ⊗ ξ̺1


µ1
⊗ · · · ⊗ ξ


̺N0(e)
µN0(e)


⊗ · · · ⊗ ϕσN τN
, (2.19)


η̃
(̺)
e = ϕσ1τ1 ⊗ · · · ⊗ ξ̺̃1


µ1
⊗ · · · ⊗ ξ̃


̺N0(e)
µN0(e)


⊗ · · · ⊗ ϕσN τN
, (2.20)


where the ϕσµj
τµj


at positions µj, j = 1, . . . ,N0(e), are replaced by ξ, ξ̃ ∈ C
2 ⊗ C


2,
given by


ξ±j = ϕ++ +


[
1 + i


z±j − a


bjcj


]
ϕ−− (2.21)


ξ̃±j = κ
±
j


(
ϕ++ +


[
1 + i


z±j − a


bjcj


]∗
ϕ−−


)
, (2.22)


with normalization constant κ
±
j = [1 + b−2


j c−1
j {(bjcj − Imz±j )2 + (a− Rez±j )2}]−1.


Theorem 2.2 (Resonance energies and states) Let e be an energy difference (1.13)


and let Λe be the associated level shift operator. The vectors η
(̺)
e and η̃


(̺)
e , (2.19) and


(2.20), are bases of eigenvectors of Λe and its adjoint Λ∗
e, respectively, which are dual


to each other (see also (2.3)). The eigenvalues of Λe and Λ∗
e associated to η


(̺)
e and η̃


(̺)
e


are given by δ
(̺)
e , (2.11), and its complex conjugate, respectively. Furthermore, we have


ε
(̺)
e = e+ δ


(̺)
e +O(λ4


1 + λ4
2).


Remark. The largest value of N0 is N , which corresponds to e = 0, so d(0) = 2N .
Here, µk = k, k = 1, . . . , N . The smallest value of N0 is 0, which corresponds to
e = ±emax, where emax = 2


∑
j Bj is the largest eigenvalue of LS. Thus emax is a simple


eigenvalue of LS. Here, no two σj, τj are equal, so the sequence {µk} is “empty”. We
have N0(e) = N0(−e), so d(e) = d(−e) for all eigenvalues e.


The following result examines the resonance energies and shows expression (1.22)
for the life times.
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Theorem 2.3 (Fermi Golden Rule Condition and decoherence rates) Assume
that the so-called Fermi Golden Rule condition is satisfied:


λ2
2y0 := 4πλ2


2 min
j=1,...,N


{B2
j G2(2Bj) coth(βBj)} > 0. (2.23)


There is a c > 0 s.t. if |λ1|, |λ2| < c, then the decoherence rates are given by (1.22),
with


y12(e) =
∑


{j: σj=τj}
min


{
Imz+


j , Imz
−
j


}
. (2.24)


Remark. It is shown in Theorem 3.5 that Imz±j > 0 provided abj 6= 0, and that if


a = 0, then z+
j = 4πiλ2


2B
2
jG2(2Gj) coth(βBj), z


−
j = 0 and if bj = 0 then z±j = ±a. If


abj = 0 for all j then y12(e) = 0.


Let us illustrate how Theorems 2.1, 2.2 and 2.3 combine to give the detailed dy-
namics of the register. Suppose that λ2 6= 0. It is clear that for generic values of the


magnetic field, all δ
(̺)
e are different for different ̺ (see (2.11)). Thus all resonance en-


ergies ε
(̺)
e = e+ δ


(̺)
e +O(λ2


1 + λ2
2) are simple, for small enough λ1, λ2. In this situation


we obtain the following result:


Theorem 2.4 (Dominant dynamics) Suppose λ2 6= 0 and suppose that the mag-


netic field is generic so that all δ
(̺)
e , (2.11), are distinct. There is a constant c s.t. if


|λ1| + |λ2| < c, then we have for all σ, τ


[ρt]σ, τ − 〈〈[ρ∞]σ, τ 〉〉 = (2.25)


∑
{


̺: ε
(̺)
e 6=0


}
eitε


(̺)
e




∑


σ′, τ ′


∗
w


(e,̺)


σ, τ ;σ′, τ ′ [ρ0]σ′, τ ′ +R1



+R2,


where the ∗ means that we sum only over spin configurations s.t. e(σ′, τ ′) = −e, where


ε
(̺)
e = e+ δ


(̺)
e +O(λ4


1 + λ4
2), the remainder terms R1, R2 satisfy (2.6), and where


w
(e,̺)


σ, τ ;σ′, τ ′ =
〈
ϕ τ ′, σ′ , η


(̺)
e


〉〈
η̃


(̺)
e , ϕ τ, σ


〉
=


N0(e)∏


j,k=1


〈
ϕτ ′


µj
,σ′


µj
, ξ


̺j
µj


〉〈
ξ̺̃k
µk
, ϕτµk


,σµk


〉
.


2.3 Interacting qubit register in magnetic field


In this section we consider the Hamiltonian HS, (1.1), with generic parameters Jij and
Bj. Energy differences of HS are


e(σ, τ) = E(σ) −E( τ ) =


N∑


i,j=1


Jij(σiσj − τiτj) +


N∑


j=1


Bj(σj − τj). (2.26)
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The condition e(σ, τ) = e(σ′, τ ′) is equivalent to


N∑


i,j=1


Jijmij +
N∑


j=1


Bjnj = 0, (2.27)


where mij = σiσj − σ′iσ
′
j − [τiτj − τ ′iτ


′
j] and nj = σj − σ′j − [τj − τ ′j]. For generic values


of Jij and Bj , the only solution of (2.27) is mij = 0, nj = 0 for all i, j = 1, . . . ,N .5


Theorem 2.5 Let e be a nonzero eigenvalue of LS. The resonance energies associ-
ated to e are εe(σ, τ) = e + δe(σ, τ) + O(λ4


1 + λ4
2), where (σ, τ) varies over all spin


configurations s.t. e(σ, τ) = e, and where (omitting (σ, τ) in the notation)


δe = λ2
1[x1 + iy1] + λ2


2[x2 + iy2] (2.28)


with x1(e) and y1(e) given in (2.12) and (2.13), and


x2 = −1


2


N∑


k=1


P.V.


