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APPLICATIONS OF KAM THEORY TO POPULATION DYNAMICS


MARIAN GIDEA, JAMES D. MEISS, ILIE UGARCOVICI, AND HOWARD WEISS


Abstract. Computer simulations have shown that several classes of population
models, including the May host-parasitoid model and the Ginzburg-Taneyhill “maternal-
quality” single species population model, exhibit extremely complicated orbit struc-
tures. These structures include islands-around-islands, ad infinitum, with the smaller
islands containing stable periodic points of higher period. We identify the mechanism
that generates this complexity and we discuss some biological implications.


1. Introduction


In this article, we employ an ensemble of tools from the theory of conservative dy-
namical systems to explain the complicated orbit structure exhibited by several classes
of models in the population biology literature. We illustrate the general method with
two well-known population models with discrete generations and time lags: the May
host-parasitoid model [LM86] and the Ginzburg-Taneyhill “maternal-quality” single
species population model [HV69, GT94]. Both these models have been extensively
confronted with laboratory or field data.


Computer simulations of the orbit structure of both models [LM86, GT94] indicate
the existence of an infinite nested family of invariant closed curves surrounding an
elliptic fixed point, chains of periodic islands in the regions between the invariant
curves, and stochastic regions surrounding the periodic islands and between invariant
closed curves. Furthermore, the entire structure seems to appear inside of each of the
periodic islands, on infinitely many scales. This type of complicated structure was first
discovered by Poincaré in 1899 while investigating the three body problem in celestial
mechanics [Poi57]. It is quite remarkable that geometric structures commonly found
in celestial mechanics appear in the population dynamics models analyzed here. See
[GC04] for a more detailed discussion on this analogy.


The main feature of these models is that they can be realized as area-preserving
mappings of the plane having a non-degenerate elliptic fixed point. We show that
the complicated orbit structure near the elliptic fixed point is then an immediate con-
sequence of classical results from geometric perturbation theory. In particular, the
existence of the nested family of invariant curves near the fixed point is a consequence
of KAM theory (or more precisely, Moser’s twist-map theorem) [Mos62, SM95].


Away from the elliptic fixed point the KAM theorem does not apply and one has to
study the geometric structures through some other analytical or numerical methods.
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Some of the geometric structures of interest are periodic points — which are typically
of hyperbolic or elliptic type, the invariant manifolds associated to hyperbolic periodic
points, KAM invariant curves (around the elliptic fixed point or around elliptic periodic
orbits), and cantori, which are remnant sets of Cantor type of destroyed invariant
circles. The building blocks for these structures are the periodic orbits, as the other
geometric objects can be obtained as limits of periodic orbits. One method to classify
the limits of periodic orbits is Greene’s residue criterion, which allows one to decide
whether the limiting set is an invariant curve, or a cantorus, or neither.


There is a natural physical property of a system that, when present, allows the
practical computation of many periodic orbits. This is the time reversal-symmetry
of the system: in essence, it means that the picture of the dynamics in the forward
time direction and that of the dynamics in the backwards time direction cannot be
distinguished one from the other. We show the time-reversal symmetry in a simplified
case of the May model, and also in a simplified case of the Ginzburg-Taneyhill model.


The main questions of biological significance for these systems pertain the quali-
tative behavior of the populations over time, in particular the stability/instability of
trajectories. If an initial condition of a population corresponds to a point on a peri-
odic orbit, or on an invariant curve, or on some other invariant set, then the future
evolution of the population will stay confined to that invariant set for all time. If
the initial condition lies between two invariant curves, the future evolution will stay
bounded between these invariant curves for all times. This behavior of the population
is stable, in a coarse sense. The evolution can be regular, if the initial condition lies
on some invariant curve, or chaotic if it lies in the stochastic region. If there exists a
last invariant curve, beyond which there is no other invariant curve, the population in
the outside region of the last invariant curve may grow to infinity. The regime of the
dynamics in the outside region is predominantly unstable.


The May model and the Ginzburg-Taneyhill model considered here are amongst
the few known discrete-time biological models that are conservative and display the
KAM phenomena. In conservative systems, trajectories cannot all converge or diverge
from one another. Most known discrete-time biological models are dissipative, where
all trajectories in some domain converge in time towards some attractor or repeller,
possibly chaotic. In contrast, conservative dynamical systems do not exhibit attractors
or repellers. Generically, they exhibit an intricate structure of regular and random
trajectories that expand on a large region of the space and are interspersed one with
the other at all sufficiently small scales.


The two models represent, of course, idealizations of biological population behavior.
Adding external perturbations to these models will destroy the area-preserving nature
of these dynamics and hence most of the geometric structures (although it is possible,
under certain circumstances, that some of the KAM curves can survive even in the
dissipative case [B96]). Thus, the models that we consider in this paper are sensitive
to any external biological influences, and so they can be regarded as conservative limits
of possibly more realistic models.


The literature contains several remarkable models of biological systems that yield a
conservative limit. For example, the papers [KSG+96, KS99, SPM+01] describe some
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continuous-time predator-prey models with quadratic interaction terms and weak dis-
sipation that have a conservative system in the limit. The conservative limit is given by
a time-dependent Hamiltonian of 11


2 -degrees of freedom. The system can be converted
into an autonomous Hamiltonian by adding an extra variable symplectically conjugate
with the time variable, yielding a 2-degrees of freedom Hamiltonian. Restricting the
system to a fixed energy level, and reducing the dynamics to a suitable Poincaré sur-
face of section, results in an area preserving map of the plane that exhibits a similar
dynamics to that present in our models. However, the Hamiltonian system considered
in these papers is itself a small perturbation of an integrable Hamiltonian, i.e., the
energy manifold is foliated by a one-parameter family of 2-dimensional tori. These tori
intersect the Poincaré surface of section in a one-parameter family of 1-dimensional
invariant curves. When the perturbed Hamiltonian is considered, there exists a fam-
ily KAM invariant curves that survive the perturbation from the integrable case. We
also note that the Poincaré first return map is not explicit, which makes the dynamics
restricted to the surface of section harder to analyze.


