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On leave from Université de Lyon, Université Lyon I, CNRS UMR5208, Insti-
tut Camille Jordan, 43 blvd du 11 novembre 1918, 69622 Villeurbanne Cedex,
France


Abstract
The paper is a presentation of recent investigations on potential scattering in R3. We


advocate a new formula for the wave operators and deduce the various outcomes that follow
from this formula. A topological version of Levinson’s theorem is proposed by interpreting
it as an index theorem.


1 Introduction


In recent works we proposed a topological approach to Levinson’s theorem by interpreting it as
an index theorem. For that purpose we introduced a C∗-algebraic framework, and one of the key
ingredients of our approach is the fact that the wave operators belong to a certain C∗-algebra.
Once such an affiliation property is settled, the machinery of non-commutative topology leads
naturally to the index theorem. For various scattering systems, this program was successfully
applied: potential scattering in one dimension has been investigated in [24], models of one point
interaction in Rn with n ∈ {1, 2, 3} have been solved in [21], the Friedrichs model was studied
in [32], various results on the Aharonov-Bohm model have been obtained in [20, 29] and both
[22, 23] are review papers describing the main idea of these investigations. Furthermore, we have
been kindly informed by its authors that a closely related work on scattering theory for lattice
operators in dimension d ≥ 3 is in preparation [5]. Now, the present paper is a presentation of
our investigations on potential scattering in R3.


On the way of proving the affiliation property for potential scattering in R3 we were stimu-
lated to conjecture an even stronger result: The shape of the wave operators is much more rigid
than what had ever been expected. More precisely, if W− denotes one of the wave operators of
the scattering system with a potential that has a sufficiently rapid decrease to 0 at infinity, and
if S denotes the corresponding scattering operator, then


W− = 1 + ϕ(A)(S − 1) + K , (1)
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where ϕ(A) is a function of the generator of dilation that is going to be explicitly given below,
and K is a compact operator in L2(R3). Once this formula is obtained, the affiliation problem
becomes a simple corollary.


Let us immediately say that we do not present here the complete proof of the above formula,
but shall try to motivate it and explain the various outcomes that follow from this formula. It
should become clear to the reader that such a result is in perfect concordance with many already
known results on scattering theory in R3, and that it provides even a natural background for
many of them. In fact, the missing part in the proof is the compactness of the remainder term
K. Its proof is technically difficult and has almost no relation with the material which is going
to be presented here. For that reason, we have decided not to obscure these outcomes and
to assume from the beginning that K is compact, see Conjecture 4. Then, one of the main
consequence of formula (1) is a topological version of Levinson’s theorem. In the second part of
this introduction we describe in non-technical terms one of its previous formulation as well as
our new approach.


In the Hilbert space H := L2(R3), let us consider the operators H0 := −∆ and H :=
−∆ + V for a potential V which vanishes sufficiently rapidly at infinity. In such a situation,
it is known that the wave operators W± exist and are asymptotically complete, and that the
scattering operator S is unitary. We denote by {S(λ)}λ∈R+ the scattering operator in the
spectral representation of H0, i.e. S(λ) is a unitary operator in H := L2(S2) for almost every
λ. Then, Levinson’s theorem is a relation between the number N of bound states of H and an
expression related to the scattering part of the system. The latter expression can be written
either in terms of an integral over the time delay, or as an evaluation of the spectral shift function
(see the review papers [6, 26] and references therein). In particular, under suitable hypotheses
on V [7, 27] a common form of Levinson’s theorem is


1
2π


∫ ∞


0


(
tr


[
iS(λ)∗ dS


dλ (λ)
]− c√


λ


)
dλ = N + ν, (2)


where tr is the trace on H and c = (4π)−1
∫
R3 dxV (x). The correction term ν arises from the


existence of resonance for H at energy 0. If such a 0-energy resonance exists, the correction ν
is equal to 1/2, and it is 0 otherwise. The explanation for the presence of ν in (2) is sometimes
quite ad hoc.


We shall now show how to rewrite (2) as an index theorem. Our approach is based on the
following construction: Let B(H) denote the algebra of bounded operators on H, and let E be
a closed unital subalgebra of B(H) containing a closed ideal J . Let us assume that (i) W−
belongs to E , (ii) the image of W− through the quotient map q : E → E/J is a unitary operator
incorporating S. We shall see that in the simplest situation, q(W−) can be identified with S,
but that in the general case, q(W−) incorporates besides S other components which account for
the correction in (2).