∫


R×S2


u2|g2(u,Σ)|2
[ |1 − eβu|−1


u+ vk
+


|1 − e−βu|−1


u+ v′k


]
(2.29)


y2 =
π


2


N∑


k=1


[
v2
k G2(vk)


|1 − eβvk | +
(v′k)


2 G2(v
′
k)


|1 − e−βv′
k |


]
. (2.30)


Here, e0 is given in (2.18) and


vk = −2σk






N∑


j=1


(Jjk + Jkj)σj +Bk



 , v′k = 2τk






N∑


j=1


(Jjk + Jkj)τj +Bk



 . (2.31)


The resonance eigenvectors associated to the resonance energy εe(σ, τ) are ηe( σ, τ) =
ϕσ, τ = η̃e( σ, τ) (see (2.1), (2.2)).


This result shows that the decoherence rates induced by the energy conserving inter-
action are again maximally O(λ2


1N
2), as in the case of the non-interacting register


(Jij = 0). However, the decoherence rates induced by the exchange interaction have a
complicated dependence on N : y2 is a sum of N terms each one depending on N , the
coupling parameters Jij and the magnetic field Bj.


Remark. One can proceed as for the non-interacting register (Section 2.2) to
analyze the resonances bifurcating out of the origin (determined to lowest nontrivial
order by the spectrum of the level shift operator Λ0). One finds that Λ0 has a simple
eigenvalue at zero, and that the imaginary part of the smallest (nonzero) resonance is
given by


γ0 = 4πλ2
2 min


j=1,...,N


{
C2


j,+G2(2Cj,+)


|1 − e−2βCj,+ | +
C2


j,−G2(2Cj,−)


|1 − e−2βCj,− |


}
, (2.32)


where


Cj,± =
N∑


k=1


(Jjk + Jkj) ±Bj.


5Indeed, to solve (2.27) with some mij or nj nonzero means to introduce some correlations among
the parameters Jij and Bj . Note that in particular, Jij = J and Bj = B is not a generic choice of
parameters.
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3 Proofs


3.1 Proof of Theorem 2.1


In Theorem 3.2, we first obtain a suitable expression for the average 〈A〉t of an observ-
able A ∈ B(HS). This result is based on the dynamical resonance theory developed in
[16], see also [10, 11], which we outline below. In a second step, we carry out a refined
analysis of the resonance theory to obtain Theorem 3.3. The combination of Theorems
3.2 and 3.3 shows Theorem 2.1.


Let A ∈ B(HS). We have


〈A〉t = TrS [ρt A] = TrS+R [ρt A⊗ 1lR]


=
〈
ψ0, e


itLλ1,λ2 [A⊗ 1lS ⊗ 1lR] e−itLλ1,λ2ψ0


〉
. (3.1)


In the last step, we pass to the representation Hilbert space of the system (the GNS
Hilbert space), where the initial density matrix is represented by the vector ψ0 (in
particular, the Hilbert space of the small system becomes HS ⊗HS).


The dynamics of an observable A is implemented by the group of automorphisms
A 7→ eitLλ1,λ2Ae−itLλ1,λ2 . The self-adjoint generator Lλ1,λ2 is called the Liouville oper-
ator. It is of the form Lλ1,λ2 = L0 +λ1W1 +λ2W2, where L0 = LS +LR represents the
uncoupled Liouville operator, and λ1W1 + λ2W2 is the interaction (represented in the
GNS Hilbert space).


We take the initial state to be represented by the product vector ψ0 = ψS,0 ⊗ ψR


(the product form of the initial state is actually not necessary for our method to work,
see [16]). Here, ψS,0 is an arbitrary initial state of S, and ψR is the equilibrium state
of R at a fixed inverse temperature 0 < β < ∞. We denote by ψS,∞ the trace state of
S, 〈ψS,∞, (AS ⊗ 1lS)ψS,∞〉 = 2−NTr (AS). We introduce the reference vector


ψref = ψS,∞ ⊗ ψR. (3.2)


The trace state has the separating property: given any state ψS,0 there is a (unique)
operator B ∈ MS, satisfying ψS,0 = (1lS ⊗ B)ψS,∞. We write B′ := 1lS ⊗ B and note
that B′ commutes with all observables, so that we obtain from (3.1)


〈A〉t =
〈
ψ0, B


′eitLλ1,λ2 [A⊗ 1lS ⊗ 1lR] e−itLλ1,λ2ψref


〉
. (3.3)


We now borrow a trick from the analysis of open systems far from equilibrium: one
can find a (non-self-adjoint) generator Kλ1,λ2 s.t.


eitLλ1,λ2Ae−itLλ1,λ2 = eitKλ1,λ2Ae−itKλ1,λ2 for all observables A, t ≥ 0, and


Kλ1,λ2ψref = 0.


There is a standard way of constructing Kλ1,λ2 given Lλ1,λ2 and the reference vector
ψref . Kλ1,λ2 is of the form Kλ1,λ2 = L0 + λ1I1 + λ2I2, where the interaction terms
appearing in the expression for Lλ1,λ2 undergo a modification λ1W1 + λ2W2 → λ1I1 +
λ2I2, c.f. [16]. Formally, we may replace the propagators in (3.3) by those involving
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Kλ1,λ2, and use that e−itKλ1,λ2ψref = ψref . This procedure has been carried out in a
rigorous manner in [16], yielding the following resolvent representation


〈A〉t = − 1


2πi


∫


R−i


〈
ψ0, B


′ (Kλ1,λ2(ω) − z)−1 [A⊗ 1lS ⊗ 1lR]ψref


〉
eitzdz, (3.4)


where Kλ1,λ2(ω) = L0(ω) + λ1I1(ω) + λ2I2(ω), I1,2 are representing the interactions,
and ω 7→ Kλ1,λ2(ω) is a spectral deformation (translation) of Kλ1,λ2. Relation (3.4)
holds for 0 < Imω < τ (see condition (A2) in Section 2); the integrand is analytic in
that domain, and continuous as Imω ↓ 0. For ω ∈ R, the integrand is independent of
ω and so it is constant for all ω in the domain of analyticity.


