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Abstract. We study spectral properties of Dirichlet Laplacian on the conical layer
of the opening angle π − 2θ and thickness equal to π. We demonstrate that below
the continuum threshold which is equal to one there is an infinite sequence of isolated
eigenvalues and analyze properties of these geometrically induced bound states. By
numerical computation we find examples of the eigenfunctions.
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1. Introduction


Geometrically induced bound states in infinitely stretched regions with a hard-wall (or


Dirichlet) boundary attracted a lot attention in recent years, in particular, because


they represent a purely quantum effect which cannot be approached from the usual


semiclassical point of view. The attention was first paid to tubes where the effective


attraction is caused by bending [EŠ89, GJ92, DE95], later the analogous question was


addressed with one dimension added, in curved layers [DEK01, CEK04]. This question


is more complicated and to the date we do not have a full analogue of the result saying


that any local bending of an asymptotically straight tube exhibits such bound states.


One reason is that geometry of surfaces is more complicated than that of curves and


global properties play a more important role.


However, this is not the only difference between tubes and layers. In the case of


the former we have various solvable examples. They often correspond to tubes with


a non-smooth boundary being thus beyond the assumptions under which the general


results are proved and illustrating the robustness of the effect; on the other hand they


can be composed of simple building blocks which facilitates their solvability. In fact,


some examples came already before the general theory [LLM86, EŠŠ89, SRW89] and


others were found in parallel with it — see, e.g., [LCM99] for a review.


This is in contrast with our state of knowledge concerning the layers. We have


reasonably strong and general existence results [DEK01, CEK04], later even extended


to layers in higher dimensions [LL07], as well a particular “weak coupling” result [EK01],


but to the date no solvable example is known‡. The goal of the present work is to discuss


such an example in the geometrical situation which is particularly simple — apart of a


trivial scaling the model depends on a single parameter.


The layer to consider is the region bordered by two conical surfaces shifted mutually


along the cone axis by π csc θ. Using a natural separation of variables the angular


component can be separated and the problem can be in each partial wave reduced


to analysis of an appropriate operator on a skewed semi-infinite strip. This will be


demonstrated in the next section and used in Sec. 3 to derive some properties of the


corresponding discrete spectrum. To illustrate these results and to provide further


insights into this binding mechanism, we present in the following section a numerical


analysis of the problem: we calculate the eigenvalue dependence on the cone opening


angle and present examples of eigenfunctions.


‡ By solvability we do not mean finding the eigenvalues and eigenfunctions analytically, of course,
this is beyond reach even in the tubes case. What we have in mind is the possibility of bringing the
analysis to the state when one can find these quantities numerically and study their dependence on the
parameters of the model.
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Figure 1. The problem geometry. The left part shows the setting in cylindrical
coordinates as described in Secs. 2.1 and 2.2, the right part shows the cross section in
rotated coordinates s, u used in Sec. 2.3.


2. The Hamiltonian


2.1. Basic definitions


As we have said the object of our study is the Hamiltonian of a quantum particle confined


to a hard-wall conical layer of the opening angle π − 2θ for a fixed θ ∈ (0, 1
2
π), i.e.


Σθ := {(r, φ, z) ∈ R3 : (r, z) ∈ Ωθ, φ ∈ [0, 2π)} , (2.1)


where


Ωθ := {(r, z) ∈ R2 : r ≥ 0, 0 < z − r sin θ < π csc θ} . (2.2)


Without loss of generality we may assume that the layer width is π, the result for


other widths being obtained by a trivial scaling. Similarly we neglect values of physical


constants and identify the Hamiltonian Hθ with the Dirichlet Laplacian −∆Σθ
D on the


Hilbert space H = L2(Σθ, rdrdφdz). Using the cylindrical coordinates we can write the


operator action explicitly,


Hθψ = −1


r


∂


∂r


(
r
∂ψ


∂r


)
− 1


r2


∂2ψ


∂φ2
− ∂2ψ


∂z2
, (2.3)


with the domain consisting of all functions ψ ∈ W 1,2
loc (Σθ) such that ψ(~x) = 0 for


~x = (r, φ, z) ∈ ∂Σθ and Hψ ∈ L2. The operator is associated with the quadratic form


Qθ[ψ] =


∫


Σθ


[∣∣∣∣
∂ψ


∂r


∣∣∣∣
2


+
1


r2


∣∣∣∣
∂ψ


∂φ


∣∣∣∣
2


+


∣∣∣∣
∂ψ


∂z


∣∣∣∣
2
]


(r, φ, z) rdrdφdz (2.4)


defined on functions ψ ∈ W 1,1
loc (Σθ) vanishing at the layer boundary and such that


Qθ[ψ] < ∞. It is well known [RS78, Sec. XIII.15] that the operator H is self-adjoint


and positive, σ(H) ⊂ [0,∞).