In our models, the dynamics is given by explicit mappings that are not perturbations
of integrable ones. Therefore, we can only apply the KAM theorem in a small neighbor-
hood of the elliptic fixed point. This requires the derivation of a Birkhoff normal form
in a vicinity of the elliptic fixed point, and the verification of some non-resonance and
twist conditions. We verify these conditions rigorously for one model and numerically
for the other. This verification guarantees that the KAM theorem holds true for these
models. In general, the KAM theorem applies only in an extremely small neighborhood
of the elliptic fixed point, which cannot usually be observed in numerical experiments.
It is true however that KAM invariant circles are numerically observed even far from
the elliptic fixed points. Nevertheless, the precise computation of these KAM invari-
ant curves, and the location of the last invariant curve can be very challenging. The
novelty of our approach is that we establish that the two mappings are reversible, we
use reversibility to compute precisely periodic orbits of high period, and we apply the
Greene’s criterion to detect, with high accuracy, invariant circles far away from the
elliptic fixed point. These methods are commonly used in theoretical physics (see, for
example [dCGM96, AWM05, FWM07]), but we believe that they are novel in regard
to applications to biological systems. It seems possible that these methods could be
applied to other models, including those considered in [KSG+96, KS99, SPM+01].


2. Description of the Models


2.1. May (M) Model. The general framework for describing the evolution of discrete
generation host-parasitoid models is given by equations of the type:


xn+1 = axnf(xn, yn),


yn+1 = cxn[1− f(xn, yn)],
(1)


where xn represents the host density and yn represents the parasitoid density at genera-
tion n in a host-parasitoid population. The function f(xn, yn) represents the fraction of
hosts xn escaping parasitism; one minus this term represents the fraction of hosts par-
asitized; the parameter a here represents the net rate increase of hosts in the absence
of parasitoids, and the parameter c represents the average number of adult female
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parasitoids emerging from each host parasitized. Various choices of the function f
yield various host-parasitoid models; see [Has00] for a survey. One type of model,
considered by May in [May78], assumes a function f(xn, yn) = (1 + byn/k)−k where
b represents the parasitoid area of discovery, and k is negative binomial clumping pa-
rameter. More precisely, May’s model assumes that the risk of being parasitized will
vary within the host population, leading to a Poisson distribution of parasitoid attacks.
Thus the function f represents the zero term of the negative binomial distribution, and
k = (CVP )−2, where CVP is the coefficient of variation of the distribution of parasitoids
among patches. May supports his model with some experimental data, e.g., the inter-
action of the ichneumon Pleolophus basizonus parasitoids with the sawfly Neodiprion
sertifer, where the distribution of attacks per host is described by a negative binomial
with k ≈ 0.8.


Below we consider a simplification of this model, where b = k = 1, as considered in
[LM86]:


xn+1 =
axn


1 + yn


yn+1 = axn − xn+1 = axn


(
1− 1


1 + yn


)
=


axnyn


1 + yn
.


(2)


The parameter a here plays a double role: it represents the net rate of increase of
hosts in the absence of parasitoids, and the average number of adult female parasitoids
emerging from each host parasitized.


We can eliminate yn from the first equation and substitute in the second equation
obtaining to obtain a time-delayed equation


xn+1 =
axn


1 + axn−1 − xn
.


This is an important feature of the model, as it agrees with the observation that true
oscillations in population dynamics can only arise in density dependent evolutions and
only if the evolution is regulated by delayed negative feedbacks (see [GT94]).


2.2. Ginzburg-Taneyhill (GT) Model. The (GT) model has been designed to ex-
plain the nature of population cycles in some species of forest insects, such as Lepi-
doptera. The premise for this model is that the population dynamics is regulated by
the quality of the individuals within the population, in particular by the quality of
the female population (maternal quality). The main assumptions are that the average
quality of the individuals is influenced by the the density of the current population,
and the offspring quality of the current population is a function of the maternal quality
of the previous generation. The corresponding equations are:


xn+1 = φ(xn, yn+1),


yn+1 = ynf(xn),
(3)


where xn is the average quality of the individuals (maternal effect), yn represents the
population size at generation n, φ is an increasing function of xn and a decreasing
function of yn+1, and f is a increasing function of xn.
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Below we consider a specific example:


xn+1 =
Mxn


1 + yn+1
=


Mxn


1 +
Rxnyn


1 + xn


,


yn+1 =
Rxnyn


1 + xn
,


(4)


where the parameter M represents the maximum reproductive rate, and the param-
eter R represents the maximum possible increase in average quality. To study the
nondamping oscillation regime for this model we restrict to M,R > 1. As before, note
that we can eliminate xn from the first equation in (1) and substitute into the second
equation to obtain the time-delayed equation


yn+1 =
MRy2


n


Myn + (ryn−1 − yn)(1 + yn)
.


The importance of this feature was discussed for the previous model.


3. Common Mathematical Properties


Both models have the form xn+1 = f(xn, yn), yn+1 = g(xn, yn) and can be viewed
as dynamical systems corresponding to the transformation of the positive quadrant
T (x, y) = (f(x, y), g(x, y)). The mappings under consideration are diffeomorphisms,
i.e, they are smooth (infinitely differentiable), invertible mappings, with smooth in-
verses.


3.1. Logarithmic Coordinate Change and Area-Preserving Property. An in-
vertible mapping T is area preserving if the area of T (A) coincides with the area
of A for all measurable subsets A. We claim that in logarithmic coordinates, i.e.,
u = log x, v = log y, both mappings are area preserving. This condition places strong
restrictions on the orbit structure. For instance, there can be no attractors or repellers
of any type.


It is an elementary result in multivariate calculus that a mapping T is area-preserving
if and only if the determinant of the Jacobian matrix of T , JT (x, y) has determinant
equal to one at every point. The authors in [LM86] verify this property for the (M)
model. We repeat it here for the convenience of the reader.


Proposition 3.1. The (M) model is area preserving in logarithmic coordinates.


Proof. The Jacobi matrix of the corresponding transformation T is


(5) JT (x, y) =






a


1 + y
− ax


(1 + y)2
ay


1 + y


ax


(1 + y)2



 ,


with detJT (x, y) =
a2x


(1 + y)2
. Note that detJT (x, y) = 0 at x = 0 so the map T is not


invertible for x = 0 but is invertible anywhere else.
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We substitute u = ln(x), v = ln(y), and rewrite the map in (u, v) coordinates to
obtain the transformation


(6)
(


u
v


)
7→






ln(a) + u− ln(1 + ev)


ln(a) + u + v − ln(1 + ev)



 .


The Jacobi matrix of this transformation is


(7) J(u, v) =






1 − ev


1 + ev


1 1− ev


1 + ev



 .


It is easy to see that detJ(u, v) = 1. ¤


We now verify that the same property holds for the (GT) model.