The spectral deformation is constructed as follows. There is a deformation trans-
formation U(ω) = e−iωD, where D is the (explicit) self-adjoint generator of translations
[16] transforming the operator Kλ1,λ2 as


Kλ1,λ2(ω) = U(ω)Kλ1,λ2U(ω)−1 = L0 + ωN + λ1I1(ω) + λ2I2(ω). (3.5)


Here, N is the total number operator of HR, having spectrum N ∪ {0}, where 0 is a
simple eigenvalue (vacuum eigenvector ψR). For real values of ω, U(ω) is a group of
unitaries. The spectrum of Kλ1,λ2(ω) depends on Imω and moves according to the
value of Imω, whence the name “spectral deformation”. Even though U(ω) becomes
unbounded for complex ω, the r.h.s. of (3.5) is a well defined closed operator on a
dense domain, analytic in ω at zero. Analyticity is used in the derivation of (3.4) and
this is where the analyticity condition (A2) of Section 2 comes into play.


The point of the spectral deformation is that the (important part of the) spectrum
of Kλ1,λ2(ω) is much easier to analyze than that of Kλ1,λ2, because the deformation
uncovers the resonances of Kλ1,λ2. We have


spec
(
K0(ω)


)
= {Ei − Ej}i,j=1,...,N


⋃


n≥1


{ωn+ R},


because K0(ω) = L0 +ωN , L0 and N commute, and the eigenvectors of L0 = LS +LR


are ϕi ⊗ ϕj ⊗ ψR. The continuous spectrum of K0 is bounded away from the isolated
eigenvalues by a gap of size Imω. The operator λ1I1(ω) + λ2I2(ω) is infinitesimally
small with respect to the number operator N , so for values of the coupling parameters
λ1,2 small compared to Imω, we can follow the displacements of the eigenvalues by
using analytic perturbation theory. The following is an easy result (see e.g. [14]).


Theorem 3.1 Fix ω′ s.t. 0 < ω′ < τ (where τ is as in Condition (A2) of Section 2).
There is a constant c0 > 0 s.t. if max{|λ1|, |λ2|} ≤ c0/β (β is the inverse temperature)
then, for all ω with ω′ < ω < τ , the spectrum of Kλ1,λ2(ω) in the complex half-plane
{Im z < ω′/2} is independent of ω and consists purely of the distinct eigenvalues


{ε(s)e : e ∈ spec(LS), s = 1, . . . , ν(e)},


where 1 ≤ ν(e) ≤ mult(e) counts the splitting of the eigenvalue e. Moreover, we have


ε
(s)
e (λ1, λ2) → e as λ1, λ2 → 0, for all e, s, and furthermore, Im ε


(s)
e ≥ 0. Also, the


continuous spectrum of Kλ1,λ2(ω) lies in the region {Im z ≥ 3ω′/4}.
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Next we separate the contributions to the path integral in (3.4) coming from the
singularities at the resonance energies and from the continuous spectrum. We deform
the path of integration z = R − i into the line z = R + iω′/2, thereby picking up the


residues of poles of the integrand at ε
(s)
e (all e, s). Let C(s)


e be a small circle around


ε
(s)
e , not enclosing or touching any other spectrum of Kλ1,λ2(ω). We introduce the


(generally non-orthogonal) Riesz spectral projections


Q(s)
e = Q(s)


e (ω, λ1, λ2) = − 1


2πi


∫


C(s)
e


(Kλ1,λ2(ω) − z)−1dz. (3.6)


It follows from (3.4) that


〈A〉t =
∑


e


ν(e)∑


s=1


eitε
(s)
e


〈
ψ0, B


′Q(s)
e [A⊗ 1lS ⊗ 1lR]ψref


〉
+R2, (3.7)


where the remainder term R2 comes from the contour integral enclosing the continuous
spectrum and satisfies


|R2| ≤ CN2(λ2
1 + λ2


2)e
−ω′t/2, (3.8)


for some constant C not depending on the dimension N of HS, nor on λ1, λ2. Note
that R2 decays faster in time than each term in the main part. The estimate (3.8) is
a direct consequence of Proposition 4.2 in [16] (see in particular equation (D.5) in the
proof of this proposition).


The ergodic mean time limits of R2 and all terms in (3.7) with ε
(s)
e 6= 0 vanish, so


〈〈A〉〉∞ := lim
T→∞


1


T


∫ T


0
〈A〉t dt =


∑


{e,s: ε
(s)
e =0}


〈
ψ0, B


′Q(s)
0 [A⊗ 1lR ⊗ 1lR]ψref


〉
.


Combining the latter expression with (3.7) gives the following result.


Theorem 3.2 For max{|λ1|, |λ2|} ≤ c0/β (see Theorem 3.1), we have for t ≥ 0 and
A ∈ B(HS)


〈A〉t − 〈〈A〉〉∞ =
∑


{e,s: ε
(s)
e 6=0}


eitε
(s)
e


〈
ψ0, B


′Q(s)
e [A⊗ 1lS ⊗ 1lR]ψref


〉
+R2, (3.9)


where R2 satisfies (3.8).


Choosing A = |ϕ τ 〉〈ϕσ | gives 〈A〉t = [ρt]σ, τ .


Theorem 3.3 Take max{|λ1|, |λ2|} ≤ c0/β (see Theorem 3.1), let e be any eigenvalue
of LS and let σ, τ be spin configurations. We have for t ≥ 0


〈
ψ0, B


′Q(s)
e [|ϕ τ 〉〈ϕσ| ⊗ 1lS ⊗ 1lR]ψref


〉
=


∑


{σ′, τ ′: e( σ′, τ ′)=−e}


〈
ϕ τ ′, σ′ , q(s)e ϕ τ , σ


〉
[ρ0]σ′, τ ′ +O


(
N2(λ2


1 + λ2
2)
)
,


where q
(s)
e is defined in (2.4), and N = dimHS is the register size.
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We point out that q
(s)
e ϕ τ, σ vanishes unless e( τ , σ) = e. Theorem 2.1 now follows


directly from Theorems 3.2 and 3.3.