2.2. Partial wave decomposition


Using the cylindrical symmetry of the system we write state Hilbert space as


H = L2(Ωθ, rdrdz)⊗ L2(S1) =
⊕


m∈Z
L2(Ωθ, rdrdz) , (2.5)
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where L2(S1) refers conventionally to functions on the unit circle with the orthonormal


basis { 1
2π


eimφ : m ∈ Z}. The operator Hθ decomposes accordingly as


Hθ =
⊕


m∈Z
Hθ


m , Hθ
mψ = −1


r


∂


∂r


(
r
∂ψ


∂r


)
− ∂2ψ


∂z2
+


m2


r2
ψ , (2.6)


with the domain consisting of ψ ∈ W 1,2
loc (Ωθ) satisfying the requirement ψ(r, r sin θ) =


ψ(r, r sin θ+π tan θ) = 0 and such that Hmψ ∈ L2. Under these conditions the operators


Hθ
m, m 6= 0, are self-adjoint while for m = 0 one has to demand additionally that


∂ψ
∂r


∣∣
r=0


= 0. All the boundary values here are understood as the appropriate limits. The


quadratic forms associated with the partial wave components of the Hamiltonian are


Qθ
m[ψ] =


∫


Σθ


[∣∣∣∣
∂ψ


∂r


∣∣∣∣
2


+


∣∣∣∣
∂ψ


∂z


∣∣∣∣
2


+
m2


r2
|ψ|2


]
(r, z) rdrdz (2.7)


being defined on all ψ ∈ W 1,1
loc (Ωθ) satisfying ψ(r, r sin θ) = ψ(r, r sin θ +π csc θ) = 0 and


such that Qθ
m[ψ] < ∞.


As usual we can pass to unitarily equivalent operators by means of the trans-


formation U : L2(Ωθ, rdrdz) → L2(Ωθ) defined by (Uψ)(r, z) := r1/2ψ(r, z) ≡ ψ̃(r, z)


and an analogous map L2(Σθ, rdrdφdz) → L2(Σθ). In particular, the operator


H̃θ
m := UHθ


mU−1 acts as


H̃θ
mψ̃ = −∂2ψ̃


∂r2
− ∂2ψ̃


∂z2
+


1


r2


(
m2 − 1


4


)
ψ̃ (2.8)


on functions ψ̃ ∈ W 1,2
loc (Ωθ) such that H̃θ


mψ̃ ∈ L2 satisfying the Dirichlet boundary


condition at the boundary of Ωθ; the associated quadratic form is


Q̃θ
m[ψ̃] =


∫


Σθ






∣∣∣∣∣
∂ψ̃


∂r


∣∣∣∣∣


2


+


∣∣∣∣∣
∂ψ̃


∂z


∣∣∣∣∣


2


+
1


r2


(
m2 − 1


4


)
|ψ̃|2



 (r, z) drdz (2.9)


with the domain of all ψ̃ ∈ W 1,1
loc (Ωθ) satisfying the Dirichlet condition at ∂Ωθ and such


that Qθ
m[ψ̃] < ∞.


2.3. Alternative expressions


There are other ways how to express action of our Hamiltonian. For instance, one can


use rotated coordinates in the radial cross section plane according to Fig. 1,


s = r cos θ + z sin θ , u = −r sin θ + z cos θ , (2.10)


in which we have


Ωθ := {(s, u) ∈ R2 : s ≥ 0, 0 < u < min(π, s cot θ)} . (2.11)


The partial wave operators act now as


H̃θ
mψ̃ = −∂2ψ̃


∂s2
− ∂2ψ̃


∂u2
+


4m2 − 1


4(s cos θ − u sin θ)2
ψ̃ , (2.12)
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the domain being the same as above; the associated quadratic form takes in these


coordinates the shape


Q̃θ
m[ψ̃] =


∫


Σθ






∣∣∣∣∣
∂ψ̃


∂s


∣∣∣∣∣


2


+


∣∣∣∣∣
∂ψ̃


∂u


∣∣∣∣∣


2


+
4m2 − 1


4(s cos θ − u sin θ)2
|ψ̃|2



 (s, u) dsdu . (2.13)