Proposition 3.2. The (GT) model is area preserving in logarithmic coordinates.


Proof. The Jacobi matrix of the corresponding transformation T is


(8) JT (x, y) =






M(1 + 2x + x2 + Rx2y)
(1 + x + Rxy)2


− MRx2(1 + x)
(1 + x + Rxy)2


Ry


(1 + x)2
Rx


1 + x






with detJT (x, y) =
MRx


1 + x + Rxy
. Note that detJT (x, y) = 0 at x = 0 so the map T is


not invertible for x = 0 but is invertible anywhere else.
Making the substitution u = ln(x), v = ln(y), and rewriting (2.1) in (u, v) coordi-


nates yields


(9)
(


u
v


)
7→






ln(M) + u + ln(1 + eu)− ln(1 + eu + Reu+v)


ln(R) + u + v − ln(1 + eu)



 .


The Jacobian of this transformation is


(10) J(u, v) =






1 +
eu


1 + eu
− eu + Reu+v


1 + eu + Reu+v
− Reu+v


1 + eu + Reu+v


1− eu


1 + eu
1






and det J(u, v) = 1. ¤


3.2. Stability of the Fixed Points. A point (x∗, y∗) is a fixed point of T if T (x∗, y∗) =
(x∗, y∗). A fixed point is elliptic if the eigenvalues of J(x∗, y∗) form a purely imaginary,
complex conjugate pair λ, λ̄, and is hyperbolic if the eigenvalues are real and different
from 1. The authors in [LM86] verify that the unique fixed point in the (M) model
with both coordinates positive is elliptic.
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Proposition 3.3. For the (M) model in the (x, y) coordinates, the fixed points are
(x0, y0) = (0, 0) and (x1, y1) = (1, a − 1), with (x0, y0) a saddle point, and (x1, y1) an
elliptic fixed point. In the logarithmic coordinates, the corresponding fixed points are
(u0, v0) = −∞ and (u1, v1) = (0, ln(a− 1)); the fixed point (u1, v1) is of elliptic type.


Proof. For the fixed points in (x, y) coordinates, solving ax/(1 + y) = x and axy/(1 +
y) = y yields the fixed points (x0, y0) = (0, 0) and (x1, y1) = (1, a− 1). Evaluating the
Jacobi matrix (5) of T at (x0, y0) and (x1, y1) gives


J(x0, y0) =


(
a 0


0 0


)
, and J(x1, y1) =


(
1 −1/a


a− 1 1/a


)
.


The eigenvalues of J(x0, y0) are a and 0 so (x0, y0) is a saddle point. The corresponding
eigenvectors are (1, 0) and (0, 1). Each vector of the type (x, 0) gets exponentially
expanded under T , since T (x, 0) = (ax, 0), while each vector (0, y) is mapped by T to
(0, 0). The curve x = 0 is a critical curve for T and is the (super)-stable manifold for
(0, 0), while the curve y = 0 is the unstable manifold of (0, 0). This means that if host
density x ≈ 0, then the parasitoid population y will be extinguished, i.e., y ≈ 0, within
the next generation. On the other hand, if the parasitoid population y ≈ 0, then the
host population x will grow exponentially fast.


The eigenvalues of J(x1, y1) are


(11) λ1,2 =
(a + 1)± i


√
3a2 − 2a− 1


2a


or


(12) λ1,2 = e±iθ , cos θ =
a + 1
2a


so (x1, y1) is an elliptic fixed point.
Under the logarithmic coordinate change (x, y) → (u, v) the fixed point (x0, y0)


is sent to infinity; the fixed point (x1, y1) becomes (u1, v1) = (0, ln(a − 1)). The
linearization (7) at (u1, v1) becomes


J(u1, v1) =






1 −a− 1
a


1
1
a






¤


We now verify the analogous statement for the (GT) model.


Proposition 3.4. For the (GT) model in the (x, y) coordinates the fixed points are
(x0, y0) = (0, 0) and (x1, y1) = (1/(R − 1),M − 1), with (x0, y0) a saddle point and
(x1, y1) an elliptic fixed point. In the logarithmic coordinates the fixed points are
(u0, v0) = −∞ and (u1, v1) = (− ln(R − 1), ln(M − 1)); the fixed point (u1, v1) is
of elliptic type.
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Proof. Evaluating the Jacobi matrix (8) of T at (x0, y0) and (x1, y1) gives


J(x0, y0) =
(


M 0
0 0


)
, and J(x1, y1) =






R + M − 1
RM


− 1
M(R− 1)


(M − 1)(R− 1)2


R
1



 .


The eigenvalues of J(x0, y0) are a and 0 so (x0, y0) is a saddle point. The corresponding
eigenvectors are (1, 0) and (0, 1). Each vector of the type (x, 0) gets exponentially
expanded under T , since T (x, 0) = (Mx, 0), while each vector (0, y) is mapped by T to
(0, 0). The curve x = 0 is a critical curve for T and is the (super)-stable manifold for
(0, 0), while the curve y = 0 is the unstable manifold of (0, 0). This means that, if the
maternal quality is very poor, i.e. x ≈ 0, then the population y will be extinguished
within the next generation, i.e. y ≈ 0. On the other hand, if the population is very
small y ≈ 0, its maternal quality x will grow exponentially fast.


We make the substitutions ρ = (R − 1)/R and µ = (M − 1)/M , and express the
Jacobian with respect to these new parameters


J(x1, y1) =






1− ρµ −(1− µ)(1− ρ)
ρ


µρ2


(1− µ)(1− ρ)
1



 .


The characteristic equation is


λ2 − (2− ρµ)λ + 1 = 0,


so


(13) λ1,2 =
2− ρµ± i


√
4− (2− ρµ)2


2
.


The conditions R > 1, M > 1 translate into 0 < ρ < 1, 0 < µ < 1, respectively. Under
these conditions, the discriminant of the above quadratic is negative, so the solutions
λ1,2 are complex conjugate, λ2 = λ̄1, and |λ1| = 1. That is,


(14) λ1,2 = e±iθ , cos θ =
2− ρµ


2
.


Thus, the fixed point (x1, y1) is elliptic. Note that if we denote a = 1/(1 − ρµ) the
above eigenvalues for the (GT) model have the same expression as the corresponding
eigenvalues for the (M) model.