We think of J as the algebra related to the bound states system, and of E/J as the one
corresponding to the scattering system. By the general machinery of K-theory of C∗-algebras
the map q gives rise to a topological boundary map, called the index map, ind : K1(E/J ) →
K0(J ) which can be described as follows: If Γ ∈ E/J is a unitary representing an element
[Γ]1 in K1(E/J ) and having a preimage W ∈ E under q which is an partial isometry, then
ind([Γ]1) = [WW ∗]0 − [W ∗W ]0, the difference of the classes in K0(J ) of the range and the
support projections of W . In particular if W− belongs to E , the asymptotic completeness yields


ind
(
[q(W−)]1


)
= −[Pp]0 , (3)
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where Pp is the orthogonal projection on the subspace spanned by the eigenvectors of H. This
result is our abstract Levinson’s theorem. Concrete Levinson’s theorems like (2) arise if we
apply functionals to the K-groups to obtain numbers.


For a large class of scattering systems we expect that J = K(H), where K(H) is the algebra of
compact operators on H, and that E/J is isomorphic to C


(
S;K(H )


)∼, the continuous functions
on the circle with values in K(H ) and a unit added. Let us already say that this assumption
holds for the model considered in this paper. In that case K0(J ) and K1(E/J ) are both
isomorphic to Z and so the index map in (3) reduces to an homomorphism Z → Z, and hence
to a multiple of the identity n id for some n ∈ Z. Indeed, the trace Tr on H induces a functional
Tr∗ : K0


(K(H)
) → Z, with Tr∗([P ]0) = Tr(P ) if P ∈ K(H) is a projection, and this functional


is an isomorphism. Similarly the winding number w(Γ) of the determinant t 7→ det
(
Γ(t)


)
induces a functional w∗ : K1


(
C


(
S;K(H )


)∼) → Z, with w∗([Γ]1) = w(Γ) for any unitary
Γ ∈ C


(
S;K(H )


)∼, which also yields to an isomorphism. Then there exists a n ∈ Z such
that the following index theorem holds


nw
(
q(W−)


)
= −Tr(Pp) . (4)


The number n depends on J ⊂ E , that is on E and its ideal J or, as is the technical term, on the
extension defined by E and J . We will find below that for the algebras constructed in Section
4 this number n is equal to 1, meaning that we are considering the Toeplitz extension and the
index theorem of Krein-Gohberg. This is our formulation of the concrete Levinson’s theorem (2).
Note that there is room for further, potentially unknown, identities of Levinson type by choosing
other functionals in cases in which the K-groups are richer than those considered above, see for
example [20].


There is a certain issue about the functional defined by the winding number, as the deter-
minant of the unitary Γ(t) is not always defined. Nevertheless it is possible to define w∗ on a
K1-class [Γ]1 simply by evaluating it on a representative on which the determinant det(Γ(t)) is
well defined and depends continuously on t. For our purposes this is not sufficient, however, as
it is not a priori clear how to construct for a given Γ such a representative. We will therefore
have to make recourse to a regularization of the determinant. Let us explain this regularization
in the case that Γ(t)− 1 lies in the p-th Schatten ideal for some integer p, that is, |Γ(t)− 1|p is
traceclass. We denote by {eiθj(t)}j the set of eigenvalues of Γ(t). Then the regularized Fredholm
determinant detp, defined by [14, Chap. XI]


detp


(
Γ(t)


)
=


∏


j


eiθj(t) exp


(
p−1∑


k=1


(−1)k


k
(eiθj(t) − 1)k


)


is finite and non-zero. Let us furthermore suppose that t 7→ Γ(t) − 1 is continuous in the p-th
Schatten norm. Then the map t → detp


(
Γ(t)


)
is continuous and hence the winding number


of S 3 t 7→ detp


(
Γ(t)


) ∈ C∗ exists. In addition, if we suppose that t 7→ Γ(t) is continuously
differentiable in norm, then one can show that in contrast to the value of the determinant at
fixed t, the winding number will not depend on p. Indeed, with this additional assumption the
map t 7→ detp+1


(
Γ(t)


)
is continuously differentiable and


d ln detp+1


(
Γ(t)


)


dt
= tr


[(
1− Γ(t)


)pΓ∗(t)Γ′(t)
]
. (5)
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Furthermore, by integrating the map t 7→ tr
[(


1−Γ(t)
)qΓ∗(t)Γ′(t)


]
around S, one can show that


the result is independent of q as long as q ≥ p. Note that since we have not been able to locate
these results in the literature, we prove them in the Appendix. Thus, in order to defined w
we may choose any p for which Γ(t) − 1 takes its values in the p-th Schatten ideal and the
corresponding map t 7→ Γ(t)−1 is continuous in the p-th Schatten norm. If in addition this map
is continuously differentiable in norm, then the winding number is independent of the choice of
p. We will see below that the counter term c in (2) can also be understood as resulting from
such a regularization.