One can also use skew coordinates,


y = s− u tan θ , v = u , (2.14)


in which the expression (2.13) acquires the form


Q̃θ
m[ψ̃]=


∫ ∞


0


dy


∫ π


0


dv



 1


cos2 θ


∣∣∣∣∣
∂ψ̃


∂y


∣∣∣∣∣


2


+


∣∣∣∣∣
∂ψ̃


∂v


∣∣∣∣∣


2


+ 2 tan θ Re


(
∂ ¯̃ψ


∂y


∂ψ̃


∂v


)


+
4m2 − 1


4y2 cos2 θ
|ψ̃|2



 (y, v) . (2.15)


3. Properties of the spectrum


Since the conical layer is built over a surface with a cylindrical end its basic spectral


properties follow from the theory developed on [DEK01, CEK04].


Theorem 3.1. For any fixed θ ∈ (0, 1
2
π) we have σess(H


θ) = [1,∞) while the discrete


spectrum of the operator is non-empty with dim σdisc(H
θ) = ∞.


Proof. For most part of the argument we can refer to the papers quoted above. In


particular, we proved there that inf σess(H
θ) = 1. In order to check that any k2 + 1


belongs to the spectrum one has to construct a suitable Weyl sequence. Consider three


dimensional Cartesian coordinates s, t, u and take the family of functions


gn(s, t, u) :=


√
2n


n− 2
eiksf(ns, nt) cos


πnu


n− 2


where |u| ≤ n−2
n


and f ∈ C∞
0 (R2) has the support in (−1, 1)2. By construction


‖(−∆ − k2 − 1)gn‖ → 0 as n → ∞, and since the vanishing quantity is invariant


w.r.t. Euclidean transformations we can find a family of functions g̃n supported by


rectangular blocks of the size 2n × 2n × (1 − 2
n
), each of them contained in Σθ being


naturally further and further from the layer tip as n grows, which proves the claim.


The existence of the discrete spectrum was proven in [DEK01, CEK04]. While it


is not stated explicitly there that the number of the eigenvalues in (0, 1) is infinite, it


is clear from the proof in which one constructs a sequence of trial functions supported


by mutually disjoint ring-shaped domains of the conical layer, and thus orthogonal to


each other; for large enough indices they give the value of the energy functional below


the essential spectrum threshold.
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After demonstrating the existence of the discrete spectrum let us look at its


properties in more detail. First we note that all the geometrically induced bound states


in the layer belong to the s-wave sector.


Proposition 3.1. σdisc(H
θ
m) = ∅ holds if m 6= 0.


Proof. The claim is equivalent to σdisc(H̃
θ
m) = ∅. For any higher partial wave, m 6= 0,


we have Q̃θ
m[ψ̃] ≥ ∫


Ωθ
|~∇ψ̃|2(r, z) drdz which means that H̃θ


m ≥ −∆Ωθ
D in the form sense


where the rhs acts according to [RS78, Sec. XIII.15] on functions ψ ∈ W 1,2
loc (Ωθ) such


that ψ(~x) = 0 for ~x = (r, z) ∈ ∂Ωθ and −∆ψ ∈ L2. The result then follows by minimax


principle because σ(−∆Ωθ
D ) = σess(−∆Ωθ


D ) = [1,∞).


This does not mean, of course, that the cylindrically asymmetric part of the problem


is trivial — it can exhibit, for instance, an interesting scattering behaviour. Since we


are dealing with the discrete spectrum here, however, we consider from now on only


functions independent of the angular variable φ and drop the index m in the quadratic


form expressions. By Theorem 3.1 the operator Hθ has a sequence of eigenvalues,


λ1(θ) < λ2(θ) ≤ λ3(θ) ≤ · · · , (3.16)


labelled in the ascending order; the corresponding eigenfunctions will be denoted as


ψ(j) ∈ L2(Σθ), j = 1, 2, . . . ,; with the symmetry in mind we use the same symbols for


their radial cuts ψ(j) ∈ L2(Ωθ, rdrdz) and ψ̃(j) for their counterparts in L2(Ωθ).


The main question is about the dependence of the spectrum on the cone opening


angle. Let us start with demonstrating that the eigenvalues (3.16) are smooth functions


of θ. To this aim we compare the cross sections (2.11) for two different values of


the angle, θ and θ′. They can be mapped onto each other by a longitudinal scaling,


s cot θ = s′ cot θ′; then we can express the form (2.13) referring to the angle θ′ as


Q̃θ′ [ψ̃]=


∫


Σθ



 tan θ


tan θ′


∣∣∣∣∣
∂ψ̃


∂s


∣∣∣∣∣


2


+
tan θ′


tan θ


∣∣∣∣∣
∂ψ̃


∂u


∣∣∣∣∣


2


− sin 2θ


sin 2θ′
|ψ̃|2


4(s cos θ − u sin θ)2



 (s, u) dsdu . (3.17)


The integration is thus taken over the same domain and the angle dependence is moved


to the coefficients of the operator.