Under the logarithmic coordinate change (x, y) → (u, v) the fixed point (x0, y0) is
sent to infinity; the fixed point (x1, y1) becomes (u1, v1) = (− ln(R − 1), ln(M − 1)).
The linearization (10) at (u1, v1), using the parameters ρ, µ, takes the form


J(u1, v1) =
(


1− ρµ −µ
ρ 1


)
.


¤
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4. The KAM Theorem


The KAM Theorem asserts that in any sufficiently small neighborhood of a non-
degenerate elliptic fixed point of a smooth area-preserving map there exists many
invariant closed curves. We explain this theorem in some detail. Consider a smooth,
area-preserving mapping (x, y) → T (x, y) of the plane that has (0, 0) as an elliptic fixed
point. After a linear transformation one can put the map in the form


z 7→ λz + g(z, z̄),


where λ is the eigenvalue of the elliptic fixed point, z = x+iy and z̄ = x−iy are complex
variables, and g vanishes with its derivative at z = 0. Assume that the eigenvalue λ of
the elliptic fixed point satisfies the non-resonance condition λk 6= 1 for k = 1, . . . , q, for
some q ≥ 4. Then Birkhoff showed that there exist new, canonical complex coordinates
(ζ, ζ̄) relative to which the mapping takes the normal form


ζ 7→ λζeiτ(ζζ̄) + h(ζ, ζ̄)


in a neighborhood of the elliptic fixed point, where τ(ζζ̄) = τ1|ζ|2 + . . . + τs|ζ|2s is a
real polynomial, s = [(q − 2)/2], and h vanishes with its derivatives up to order q − 1.
The numbers τ1, . . . , τs are called twist coefficients.


Consider an invariant annulus ε < |ζ| < 2ε in a neighborhood of the elliptic fixed
point, for ε a very small positive number. Note that under the neglect of the remainder
h, the normal form approximation ζ 7→ λζeiτ(ζζ̄) leaves invariant all circles |ζ|2 = const.
The motion restricted to each of these circles is a rotation by some angle. Also note
that if at least one of the twist coefficients τj is non-zero, the angle of rotation will
vary from circle to circle. A radial line through the fixed point will undergo twisting
under the mapping. The KAM theorem (Moser’s twist theorem) says that, under the
addition of the remainder term, most of these invariant circles will survive as invariant
closed curves under the full map. See [Mos62, SM95, Mañ87].


Theorem 4.1. Assuming that τ(ζζ̄) is not identically zero and ε is sufficiently small,
then the map T has a set of invariant closed curves of positive Lebesgue measure close
to the original invariant circles. Moreover the relative measure of the set of surviving
invariant curves approaches full measure as ε approaches 0. The surviving invariant
closed curves are filled with dense irrational orbits.


4.1. Birkhoff normal form. The KAM theorem requires that the elliptic fixed point
be non-resonant and non-degenerate, and we now evaluate these conditions for our
models. Note that for q = 4 the non-resonance condition λk 6= 1 requires that λ 6= ±1
or ±i. The above normal form yields the approximation


ζ 7→ λζ + c1ζ
2ζ̄ + O(|ζ|4)


with c1 = iλτ1 and τ1 being the first twist coefficient. We will call an elliptic fixed point
non-degenerate if τ1 6= 0. We note that whenever λ 6= 1 a fixed point is structurally
stable in the sense that it persists for sufficiently small perturbations of the mapping.


We verify first the non-resonance condition. For the (M) model, the eigenvalues at
the elliptic fixed point are of the form (12) hence for a > 1 we have θ < π/3 and
the non-resonance condition is obviously satisfied. Similarly, for the (GT) model the
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eigenvalues at the elliptic fixed point are of the form (14) hence for 0 < ρ, µ < 1 we
have θ < π/3 and the non-resonance condition is satisfied.


Now we discuss the non-degeneracy condition. Since both the (M) model and the
(GT) model are analytic in the parameters, it is clear that the non-degeneracy condition
is met for generic values of the parameters. Moreover, even if the non-degeneracy
condition τ1 6= 0 fails, the higher twist coefficients generically will not vanish. This
means that the KAM theorem applies for typical parameter values.


We verify the non-degeneracy condition explicitly.


Proposition 4.2. The elliptic fixed point (u1, v1) for the (M) model is non-degenerate.


Proof. We first translate the fixed point (u1, v1) = (0, ln(a−1)) to the origin by chang-
ing (u, v) 7→ (u, v + ln(a− 1)) so the system becomes(


u
v


)
7→


(
ln(a) + u− ln(1 + (a− 1)ev)


ln(a) + u + v − ln(1 + (a− 1)ev)


)
.


We use the Taylor expansion to write the map as


(
u
v


)
7→






u− a− 1
a


v − a− 1
2a2


v2 +
(a− 1)(a− 2)


6a3
v3 + O(v4)


u +
1
a
v − a− 1


2a2
v2 +


(a− 1)(a− 2)
6a3


v3 + O(v4)



 .


The Jacobian matrix at (0, 0) is given by


J(0, 0) =






1 −a− 1
a


1
1
a






with complex unitary eigenvalues λ = λ1 and λ̄ = λ2 given in (11). We use the complex
eigenvector


p =
(


a− 1
2a


+ iD, 1
)


where D = 1
2a


√
3a2 − 2a− 1 and the associated matrix of determinant 1


P =
1√
D




√


3a2 − 2a− 1
2a


a− 1
2a


0 1



 =




√


D
a− 1
2a
√


D
0 1√


D






to change the coordinates and bring the linear part into normal form. Let
(


ũ
ṽ


)
= P−1


(
u
v


)
=






1√
D


− a− 1
2a
√


D


0
√


D






(
u
v


)
.