Proof of Theorem 3.3. Let R be the rank of Q
(s)
e and [Q


(s)
e ]∗, and let {χ(s,r)


e }R
r=1


and {χ̃(s,r)
e }R


r=1 be bases of the ranges of those projections which are dual to each other,
so that, by Proposition A.1,


Q(s)
e =


R∑


r=1


|χ(s,r)
e 〉〈χ̃(s,r)


e |. (3.10)


We have


Kλ1,λ2(ω)χ(s,r)
e = ε(s)e χ(s,r)


e and [Kλ1,λ2(ω)]∗χ̃(s,r)
e = ε


(s)
e χ̃(s,r)


e . (3.11)


The following isospectrality result is inferred from the Feshbach method, see [5], Section
II and also [16]. We denote by Pe the spectral projection of K0 associated to the
eigenvalue e, and we set P e = 1l − Pe.


Lemma 3.4 (Feshbach map) Let χ be an eigenvector of Kλ1,λ2(ω) with eigenvalue
ε (bifurcating out of e). Then ξ = Peχ is an eigenvector of the operator


Pe


[
e− I(ω)P e(Kλ1,λ2(ω) − ε)−1P eI(ω)


]
Pe (3.12)


with eigenvalue ε. Conversely, if ξ ∈ RanPe is an eigenvector of the operator (3.12)
with eigenvalue ε, then


χ =
[
1l − P e(Kλ1,λ2(ω) − ε)−1P eI(ω)


]
Peξ (3.13)


is an eigenvector of Kλ1,λ2(ω) with eigenvalue ε. Moreover, if χ is an eigenvector as
above, then ξ = Peχ 6= 0 and conversely, if ξ is an eigenvector as above, then χ given
in (3.13) is nonzero. In particular, the geometric multiplicity of ε as an eigenvalue of
Kλ1,λ2(ω) is the same as that of ε as an eigenvalue of (3.12).


Expanding the resolvent in (3.12) around (L0(ω) − e)−1 we obtain for ξ = ξ
(s,r)
e


ξ(s,r)e =
[
η(s,r)


e +O
(
N2(λ2


1 + λ2
2)
)]


⊗ ψR, (3.14)


where η
(s,r)
e satisfies (2.1), with the level shift operator Λe defined in (3.21), and where


N = dimHS. We expand the resolvent in (3.13) around (L0(ω) − e)−1 and use (3.14)
to obtain


χ(s,r)
e =


[
1l − P e(L0(ω) − e)−1P eI(ω)


]
Pe η


(s,r)
e ⊗ ψR +O


(
N2(λ2


1 + λ2
2)
)
. (3.15)


Proceeding in the same way we get the following representation for the eigenvectors


χ̃
(s,r)
e of the adjoint operator [Kλ1,λ2(ω)]∗,


χ̃(s,r)
e =


[
1l − P e(L0(ω) − e)−1P e(I


∗)(ω)
]
Pe η̃


(s,r)
e ⊗ ψR +O


(
N2(λ2


1 + λ2
2)
)
, (3.16)
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where η̃
(s,r)
e satisfies (2.2). Relations (3.15) and (3.16) give


χ(s,r)
e = η(s,r)


e ⊗ψR+O
(
N(|λ1|+|λ2|)


)
, χ̃(s,r)


e = η̃(s,r)
e ⊗ψR+O


(
N(|λ1|+|λ2|)


)
, (3.17)


with the additional properties {1l ⊗ 〈ψR|}χ(s,r)
e = η


(s,r)
e ⊗ ψR + O


(
N2(λ2


1 + λ2
2)
)


and


{1l ⊗ 〈ψR|}χ̂(s,r)
e = η̃


(s,r)
e ⊗ ψR +O


(
N2(λ2


1 + λ2
2)
)
.


Relations (3.10) and (3.17) show that
〈
ψ0, B


′Q(s)
e [A⊗ 1lS ⊗ 1lR]ψref


〉
= (3.18)


R∑


r=1


〈
ψ0, B


′ η(s,r)
e ⊗ ψR


〉〈
η̃(s,r)


e ⊗ ψR, [A⊗ 1lS ⊗ 1lR]ψref


〉
+O


(
N2(λ2


1 + λ2
2)
)
.


Let us take A = |ϕ τ 〉〈ϕσ |. Then we have (see also after (3.2))
〈
η̃(s,r)


e , [A⊗ 1lS]ψS,∞
〉


= 2−N/2
〈
η̃(s,r)


e , ϕ τ , σ


〉
. (3.19)


Next we insert a decomposition of identity, and use again the explicit form of ψref ,
(3.2), to obtain
〈
ψ0, B


′ η(s,r)
e ⊗ ψR


〉
=


∑


σ′, τ ′


〈
ψ0, B


′ ϕσ′, τ ′ ⊗ ψR


〉 〈
ϕσ′, τ ′ , η(s,r)


e


〉


= 2N/2
∑


σ′, τ ′


〈
ψ0, B


′ [|ϕσ′〉〈ϕ τ ′ | ⊗ 1lS ⊗ 1lR]ψref


〉 〈
ϕσ′, τ ′ , η(s,r)


e


〉


= 2N/2
∑


σ′, τ ′


〈
ϕσ′, τ ′ , η(s,r)


e


〉
[ρ0] τ ′, σ′ . (3.20)


In the last step above, we commuteB′ to the right,
〈
ψ0, B


′ [|ϕσ′〉〈ϕ τ ′ | ⊗ 1lS ⊗ 1lR]ψref


〉
=〈


ψ0, [|ϕσ′〉〈ϕ τ ′ | ⊗ 1lS ⊗ 1lR]ψ0


〉
= [ρ0] τ ′, σ′ . Equations (3.18)-(3.20) demonstrate Theo-


rem 3.3. This also concludes the proof of Theorem 2.1. �


3.2 Proof of Theorem 2.2


The level shift operator associated to an eigenvalue e of LS is defined as


Λe = −PeIP e(L0 − e+ i0)−1P eIPe, (3.21)


where Pe is the spectral projection of L0 associated to {e}, P e = 1l − Pe and L0 is the
operator L0 restricted to the range of P e.