Proposition 3.2. The functions λj(·), j = 1, 2, . . . , are C1 on (0, 1
2
π).


Proof. To find the derivative of λj(·) we have Feynman-Hellmann theorem differentiate


(3.17) with respect to θ′ at θ′ = θ. It yields


λ′j(θ) =


∫


Σθ



− 2


sin 2θ


∣∣∣∣∣
∂ψ̃(j)


∂s


∣∣∣∣∣


2


+
2


sin 2θ


∣∣∣∣∣
∂ψ̃(j)


∂u


∣∣∣∣∣


2


+
|ψ̃(j)|2 cot 2θ


2(s cos θ − u sin θ)2



 (s, u) dsdu .
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Since ψ̃(j) ∈ W 1,1
loc (Ωθ) — in fact, it belongs to W 1,2


loc — the first two contributions to


the integral are finite. Combining this with the fact that Qθ
m[ψ̃(j)] < ∞ we infer that


also the last contribution to the integral is finite, so the derivative exists. Using then


the integrand continuity with respect to θ and the dominated convergence theorem, we


arrive at the result.


Note that the terms appearing in the last expression have different signs so it is


not apriori clear whether the eigenvalue behave monotonously as the angle changes.


Nevertheless, the geometrically induced binding becomes stronger as θ increases, in


particular, we have the following result.


Proposition 3.3. Set λ0 := π−2j2
0,1 ≈ 0.58596 where j0,1 is the first zero of Bessel


function J0. To any N ∈ N and λ̄ ∈ (λ0, 1) there is a θ0 such that Hθ has at least N


eigenvalues below λ̄ for any θ ∈ (θ0,
1
2
π).


Proof. By Dirichlet bracketing [RS78, Sec. XIII.15] it is sufficient to find a region Σ ⊂ Σθ


such that −∆Σ
D has this property. Consider a cylinder of radius R < π and length L.


The eigenvalues of the corresponding Dirichlet Laplacian are easily found; it yields the


condition


λ0


( π


R


)2


+


(
πN


L


)2


< λ̄ .


We embed the cylinder axially into Σθ with one lid touching the tip of the inner surface;


when θ becomes close enough to 1
2
π we can chose R close to π and L large so that the


above condition is satisfied.


4. Numerical results


In order to get a more detailed information and a better insight let us study next the


spectrum numerically. As a consequence of Proposition 3.1, we may limit ourselves to


two–dimensional geometry, i.e. to consider the spectrum of (2.6) for m = 0. Recall


that the corresponding eigenfunctions are independent of the angular variable φ so we


can choose φ = 0 arriving at the two–dimensional problem depicted in Fig. 1. Note also


that the alternative formulation (2.12) leads to the same results.


The first difficulty we meet is the absence of reliable estimates concerning the span


of eigenfunctions. The knowledge of the region where the eigenfunctions are negligible


is important. We have to carry out integration over an infinite region and we need


to cut the integration somewhere, unless we transform the problem to a finite region.


This, however, brings problems of other kinds ruling out, in particular, use of the mode-


matching approach.


From general considerations we know that the smaller the gap between the


eigenvalue and the continuum threshold, of course, the farther is the wavefunction


stretched. Also, for small opening angles eigenfunctions spread farther. This rule of


thumb may be of help as a rough estimate of integration region.
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Figure 2. The left figure depicts the reduced 2D region on which the solution is
sought. The right one shows the dependence of eigenvalues on the opening angle; the
first seven of them are shown (colour online). The essential spectrum threshold E = 1
is the accumulation point of all of them and they approach it from below as θ → 1


2π−.
The thick dot marks the value λ0 indicated in Proposition 3.3; the picture suggests
that the eigenvalues tend to it monotonously as θ → 0+.


4.1. The method used


We must admit that we have not found a method which would be efficient enough


and intuitive at the same time. To summarize our experience we prefer finite element


methods. In view of the absence of knowledge of a practical span of configuration space


mentioned above even this approach requires separate treating of respective levels. In


order to minimize the number of elements we took further advantage of symmetry and


limited the problem to the region shown in the left part of Fig. 2 with the appropriate


boundary conditions. The sought eigenvalues of the conical layer are then eigenvalues


of the operator (2.6) with m = 0 on this region.