The system in the new coordinates becomes (notice that ṽ =
√


Dv):


(
ũ
ṽ


)
7→ P−1JP


(
ũ
ṽ


)
+ P−1




−a− 1


2a2
(ṽ/


√
D)2 +


(a− 1)(a− 2)
6a3


(ṽ/
√


D)3 + O(ṽ4)


−a− 1
2a2


(ṽ/
√


D)2 +
(a− 1)(a− 2)


6a3
(ṽ/


√
D)3 + O(ṽ4)
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where P−1JP has now the Jordan normal form
(


Re(λ) −Im(λ)
Im(λ) Re(λ)


)
. Therefore, the


map in (ũ, ṽ) coordinates is given by
(


ũ
ṽ


)
7→


(
Re(λ) −Im(λ)
Im(λ) Re(λ)


)(
ũ
ṽ


)


+






(
a + 1
2a
√


D


)(
−a− 1


2a2


(
ṽ√
D


)2


+
(a− 1)(a− 2)


6a3


(
ṽ√
D


)3


+ O(ṽ4)


)


√
D


(
−a− 1


2a2


(
ṽ√
D


)2


+
(a− 1)(a− 2)


6a3


(
ṽ√
D


)3


+ O(ṽ4)


)






One can now pass to the complex coordinates z, z̄ = ũ ± iṽ to obtain the complex
form of the system


z 7→ λz + g20z
2 + g11zz̄ + g02z̄


2 + g30z
3 + g21z


2z̄ + g12zz̄2 + g03z̄
3 + O(|z|4)


where


g20 =
1
8


[(fũũ − fṽṽ + 2gũṽ) + i(gũũ − gṽṽ − 2fũṽ)]


=
a− 1


8a2
√


D


(
a + 1
2aD


+ i


)
=


a− 1
8a2(D)3/2


λ,


g02 =
1
8


[(fũũ − fṽṽ − 2gũṽ) + i(gũũ − gṽṽ + 2fũṽ)]


=
a− 1


8a2
√


D


(
a + 1
2aD


+ i


)
=


a− 1
8a2(D)3/2


λ,


g11 =
1
4


[(fũũ + fṽṽ) + i(gũũ + gṽṽ)]


= − a− 1
4a2


√
D


(
a + 1
2aD


+ i


)
= −2g20,


g21 =
1
16


[(fũũũ + fũṽṽ + gũũṽ + gṽṽṽ) + i(gũũũ + gũṽṽ − fũũṽ − fṽṽṽ)]


=
(a− 1)(a− 2)


16a3D


(
1− i


a + 1
2aD


)
= −i


(a− 1)(a− 2)
16a3D2


λ.


The above complex map can be transformed by an invertible parameter-dependent
change of coordinates to


ζ 7→ λζ + c1(a)ζ2ζ̄ + O(|ζ|4)
provided that λ satisfies the non-resonant condition λk 6= 1 for k = 1, 2, 3, 4. The
coefficient c1(a) can be computed directly using the formula below derived by Wan in
the context of Hopf bifurcation theory [Wan78]. In [Moe90] it is shown that when one
uses area-preserving coordinate changes this formula by Wan yields the twist coefficient
τ1 that is used to verify the non-degeneracy condition necessary to apply the KAM
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theorem. We use the formula:


c1 =
g20g11(λ̄ + 2λ− 3)
(λ2 − λ)(λ̄− 1)


+
|g11|2
1− λ̄


+
2|g02|2
λ2 − λ̄


+ g21.


A tedious symbolic computation done with Maple yields


c1 = −iλ
a


2(3a + 1)(1 + 2a)
,


so we conclude that
τ1 = − a


2(3a + 1)(1 + 2a)
< 0


for all values of the parameter a. ¤
The (GT) model can be approached in a similar fashion. However, the corresponding


expressions of the coefficients g20, g02, g11, g21 become rather complicated so Maple
cannot handle well the symbolic computation. Due to this complexity the numerical
evaluation of these coefficients is prone to large numerical roundoff errors. If we let
the two parameters equal M = N = a, the numerical experiments seem to indicate
that for a range of values 4 ≤ a ≤ 20, the computed test value of <(c1) takes values
between −6 · 10−4 and −2.5 · 10−4 away from the theoretical value of 0. For this range
of parameters the value of τ1 = Re(−iλ̄c1) seems to be negative, taking values between
−6.5 · 10−3 and −10−3. This method fails to produce reasonable numerical results for
a < 4.


4.2. A Remark on Periodic Points of Minimal Period. The authors in [LM86]
and [GT94] claim that in general any periodic (non-fixed) point for either mapping
must have period greater than 6.


For the (M) model, the eigenvalues (12) at the elliptic fixed point are of the form
λ = e±iθ with θ < π/3. Thus the period of the motion around the fixed point must be
q > 2π


θ > 6, so in general the (M) cannot have an orbit of period less than or equal
to 6 in a neighborhood of the elliptic fixed point. If a = 1.7, for example, 2π


θ ≈ 9.6 so
the minimal possible period for a periodic orbit in a neighborhood of the elliptic fixed
point is 10.


For the (GT) model the eigenvalues (14) have the same bound when 0 < ρ, µ < 1
(or equivalently M, R > 1), so in general the (GT) also cannot have an orbit of period
less than or equal to 6 in a neighborhood of the elliptic fixed point. If M = R = 10, for
example, 2π


θ ≈ 6.7 so the minimal possible period for a periodic orbit in a neighborhood
of the elliptic fixed point is 7.


The proofs are essentially identical and use the Birkhoff normal form. However, the
proofs only apply in a small neighborhood of the elliptic fixed point, and thus do not
show that smaller period orbits can not exist outside of this small neighborhood.


4.3. Orbit Structure Near a Non-degenerate Elliptic Fixed Point. The fol-
lowing is a consequence of Moser’s twist map theorem [SM95, Ste69].


Theorem 4.3. Let T : R2 → R2 be an area-preserving diffeomorphism, and (x∗, y∗)
a non-degenerate elliptic fixed point. There exist periodic points with arbitrarily large
period in every neighborhood of (x∗, y∗).
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Indeed the theorem implies that arbitrarily close to the fixed point there are always
infinitely many gaps between consecutive invariant curves that contain periodic points.
Within these gaps one finds, in general, orbits of hyperbolic and elliptic periodic points.
Around these elliptic periodic points one generally finds again elliptic islands consisting
of closed invariant curves of higher order iterates of the mapping. These facts can
not be deduced from computer pictures. A consequence of these theorems is that
the complicated orbit structure in a neighborhood of the non-degenerate elliptic fixed
point is structurally stable, in the sense that sufficiently close maps will have a similar
complicated orbit structure.


5. Reversibility


In the study of area-preserving maps, symmetries play an important role since they
yield special dynamic behavior. A transformation R of the plane is said to be a time
reversal symmetry for T if R−1◦T ◦R = T−1, meaning that applying the transformation
R to the map T is equivalent to iterating the map backwards in time. If the time
reversal symmetry R is an involution, i.e., R2 = id, then the time reversal symmetry
condition is equivalent to R ◦ T ◦ R = T−1, and T can be written as the composition
of two involutions T = I1 ◦ I0, with I0 = R and I1 = T ◦ R. Note that if I0 = R is a
reversor, then so is I1 = T ◦ R. Also, the j-th involution, defined as Ij := T j ◦ R, is
also a reversor.