6 The interaction operator I has the form


I = V − J∆1/2V J∆1/2, (3.22)


where J and ∆ are the modular conjugation and the modular operator associated to
the pair (M, ψref), where ψref is the reference vector given in (3.2), and M is the von
Neumann algebra of observables. The operator V is given by


V = λ1(v1 ⊗ 1lS) ⊗ φβ(g1) + λ2(v2 ⊗ 1lS) ⊗ φβ(g2). (3.23)


6Relative to [16], this definition differs by a sign.
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Here, v1 and v2 are the non-demolition and energy exchange interaction operators, see
(1.4), and φβ(g) = 1√


2
(a∗β(g) + aβ(g)) are the thermal field operators.


Theorem 3.5 (1) The level shift operator Λe has the form


Λe = iλ2
1y1(e) + λ2


2[x2(e) + iy2(e)] +
∑


{j: σj=τj}
M j , (3.24)


where y1(e), x2(e) and y2(e) are given in (2.13), (2.14) and (2.15), and where the
operator M j is understood to act non-trivially only on the two dimensional subspace,
spanned by {ϕ++, ϕ−−}, of the j-th factor C


2 ⊗ C
2 in the Hilbert space (1.15). It is


represented by the matrix


M j =


[
a+ ibc −ibc
−ib −a+ ib


]
, (3.25)


where a, b and c are given in (2.17).
(2) The eigenvalues (2.16) of M j satisfy Im(z±j ) ≥ 0, and they are strictly positive


if ab 6= 0. For a = 0, we have z+
j = ib(c+ 1), z−j = 0 and for b = 0, we have z±j = ±a.


The eigenvectors are given by (2.21).


Since M j acts non-trivially on different factors of the Hilbert space for different j, we


immediately see that the eigenvalues of Λe are the δ
(̺)
e , (2.11). This proves Theorem


2.2.


Proof of Theorem 3.5 The level shift operators (3.21), for interaction operators
V = λG⊗1lS⊗φβ(g) and reference states ψS,β⊗ψR (equilibrium state for the uncoupled
dynamics), have been calculated explicitly in [16], Proposition 5.1. An easy adaptation
to the present situation gives the following result.


Proposition 3.6 We have the decomposition Λe = λ2
1Λe,1 + λ2


2Λe,2, where Λ# =
limǫ↓0 Λ#(ǫ), with


−2Λe,1(ǫ) = Pe(v
2
1 ⊗ 1l − 1l ⊗ v2


1)Pe


〈
g1,


ω


ω2 + ǫ2
g1


〉


−Pe(v1 ⊗ 1l − 1l ⊗ v1)
2Pe


〈
g1, coth(βω/2)


iǫ


ω2 + ǫ2
g1


〉
, (3.26)


where ω ≥ 0 is the radial variable (spherical coordinates), and


−2Λe,2(ǫ)


= Pe(v2 ⊗ 1l)


∫


R×S2


u2|g2(|u|,Σ)|2
|1 − e−βu| (LS − e+ u+ iǫ)−1(v2 ⊗ 1l)Pe (3.27)


+Pe(1l ⊗ v2)


∫


R×S2


u2|g2(|u|,Σ)|2
|1 − e+βu| (LS − e+ u+ iǫ)−1(1l ⊗ v2)Pe (3.28)


−Pe(v2 ⊗ 1l)


∫


R×S2


u2|g2(|u|,Σ)|2
|1 − e−βu| (LS − e+ u+ iǫ)−1(1l ⊗ v2)Pe (3.29)


−Pe(1l ⊗ v2)


∫


R×S2


u2|g2(|u|,Σ)|2
|1 − e+βu| (LS − e+ u+ iǫ)−1(v2 ⊗ 1l)Pe. (3.30)
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All integration measures are dudΣ, where du is the Lebesgue measure, and dΣ is the
uniform measure on S2.


Remark. There are no ”cross-terms” involving products of v1 and v2 in the expression
(3.21): Indeed, for instance


λ1λ2Pe


(
v1 ⊗ 1lS ⊗ φβ(g1)


)
P e(L0 − e+ i0)−1P e


(
v2 ⊗ 1lS ⊗ φβ(g2)


)
Pe = 0,


since Sx
j (occurring in v2) maps any eigenspace of LS into its orthogonal complement.


Proposition 3.7 We have Λe,2 = x2(e)+ iy2(e)+ iΓe, where x2(e) and y2(e) are given
in (2.14) and (2.15), and where


Γe =
∑


{j: σj=τj}
Γj, (3.31)


with
Γj = 4πB2


jG2(2Bj)
(
1 − Fj e−2βBj (Sz


j ⊗1l)
) ∣∣1 − e−2βBj(S


z
j ⊗1l)


∣∣−1
. (3.32)


The operator Γj is understood to act non-trivially only on the two-dimensional subspace,
spanned by {ϕ++, ϕ−−}, of the j-th factor C


2 ⊗ C
2 in the Hilbert space (1.15). The


”flip operator” Fj is defined by Fjϕσ, τ = ϕσ1τ1 ⊗ · · · ⊗ ϕ(−σj )(−τj) ⊗ · · · ⊗ ϕσN τN
.