We used 2nd order elements. The total number of degrees of freedom ranged from


50000 to about 300000 depending on eigenfunction extent. All runs for small θ (most


demanding) took less than one minute each on an Intel Core 2 (1.86 GHz).


We have also tried to employ the Galerkin method. The idea was to choose a set


of test functions satisfying the boundary conditions. This, however, leaves still leeway


in representing the subspace to which the problem is projected, i.e. how to choose the


particular form of the test functions. The choices we attempted led to substantially


more time consuming calculation than FEM, so fitting test functions are to be found


yet.
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4.2. The results


The first question concerns the dependence of eigenvalues on the opening angle


illustrated on Fig. 2 in the interval between 1 and 15 degrees. It agrees well with


the general picture: the planar layer, 2θ = π, does not support any eigenvalue below the


threshold, while for any θ < π/2 there are by Theorem 3.1 infinitely many such isolated


eigenvalues, albeit all are weakly bound for sufficiently open conical layers. As the


opening angle becomes more acute the low-lying states become gradually more strongly


bound. The numerical results show no degeneracies.


As we move away from the ground state, structure of the eigenfunctions acquires


more and more a one-dimensional character. This is demonstrated in Fig 3 when the


seven lowest eigenfunctions for the angle θ = 2.5o are calculated. As expected, the


ground-state eigenfunction can be chosen positive. On the other hand, the excited


states display a number of nodal lines (nodal surfaces of the full problem) that is in


a one-to-one correspondence with the eigenvalue index of the sequence {λi(θ)}, in an


analogy with the classical oscillation theorem. Notice also that the node distances are


increasing with the distance of the cone tip. This behaviour has to be associated with


the fact that the effective-curvature induced potential in (2.12) is proportional to s−2


having thus the same scaling behaviour as the kinetic part of the Hamiltonian.


Another observation worth commenting is shown on Fig. 4, where we have plotted


(a side view of the) squared eigenfunctions |ψi|2 with i = 1, . . . , 7 for the same opening


angle θ as above. As the index i grows, dominant regions lie around the inner tip and


at the “far end” of eigenfunction extent, more exactly, between the last two nodal lines.


Consequently, location of the regions with the largest probability of finding the particle


in the conical layer depends on the eigenvalue number in this way.


5. Concluding remarks


Our discussion has not exhausted by far all open questions concerning spectra of conical


layers. We have also mentioned the eigenvalue monotonicity which is expected to hold


and supported by the above numerical result. A related question concerns the simplicity


of the spectrum. It is again seen in the numerical example and its validity is strongly


supported by the quasi-one-dimensional character of the higher eigenfunctions, but these


considerations cannot replace a rigorous proof.


Other open questions are associated with the behaviour for extreme values of θ


which we left out in the previous section because these cases are numerically demanding.


For small values of θ the density of eigenvalues above λ0 ≈ 0.58596 should grow in


accordance with Proposition 3.3. What we see nevertheless is that already for θ = 2.5o


the excited states have nodal lines (or nodal surfaces of the full problem) inside the cone


“cap”; one can ask about critical values of θ for which one of those touches the inner tip.


On the other hand, one can ask about the spectral asymptotics as θ → 1
2
π−. In contrast


to [EK01] the geometric perturbation is not compactly supported for conical layers and
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Figure 3. The contour plot of the first seven eigenfunctions (colour online) for
θ = 2.5o. In view of the axial symmetry, we show only one half of ψ(r, z). The
the r− and z−scales are different, the vertical axis being scaled by factor five: the
transversal width is π and z ranges from 0 to 225. Nodal lines are indicated in black
colour; higher eigenfuctions have clearly a quasi-onedimensional character.
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Figure 4. Side view (i.e., with zero elevation angle) of |ψ|2 for the same situation as
in Fig. 3. All the eigenfunctions are normalized to the same constant, so that relative
height ratios reflect the true situation (not distorted by different normalization of
individual functions). There are two areas with higher probability, one in the vicinity
of the inner tip and the other one at the “far end” of the function extent. The latter
moves away from the vertex as the eigenvalue number increases.
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the effective potential is on the borderline between short- and long-range cases, so it is


not a priori clear what the asymptotic expansion could be.


Of interest is also the continuous spectrum of conical layers, both from the point of


view of scattering — existence of wave operators and their asymptotic completeness —


as well as of resonances. Being bound by the deadline of this issue, we leave all these


questions to a later investigation.
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