Maps that can be factored as a product of involutions are called reversible maps.
It is in general very difficult to establish whether a given map is reversible or not. A
generic, area-preserving map is most likely not reversible [Mac93]; moreover, there are
open sets of area-preserving maps that are not reversible [BR97].


For each involution there are one-dimensional fixed sets, S0 = {(x, y) | I0(x, y) =
(x, y)} and S1 = {(x, y) | I1(x, y) = (x, y)}; these called the symmetry sets (lines) of
the map T = I1◦I0. They reduce the search for periodic orbits of T to one-dimensional
root finding problems within these symmetry sets, due to the following property:


Proposition 5.1. Let (x, y) ∈ S0,1. Then TN (x, y) = (x, y) for some N if and only if


TN/2(x, y) ∈ S0,1, if N is even,


T (N±1)/2(x, y) ∈ S1,0, if N is odd.


The symmetry line Sj associated to the j-th involution, for j = 1, 2, . . ., can be
used to find (symmetric) periodic orbits of different order: if (x, y) ∈ Sj ∩ Sk, then
T j−k(x, y) = (x, y). Also the symmetry lines are related to each other by the following
relations:


S2j+i = T j(Si) , S2j−i = Ij(Si), for all i, j.


Also note that reversibility is preserved under under coordinate change. Indeed, if
(u, v) = Φ(x, y) is a coordinate change, the map T in the coordinates (u, v) is given
by TΦ(u, v) = Φ ◦ T ◦ Φ−1, and its inverse is (TΦ)−1(u, v) = Φ ◦ T−1 ◦ Φ−1. If R is a
reversor for T , then Φ ◦ R ◦ Φ−1 is a reversor for the map TΦ. If the map T = I1 ◦ I0


is the composition of involutions I1 and I0, then TΦ = (Φ ◦ I1 ◦ Φ−1) ◦ (Φ ◦ I0 ◦ Φ−1),
i.e. TΦ is a composition of involutions Φ ◦ I1 ◦ Φ−1 and Φ ◦ I0 ◦ Φ−1.
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5.1. Reversibility of the (M) map and periodic orbits. The inverse of the (M)
map (2) is the map T−1(x, y) = ((x+y)/a, y/x). We claim that R(x, y) = (1/x, y/x) is
a reversor for T . Indeed, R is an involution since (R ◦R)(x, y) = R(1/x, y/x) = (x, y).
Then


(R ◦ T ◦R)(x, y) = (R ◦ T )(1/x, y/x) = R


(
a/x


1 + y/x
,
a(1/x)(y/x)


1 + y/x


)


= R


(
a


x + y
,


ay


x(x + y)


)
=


(
x + y


a
,
y


x


)
= T−1(x, y).


Thus T = I1 ◦ I0, where I0(x, y) = R(x, y) = (1/x, y/x) and I1(x, y) = (T ◦R)(x, y) =
(a/(x + y), ay/x(x + y)).


The symmetry lines corresponding to I0 and I1 are


S0 = {(x, y) |x = 1}, S1 = {(x, y) | y = −x + a/x}.
In the logarithmic coordinates (u, v) the reversors are


IΦ
0 (u, v) = (−u, v − u) and IΦ


1 (u, v) =
(


ln
( ae−u


1 + ev−u


)
, ln


( aev−2u


1 + ev−u


))
.


The corresponding symmetry lines are


SΦ
0 = {(u, v) |u = 0}, SΦ


1 = {(u, v) | v = ln
(
−eu +


a


eu


)
}.


Note that these two lines intersect at the fixed point (u1, v1) = (0, ln(a − 1)) of the
map (see Fig. 1).


Figure 1. Left – the first 5 iterations of the symmetry lines for the
(M) map; right – the first 3 iterations of the (GT) map.


Periodic orbits comprise a template for understanding the phase space of a dynamical
system. In particular, if the system possesses time reversal-symmetries, the symmetric
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periodic orbits can be used to detect many of the geometric objects that organize the
dynamics. In Fig. 2 all visible elliptic and hyperbolic fixed points lie on symmetry
lines.


Figure 2. Left – the first 10 iterations of the symmetry lines of the
(M) map; right — the first 10 iterations of the symmetry lines of the
(GT) map.


Periodic orbits on the symmetry line S0 with even period n are searched for by start-
ing with points (0, v) ∈ S0 and imposing that (un/2, vn/2) ∈ S1, where (un/2, vn/2) =
Tn/2(u0, v0) for (u0, v0) = (0, v). This reduced to a one dimensional root finding
for the equation ln(−eun/2 + a/eun/2) − vn/2 = 0 were the unknown is v. Also, pe-
riodic orbits on S0 with odd period n are obtained by solving for v the equation
ln(−eu(n+1)/2 + a/eu(n+1)/2)− v(n+1)/2 = 0 where (u(n+1)/2, v(n+1)/2) = T (n+1)/2(u0, v0)
with (u0, v0) = (0, v).


For example, for a = 1.7, in Fig. 1, we have an intersection between the symmetry
lines S0 and S10 = T 5(S0) of the (M)-map. The two intersection points on this line
correspond to a periodic orbit of period 10 (see Fig. 3). This is the lowest period of a
periodic orbit for this value of the parameter a.


5.2. Reversibility of the (GT) map and periodic orbits. We verify the reversibil-
ity of the (GT) map in the simplified case M = R = a > 1. The map is given by (4)


T (x, y) =
(


ax(1 + x)
1 + x + axy


,
axy


1 + x


)
,


and its inverse is


T−1(x, y) =
(


1
a
x(1 + y),


1
a


y(a + x + xy)
x(1 + y)


)
.
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The map R(x, y) = (1/y, 1/x) is a reversor for T since R is an involution, (R◦R)(x, y) =
R(1/y, 1/x) = (x, y), and


(R ◦ T ◦R)(x, y) = (R ◦ T )(1/y, 1/x) = R


(
a(1 + y)


y(1 + y + xy)
,


a


x(1 + y)


)


=
(


x(1 + y)
a


,
y(a + x + xy)


ax(1 + y)


)
= T−1(x, y).


Thus T is a product of two involutions, T = I1 ◦ I0, where I0 = R and I1 = T ◦R. The
symmetry lines corresponding to the two involutions are


S0 = {(x, y) | y = 1/x}, S1 = {(x, y) |x =
a


y(1 + y)
}.