In the orthonormal basis {ϕ++, ϕ−−}, (see also (1.9)) the operator Γj has the form


Γj = 4π
B2


j G2(2Bj)


e2βBj − 1


[
e2βBj −e2βBj


−1 1


]
. (3.33)


Proof. We leave out the tensor product symbols ⊗ when no confusion should occur.
Take a ϕσ, τ in the range of Pe. It follows from


(v2 ⊗ 1l)ϕσ, τ =


N∑


j=1


ϕσ1τ1 · · ·ϕ(−σj)τj
· · ·ϕσN τN


that


LS(v2 ⊗ 1l)ϕσ, τ =
N∑


j=1




∑


k 6=j


Bk(σk − τk) +Bj(−σj − τj)



ϕσ1τ1 · · ·ϕ(−σj)τj


· · ·ϕσN τN


=
N∑


j=1


(e− 2Bjσj) ϕσ1τ1 · · ·ϕ(−σj )τj
· · ·ϕσN τN


. (3.34)


We now apply Pe(v2 ⊗ 1l) = Pe
∑N


k=1(S
x
k ⊗ 1l) to (3.34). The only contribution is


coming from terms where k = j in the resulting double sum: indeed, (Sx
kS


x
j ⊗ 1l)ϕσ, τ


is orthogonal to the range of Pe unless k = j. It follows that


(3.27)ϕσ, τ =


∫


R×S2


dudΣ
u2|g2(|u|,Σ)|2
|1 − e−βu|


N∑


j=1


(−2Bjσj + u+ iǫ)−1ϕσ, τ . (3.35)
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In particular, the operator (3.27) is diagonal in the energy basis. Proceeding in the
same fashion one finds


LS(1l ⊗ v2)ϕσ, τ =


N∑


j=1


(e+ 2Bjτj)ϕσ1τ1 · · ·ϕσj (−τj) · · ·ϕσN τN
(3.36)


and


(3.28)ϕσ, τ =


∫


R×S2


dudΣ
u2|g2(|u|,Σ)|2
|1 − e+βu|


N∑


j=1


(2Bjτj + u+ iǫ)−1ϕσ, τ . (3.37)


The operator (3.28) is thus also diagonal in the energy basis. Next we consider (3.29).
We apply Pe(v2⊗1l) = Pe


∑N
k=1(S


x
k ⊗1l) to (3.36). The only non-vanishing contribution


comes from k = j in the resulting double sum and only for terms where σj − τj = 0.
We obtain


(3.29)ϕσ, τ = −
∑


{j: σj=τj}


∫


R×S2


dudΣ
u2|g2(|u|,Σ)|2
|1 − e−βu|


×(2Bjσj + u+ iǫ)−1ϕσ1τ1 · · ·ϕ(−σj )(−τj ) · · ·ϕσN τN
. (3.38)


Note that σj can be replaced by τj in (3.38). A similar argument gives


(3.30)ϕσ, τ = −
∑


{j: σj=τj}


∫


R×S2


dudΣ
u2|g2(|u|,Σ)|2
|1 − e+βu|


×(−2Bjσj + u+ iǫ)−1ϕσ1τ1 · · ·ϕ(−σj)(−τj ) · · ·ϕσN τN
. (3.39)


The operators (3.29) and (3.30) are not diagonal in the energy basis.
Next we use (3.27)-(3.30) and limǫ→0+(−α + u+ iǫ)−1 = −iπδ(u − α) + P.V. 1


u−α
in (3.35) and (3.37)-(3.39) to arrive at


Λe,2ϕσ, τ = [x2(e) + iy2(e)]ϕσ, τ (3.40)


+4iπ
∑


{j: σj=τj}
B2


j


G2(2Bj)


|1 − e−2βBjσj |ϕσ, τ (3.41)


−4iπ
∑


{j: σj=τj}
B2


j


G2(2Bj)


|1 − e+2βBjσj |ϕσ1τ1 · · ·ϕ(−σj )(−τj) · · ·ϕσN τN
, (3.42)


We have |1 − e2βBjσj |−1 = e−2βBjσj


|1−e−2βBjσj |
, so (3.41) plus (3.42) combine to


4iπ
∑


{j: σj=τj}
B2


jG2(2Bj)
{


1 − Fje
−2βBjσj


} 1


|1 − e−2βBjσj |ϕσ, τ . (3.43)


The form (3.33) of Γj in the basis {ϕ++, ϕ−−} is immediately obtained from (3.32).
This completes the proof of Proposition 3.7. �


The following result follows directly from (3.26).
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Proposition 3.8 We have


Λe,1 = iy1(e) − e0 P.V.
〈
g1, ω


−1g1
〉 ∑


{j: σj=τj}
σj , (3.44)


where y1 and e0 are given in (2.13) and (2.18).


We obtain (3.24) now by combining Propositions 3.7 and 3.8. This shows point (1) of
Theorem 3.5. Point (2) is verified easily by using the expression (2.16). �


3.3 Proof of Theorem 2.3


According to (1.20) we have γe = min
{
Im ε


(̺)
e : ̺ ∈ {+1,−1}N0(e) s.t. ε


(̺)
e 6= 0


}
,


where e = e(σ, τ) =
∑N


j=1Bj(σj − τj).


– For e 6= 0 and λ1, λ2 satisfying (A1), we have e + δ
(̺)
e 6= 0, and hence ε


(̺)
e 6= 0,


if |λ1|, |λ2| < c, for some c > 0. The smallest imaginary part of δ
(̺)
e (for e fixed) is


λ2
1y1(e) + λ2


2y2(e) + y12(e).


– For e = 0, we have e+ δ
(̺)
e =


∑
{j: σj=τj} z


̺j


j . Indeed, e = 0 forces σj = τj for all


j, and e0 = 0 (see (2.18)). It follows that aj = 0 and so


z+
j = 4πiλ2


2B
2
jG2(2Bj) coth(βBj) and z−j = 0. (3.45)


The smallest imaginary part of δ
(̺)
e is thus zero, corresponding to ̺j = −1 for all


j = 1, . . . , N0(0) = N .7 All other imaginary parts are strictly larger than the gap given
by (2.23).


This shows formula (1.22) and completes the proof of Theorem 2.3. �


3.4 Proof of Theorem 2.5


Let ϕσ, τ be an eigenvector of LS associated to the eigenvalue e(σ, τ). Let k = 1, . . . ,N
be a fixed index. The vector (Sx


k ⊗Sx
k )ϕσ, τ is again an eigenvector of LS with eigenvalue


e(σ′, τ ′), where (σ′j, τ
′
j) = (σj , τj) for all j 6= k, and (σ′k, τ


′
k) = (−σk,−τk). We now


show that e(σ, τ) 6= e(σ′, τ ′) unless e(σ, τ) = 0. Indeed, suppose that e(σ, τ) =
e(σ′, τ ′). Then, due to the genericness of the parameters Jij and Bj (see after (2.27)),
we have nk = 0, from which it follows that σk = τk. Furthermore, since mik = 0 for all
i, we obtain σi = τi for i = 1, . . . ,N . We conclude that for all k,


Pe( σ, τ)(S
x
k ⊗ Sx


k )ϕσ, τ = 0, if e(σ, τ) 6= 0, (3.46)


where Pe is the spectral projection of LS associated to e. One sees also easily that if
k 6= l, then Pe( σ, τ)(S


x
k ⊗ Sx


l )ϕσ, τ = 0.