In the logarithmic coordinates, in which the map is area preserving, we have that


IΦ
0 (u, v) = (−v,−u),


IΦ
1 (u, v) = (ln(a) + u− v + ln(1 + ev)− ln(a + eu − eu+v), ln(a)− u− ln(1 + ev)),


and symmetry lines are


SΦ
0 = {(u, v) | v = −u},


SΦ
1 = {(u, v) |u = ln(a)− v − ln(1 + ev)}.


The two symmetry lines intersect at the fixed point (u1, v1) = (− ln(a − 1), ln(a − 1))
of the map. See Fig. 1. The symmetry lines can be used to search for periodic orbits
of a given period in a manner similar to the previous section. For example, for a = 10,
in Fig. 1, we have an intersection between the symmetry lines S0 and S7 = T 3(S1).
The two intersection points on this line correspond to a periodic orbit of period 7 (see
Fig. 3). This is the lowest period of a periodic orbit for this value of the parameter a.


6. Global Dynamics


We describe informally the global dynamics for the (M) map and (GT) map, indi-
cating below some methods to investigate the geometry of the system more thoroughly.
For more background on this section, one can see [Mei92].


The general picture of the dynamics consists of an alternation between regular and
chaotic dynamics in the phase space. In a neighborhood of the elliptic fixed point,
normal forms can be used to prove the existence of a positive measure set of KAM
rotational circles. It is difficult to give a precise estimate on the size of the domain
on which the KAM theorem applies. In general one can show rigorously the existence
of the KAM theorem only within some small neighborhood of the elliptic fixed point.
Nevertheless, many invariant circles can be observed beyond the domain where the
KAM Theorem applies. The invariant rotational circles are interspersed with “zones of
instability”, which are regions between pairs of invariant rotational circles which do not
contain any other invariant rotational circles. These regions are populated with various
geometrical objects: elliptic periodic orbits and their islands, hyperbolic periodic points
and their stable and unstable manifolds, cantori (invariant sets of Cantor type lying
on rotational circles), etc. The regions bounded by invariant circles are filled by “fat
fractals” on which the dynamics has a positive Lyapunov exponent. Close to the
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Figure 3. Left – a periodic orbit of period 10 for the (M) map; right
– a periodic orbit of period 7 for the (GT) map.


elliptic fixed point the chaotic regions between KAM invariant circles are very thin
and difficult to observe. As one moves away from the elliptic fixed point the chaotic
regions between rotational invariant circles become wider and the rotational invariant
circles become more sparse. It is in general difficult to estimate the maximal domain
to which rotational invariant circles continue to exist. In general there exists a last
rotational invariant circle beyond which the dynamics is predominantly chaotic. From
a biological point of view, the importance of this outermost rotational invariant circle
is that it divides the phase space into a stability zone, where all orbits are bounded,
and an instability zone, were there exist orbits with arbitrarily large growth.


The stability of a periodic orbit of period q can be determined by computing the
Greene’s residue. If O(z0) = {z0, z1, . . . , zq−1} is a period q orbit, the linearization of
T about the periodic orbit is


M = DT (zq−1) ·DT (zq−1) · · · ·DT (z0).


The eigenvalues λ1,2 of M for an area-preserving map satisfy λ1 · λ2 = 1, and so they
are completely determined by the trace Tr(M) = λ1 + λ2. The residue of the orbit is
defined as


R =
1
4


(2− Tr(M)) .


If 0 < R < 1 the orbit is elliptic, if R < 0 or R > 1 the orbit is hyperbolic (when
R > 1 it is reflection-hyperbolic), and if R = 0 or R = 1 the orbit is parabolic. As
an example, for the (M) map, in Fig. 4 we see a hyperbolic orbit of period 18, with a
residue R ≈ −0.12172.
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Figure 4. Left – a hyperbolic periodic orbit of period 18 for the (M)
map.; right – a hyperbolic tangle near a hyperbolic periodic point of
period 18 for the (M) map.


A hyperbolic periodic orbit has stable and unstable manifolds, given by


W s(O(z0)) = {z |Tn(z) → O(z0) as n →∞},
W u(O(z0)) = {z |T−n(z) → O(z0) as n →∞}.


These manifolds are smooth and generically they intersect one another transversally. If
transverse intersection occurs, the stable and unstable manifolds keep intersecting each
other transversally infinitely many times. The intersection points are asymptotic to the
periodic orbit in both forward an backwards time, and they are called homoclinic points.
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The homoclinic points form a so-called “Smale’s horseshoe”, which is an invariant set
of Cantor type on which the dynamics is chaotic. This chaotic set is of zero measure.
It appears however that the closure of the unstable manifold is a chaotic set of positive
measure (sometimes referred as a ‘fat fractal’). The width of this set in the phase space
can be computed as in [Olv01]. For the hyperbolic orbit of period 18 of the (M) map,
the stable and unstable manifolds are also shown in Fig. 4. The color code is blue
for the stable manifold, and red for the unstable manifolds, however the colors appear
mixed due to the overlapping of points in the plot. The homoclinic tangle is located
very closely to the local stable and unstable manifolds therefore it cannot be observed
in Fig. 4. The magnification of the plot in Fig. 4 illustrates the complex structure of
this set.


One method to determine the existence of an invariant circle with a given frequency
is Greene’s criterion. Greene’s criterion says that if ω is an irrational number with
continued fraction expression


ω = a0 +
1


a1 +
1


a2 +
1
. . .


= [a0, a1, a2, . . .],


and pj/qj = [a0, a1, . . . , aj ], then if the residues Rj for the pj/qj-periodic orbit converge
to 0 as j →∞, there exists a rotational invariant circle Cω of rotation number ω. This
circle is the limit of the pj/qj-periodic orbits. When the residues Rj → ∞ then the
pj/qj-periodic orbits do not approach a rotational invariant circle. In the critical case,
when the residues Rj remain bounded, a non-smooth invariant circle exists and lies
at the boundary of a “zone of instability”. The intuition behind Greene’s criterion is
that for a given frequency, if the orbits of frequency approaching the given one are
stable, then an invariant circle of that frequency should exist, and if they are unstable,
then the invariant circle is destroyed. A partial justification of the Greene’s criterion
is given in [DdlL00, FdlL92].