7It can be inferred from general considerations that at least one eigenvalue of Λ0 must be zero.
Indeed, since the generator Kλ1,λ2


has been designed to annihilate the reference state ψref = ψS,∞⊗ψR,


it follows that Λ0ψS,∞ = 0 [12]. Note that indeed, for ̺j = −1, all j, we have η
(̺)


0 = ψS,∞.
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Proposition 3.9 The level shift operators Λe with e 6= 0 are diagonal in the energy
basis. Their eigenvalues are given by λ2


1[x1 + iy1] + λ2
2[x2 + iy2] (see (2.12), (2.13) and


(2.29), (2.30)).


Proof. The spectrum of Λe,2 (see Proposition 3.6) is obtained as in the proof of
Proposition 3.7. Relations (3.34) and (3.36) are replaced by


LS(v2 ⊗ 1l)ϕσ, τ =
N∑


j=1


[e(σ, τ) + vj(σ, τ)]ϕσ1τ1 · · ·ϕ(−σj )τj
· · ·ϕσN τN


(3.47)


LS(1l ⊗ v2)ϕσ, τ =


N∑


j=1


[
e(σ, τ) + v′j(σ, τ)


]
ϕσ1τ1 · · ·ϕσj(−τj) · · ·ϕσN τN


, (3.48)


where vj , v
′
j are given in (2.30). The terms (3.38) and (3.39) vanish due to (3.46). It


then follows easily that the spectrum of Λe,2 is λ2
2[x2 + iy2].


The operator Λe,1 is the same as in the case Jij = 0, so we can again use Proposition
3.8, and, together with Proposition 3.6, this gives the result. �


A Dual bases, projections, resonance eigenvectors


Proposition A.1 Let Q be a finite-dimensional projection in a Hilbert space H. Given
any basis {χr} of RanQ, there is a unique basis {χ̃r} of RanQ∗ satisfying the duality
condition 〈χr, χ̃r′〉 = δr,r′ . For χr, χ̃r obtained in this way, we have Q =


∑
r |χr〉〈χ̃r|.


Proof. Take any basis {χr} of RanQ and let ψ ∈ H be arbitrary. We have Qψ =∑
r χrcr(ψ), where ψ 7→ cr(ψ) ∈ C is a linear functional. Consequently, for each r,


there is a χ̃r ∈ H such that cr(ψ) = 〈χ̃r, ψ〉. Hence Q =
∑


r |χr〉〈χ̃r|. The vector χr′ is
left invariant by Q, so it follows that 〈χ̃r, χr′〉 = δr,r′ .


We show that the χ̃r are a basis of RanQ∗. Firstly, we have Q∗χ̃r = χ̃r since
Q∗ =


∑
r |χ̃r〉〈χr| and 〈χ̃r, χr′〉 = δr,r′ , so we only need to show linear independence.


Let zr be scalars. If
∑


r zrχ̃r = 0, then, by taking the inner product with χr′ , where r′


is arbitrary, and using that 〈χ̃r, χr′〉 = δr,r′ , we see that zr′ = 0.
To show uniqueness of {χ̃r} for fixed {χr}, we suppose that {α̃r} is another dual


basis. Then α̃r =
∑


r′ µr,r′χ̃r′ and by the duality condition, 〈χr, α̃r′〉 = δr,r′ = µr,r′, so
µ is the identity. �


Proposition A.2 There are bases {η(s,r)
e }r and {η̃(s,r)


e }r of the eigenspaces of Λe and


(Λe)
∗ associated to the eigenvalue δ


(s)
e and its complex conjugate, satisfying the du-


ality property (2.3). Those bases are unique in the following sense: any other pair


of such bases {α(s,r)
e }r, {α̃(s,r)


e }r is given by α
(s,r)
e =


∑
r′ [A]r,r′η


(s,r′)
e and α̃


(s,r)
e =


∑
r′ [(A


−1)∗]r,r′ η̃
(s,r′)
e , where A is an invertible matrix.


Proof. From Proposition A.1 we know that we can find bases {χ(s,r)
e }r and {χ̃(s,r)


e }r


of the eigenspaces of Kλ1,λ2(ω) and its adjoint, associated to the eigenvalue ε
(s)
e and
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its complex conjugate, respectively, so that
〈
χ


(s,r)
e , χ̃


(s,r′)
e


〉
= δrr′ . Expansions (3.15),


(3.16) show that
〈
η


(s,r)
e , η̃


(s,r′)
e


〉
= limλ1,λ2→0


〈
χ


(s,r)
e , χ̃


(s,r′)
e


〉
= δr,r′ .


We know from the proof of Proposition A.1 that there is a unique dual basis for fixed


{η(s,r)
e }. Thus, any pair of dual basis is gotten by a change of basis of one particular


such pair. Let α
(s,r)
e be obtained by a base change matrix A as in the proposition.


There is a unique associated dual basis α̃
(s,r)
e =


∑
r′ [B]r,r′ η̃


(s,r′)
e . It is easy to see that〈


α
(s,r)
e , α̃


(s,r′)
e


〉
= δr,r′ implies that B = (A−1)∗. �


B Operators Kλ1,λ2
and Kλ1,λ2


(ω)


The purpose of this Appendix is to provide some details on explicit formulas of the
operators Kλ1,λ2 and Kλ1,λ2(ω). For more detail, we refer to [16].


Smoothed-out creation and annihilation operators are defined by


a∗(g) =


∫


R3


g(k)a∗(k)d3k, a(g) =


∫


R3


g(k)a(k)d3k,


for g = g(k) ∈ L2(R3,d3k), and the field operator is given by


φ(g) =
1√
2
[a∗(g) + a(g)]. (B.1)


The so-called Araki–Woods representation gives the Hilbert space (GNS) representation
of the infinitely extended Bose gas in thermal equilibrium [3, 13].8 The Hilbert space
is given by the bosonic Fock space over the one-particle space L2(R × S2,d3k × dΣ),


F = F(L2(R × S2,d3k × dΣ)). (B.2)


The thermal annihilation operators are


aβ(f) = a
(√


1 + µβ(u)χ+(u)uf(u, σ)
)
− a∗


(
eiφ
√
µβ(−u)χ−(u)uf(−u, σ)


)
, (B.3)


where µβ(u) = (eβu − 1)−1, χ± are the indicator functions of R±, and φ ∈ R is an
arbitrary phase. The a∗β(f) are obtained by taking the adjoint on the r.h.s. of (B.3).
It is easy to see that the CCR are satisfied. The thermal field operator (B.1) is thus
represented by


φβ(f) =
1√
2
(a∗β(f) + aβ(f)) =


1√
2
(a∗(fβ) + a(fβ)) =: φ(fβ), (B.4)


for f ∈ L2(R3), where fβ is defined in (A2), and where the φ in the r.h.s. is the
field operator in F . The equilibrium state is represented by the vacuum vector of F ,


8In this paper, we directly work in a spatially unitarily equivalent representation of the original
representation, see [16] for details.
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ΩR,β = Ω. For a one-body operator O acting on wave functions of the variables (u, σ),
we write


dΓ(O) =


∫


R×S2


a∗(u, σ)Oa(u, σ) dudσ. (B.5)


for the second quantization of O. The dynamics of the field is generated by


LR = dΓ(u), (B.6)


the second quantization of the operator of multiplication by u. We have LRΩR,β =
0, and for z ∈ C, ezLRφβ(f)e−zLR = 2−1/2


[
aβ


(
e−zuf


)
+ a∗β


(
ezuf


)]
, which gives the


dynamics for z = it.
The Liouville operator Lλ1,λ2 acting on (CN ⊗ C


N ) ⊗F is given by


Lλ1,λ2 = L0 + λ1W1 + λ2W2, (B.7)


L0 = LS + LR = HS ⊗ 1lS − 1lS ⊗HS + dΓ(u), (B.8)


Wk =
N∑


j=1


Sk
j ⊗ 1lS ⊗ φ((gk)β), k = 1, 2, (B.9)


where we understand S1
j = Sz


j and S2
j = Sx


j .
The deformation group U(ω) (see after (3.4)) is the translation group U(ω) =


e−iωdΓ(i∂u), and the spectrally deformed Liouville operator is


Lλ1,λ2(ω) = L0 + ωN + λ1W (ω) + λ2W2(ω), (B.10)


whereN = dΓ(1l) is the number operator in F , and whereWk(ω) = e−ωdΓ(∂u)Wke
ωdΓ(∂u)


(see also (B.18)).
Definition of the operator Kλ1,λ2. This operator can be expressed in terms of the


non-interacting Liouville operator L0, the interaction λ1W1 + λ2W2, see (B.7)-(B.9),
and the modular data J,∆ associated to the vector ψref , (3.2), and the von Neumann
algebra M = B(HS)⊗1lS⊗Mβ , where Mβ is the Weyl algebra of the Bose field (see e.g.
[6, 16]). J is an anti-unitary operator and ∆ is a self-adjoint non-negative operator.
The defining properties of J and ∆ are J∆1/2MΩβ,0 = M∗Ωβ,0, for any M ∈ M, where
M∗ is the adjoint operator of M . The explicit expressions are (see also [6, 16, 15])


J = JS ⊗ JR and ∆ = ∆S ⊗ ∆R, (B.11)


∆S = e−βLS , (B.12)


∆R = e−βLR , (B.13)


JSφl ⊗ φr = Cφr ⊗ Cφl, (B.14)


JRψn(u1, σ1, . . . , un, σn) = einφψn(−u1, σ1, . . . ,−un, σn), (B.15)


where the action of the antilinear operator C is to take the complex conjugate of vector
coordinates in the basis {ϕj}N


j=1 of HS, and ψn is the complex conjugate of ψn ∈ F .


Relation (B.15) shows that JRa
#(f(u, σ))JR = a#(eiφf(−u, σ)), for f ∈ L2(R × S2).


The interaction operators Ik in (3.5) are given by Ik = Wk −W ′
k, where


W ′
k = J∆1/2WkJ∆1/2 = 1lS ⊗


N∑


j=1


Sk
j ⊗ 1√


2


[
a∗
(
(gk)β


)
+ a
(
e−βu(gk)β


)]
. (B.16)
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The spectrally deformed operator Kλ1,λ2(ω) is obtained as follows. The transformation
of creation and annihilation operators under U(ω), (B.10), is


U(ω)a#(f)U(ω)−1 = a#(f(· + ω)), ω ∈ R, (B.17)


where f(· + ω) is the shifted function (u, σ) 7→ f(u + ω, σ). Relation (B.17) can be
written in the form U(ω)a#(f)U(ω)−1 = a#(eω∂uf). In order to obtain an analytic
extension of (B.17) to complex ω, we need to take the complex conjugate of ω in the
argument of the annihilation operator (since the latter is anti-linear in its argument).
We thus have Ik(ω) = Wk(ω) −W ′


k(ω), with


Wk(ω) =


N∑


j=1


Sk
j ⊗ 1lS ⊗ 1√


2


[
a∗((gk)β(· + ω)) + a((gk)β(· + ω))


]
, (B.18)


W ′
k(ω) = 1lS ⊗


N∑


j=1


Sk
j ⊗ 1√


2


[
a∗((gk)β(· + ω)) + a


(
e−β(u+ω)(gk)β(· + ω)


)]
. (B.19)


Finally, we have Kλ1,λ2(ω) = Lλ1,λ2(ω) + λ1I1(ω) + λ2I2(ω).
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