One method to look for pj/qj-periodic orbits approaching a given rotation number
ω is based on the Farey tree procedure. This procedure starts with a pair of neigh-
boring rotation numbers (p0, q0) and (p1, q1), in the sense that p1q0 − p0q1 = 1. Set
(pL, qL) = (p0, q0) and (pR, qR) = (p1, q1) and define (pC , qC) = (pL + pR, qL + qR).
If (pC , qC) = ω then stop. If ω ∈ (pL/qL, pC/qC) then set (p′L, q′L) = (pL, qL),
(p′R, q′R) = (pC , qC) and continue the algorithm. If ω ∈ (pC/qC , pR/qR) then set
(p′L, q′L) = (pC , qC), (p′R, q′R) = (pR, qR) and continue the algorithm. The procedure
continues until pC/qC is sufficiently close to ω. The resulting sequence of residues
shows if the pC/qC-periodic orbits approach a smooth invariant circle, a critical invari-
ant circle, or neither.


For example, in the case of the (M) map, Table 1 shows a Farey tree for the pair
(1, 20) and (1, 21). The residues R approach 0. This shows the existence of an invariant
circle Cω of rotation number ω ≈ 10946/223101 = 0.04906298044.


To estimate the last rotational invariant circle one can use Greene’s method. We
have seen above the existence of a rotational invariant circle Cω with 1


20 < ω < 1
21 .
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(p, q) (u, v) R
(1,20) (-2.137802331242, 2.660218342707) 0.194898688727
(1,21) (-2.284841188849, 2.809355937444) 0.236517102584
(2,41) (-2.210718464375, 2.734252817626) 0.174438653742
(3,61) (-2.191129638892, 2.714379505737) 0.149420161163
(5,102) (-2.198187342802, 2.721541004023) 0.100734459178
(8,163) (-2.195794777959, 2.719113418068) 0.060130102047
(13,265) (-2.196650563958, 2.719981750010) 0.023832324654
(21,428) (-2.196337851729, 2.719664455884) 0.005654518172
(34,693) (-2.196455183287, 2.719783506937) 5.303168503587×10−4


(55,1121) (-2.196410548478, 2.719738218052) 1.18075743102×10−5


(89,1814) (-2.196427595202, 2.719755514585) 1.95906295630×10−8


(144,2935) (-2.196421083252, 2.719748907207) -3.47313289239×10−9


(233,4749) (-2.196423570622, 2.719751431028) -2.173692337237×10−10


(377,7684) (-2.196422620527, 2.719750467010) -4.782941687153×10−8


(610,12433) (-2.196422983431, 2.719750835231) -3.104287316091×10−7


(987,20117) (-2.196422844814, 2.719750694583) -1.023025106405×10−6


(1597,32550) (-2.196422897761, 2.719750748306) -3.571205525076×10−6


(2584,52667) (-2.196422877537, 2.719750727786) -4.986864951206×10−6


(4181,85217) (-2.196422885262, 2.719750735624) 8.152419468387×10−7


(6765,137884) (-2.196422882311, 2.719750732630) -6.677160854451×10−6


(10946,223101) (-2.196422883438, 2.719750733773) -3.066073695663×10−4


When we investigate the next frequency interval to the right 1
21 < ω < 1


22 we see that
the values of R start a low values, but then begin to diverge. See Table 2.


(p, q) (u, v) R
(1,21) (-2.284841188849463, 2.809355937444434) 0.236517102584695
(1,22) (-2.430117721564692, 2.956177518225212) 0.279648868601414
(2,43) (-2.356795628011624, 2.882131962065994) 0.251170228143021
(3,64) (-2.338289733712308, 2.863425985788683) 0.262994316184898
(5,107) (-2.344714316669516, 2.869920875340568) 0.257258825439152
(8,171) (-2.342680701180615, 2.867865103418546) 0.272939514854073
(13,278) (-2.343344880519465, 2.868536529020127) 0.279906466851884
(21,449) (-2.343131158660153, 2.868320476490040) 0.306277780218352
(34,727) (-2.343199696773869, 2.868389762131853) 0.343626725409194
(55,1176) (-2.343177993681921, 2.868367822340857) 0.42294970967987
(89,1903) (-2.343184727138791, 2.868374629235501) 0.586180184128352
(144,3079) (-2.343182715618982, 2.868372595777359) 1.007217420363304
(233,4982) (-2.343183273762194, 2.868373160007887) 2.43497459567152
(377,8061) (-2.343183141359829, 2.868373026161487) 10.458616393851116
(610,13043) (-2.343183163438146, 2.868373048480588) 116.503061827737838
(987,21104) (-2.343183161730191, 2.868373046754008) 6,554.412111192941666
(1597,34147) (-2.343183161761104, 2.868373046785255) 3.067813172442627×107


(2584,55251) (-2.343183161761048, 2.868373046785214) -4.165961923968×1012


The periodic orbit (p, q) = (55, 1176) seems to approximate a rotational circle,
though orbits near its hyperbolic point actually escape; this is confirmed by the fact
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the the residues of higher period orbits diverge. Thus there may actually only be very
low flux cantori in the neighborhood. Here flux refers to the volume of trajectories
that escape from the interior region of a cantorus to the exterior region per unit of
time. The outermost orbit that we have found that is surely an invariant circle ap-
pears to be approximated by the periodic orbit (1364, 28267), which corresponds to
ω = 0.0482541479464; this is again between 1


20 and 1
21 . A very low flux cantorus is


shown in Fig. 5. The trajectories from the interior region defined by this particular
cantorus do not escape to the exterior region in 100’s millions of iterates. However
trajectories from the exterior region of the cantorus escape to infinity rather quickly.
Thus very low flux cantori can act as effective tori on any possible biological time scale.


Figure 5. A low flux cantorus and an escaping orbit outside the can-
torus for the (M) map.


7. Conclusions


We considered two models of biological systems that are described by discrete-time,
conservative dynamical systems in the plane, which exhibit the KAM phenomena.
We used the Birkhoff normal form and Moser’s twist-map theorem to prove that the
KAM theorem holds in a vicinity of the elliptic fixed point. We exploited the fact
the the systems are time-reversible, and we applied Greene’s criterion to compute,
with high precision, KAM invariant circles away from the elliptic fixed point. We also
estimated the location of the last invariant circle. These geometric objects delimitate
quite precisely the regions in the phase space where the population dynamics is regular
from the regions where it is chaotic. Although some of these geometric objects cease
to exist in more realistic models comprising environmental forcing, they still serve as
a skeleton to organize their dynamics.
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