Let us finally described the content of this papier. In Section 2, we recall some known facts
on spherical harmonics, the Fourier transform and the dilation operator. The scattering system
is introduced in Section 3 in which we derive formula (1) from the stationary representation of
the wave operators. The term ϕ(A) is also explicitly computed. Section 4 is devoted to the
construction of the C∗-algebra pertaining for potential scattering in R3. We give two alternative
descriptions of these algebras, each one having its own interest. In Section 5, we show how
the formula (1) solves the affiliation property and we derive some consequences of it. The
concordance of our approach with already known results on 3-dimensional potential scattering
is put into evidence. Section 6 is dedicated to the derivation of explicit computable formulas
for the topological Levinson’s theorem. The usual regularization and correction are clearly
explained. Finally, in Section 7 we recall the result obtained in [21] for the model of one point
interaction in R3 and illustrate our formalism with this example.
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2 Spherical harmonics, Fourier transform and dilation operator


In this section we briefly recall the necessary background on spherical harmonics, the Fourier
transform and the dilation operator.


Let H denote the Hilbert space L2(R3, dx), and let Hr := L2(R+, r2 dr) with R+ = (0,∞).
The Hilbert space H can be decomposed with respect to spherical coordinates (r, ω) ∈ R+× S2:
For any ` ∈ N = {0, 1, 2, . . .} and m ∈ Z satisfying −` ≤ m ≤ `, let Y`m denote the usual
spherical harmonics. Then, by taking into account the completeness of the family {Y`m}`∈N,|m|≤`


in L2(S2, dω), one has the canonical decomposition


H =
⊕


`∈N,|m|≤`


H`m , (6)


where H`m = {f ∈ H | f(rω) = g(r)Y`m(ω) a.e. for some g ∈ Hr}. For fixed ` ∈ N we denote
by H` the subspace of H given by


⊕
−`≤m≤`H`m.


Now, let C∞
c (R3) denote the set of smooth functions on R3 with compact support, and let


F be the usual Fourier transform explicitly given on any f ∈ C∞
c (R3) and for k ∈ R3 by


[Ff ](k) ≡ f̂(k) = (2π)−3/2


∫


R3


f(x)e−ix·k dx .
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It is known that both F and and its adjoint F∗ leave the subspace H`m of H invariant. More
precisely, for any g ∈ C∞


c (R+) and for (κ, ω) ∈ R+ × S2 one has:


[F(gY`m)](κω) = (−i)` Y`m(ω)
∫


R+


r2 J`+1/2(κr)√
κr


g(r)dr , (7)


where Jν denotes the Bessel function of the first kind and of order ν. So, we naturally set
F` : C∞


c (R+) → Hr by the relation F(gY`m) = F`(g)Y`m (it is clear from (7) that this operator
does not depend on m ). Similarly to the Fourier transform on R3, this operator extends to a
unitary operator from Hr to Hr.


Let us now consider the unitary dilation group {Uτ}τ∈R defined on any f ∈ H and for τ ∈ R
by


[Uτf ](x) = e3τ/2f(eτx) .


Its self-adjoint generator A is formally given by 1
2(Q · P + P · Q), where Q = (Q1, Q2, Q3)


stands for the position operator and P = (P1, P2, P3) ≡ (−i∂1,−i∂2,−i∂3) denotes its conjugate
operator. All these operators are essentially self-adjoint on the Schwartz space S(R3) on R3.


It is easily observed that the formal equality F AF∗ = −A holds. More precisely, for any
essentially bounded function ϕ on R, one has Fϕ(A)F∗ = ϕ(−A). Furthermore, since A acts
only on the radial coordinate, the operator ϕ(A) leaves each H`m invariant. For that reason,
we can consider a slightly more complicated operator than ϕ(A). For any ` ∈ N, let ϕ` be an
essentially bounded function on R. Assume furthermore that the family {ϕ`} is bounded. Then
the operator ϕ(A) : H → H defined on H` by ϕ`(A) is a bounded operator. Note that we use
the same notation for the generator of dilations in H and for its various restrictions in suitable
invariant subspaces.


Let us finally state a result about the Mellin transform.


Lemma 1. Let ϕ be an essentially bounded function on R such that its inverse Fourier transform
is a distribution on R. Then, for any f ∈ C∞


c (R3 \ {0}) one has


[ϕ(A)f ](rω) =
1√
2π


∫ ∞


0
ϕ̌
(
ln


(
r/s)


)
(r/s)1/2 f(sω)


ds


r
,


where the r.h.s. has to be understood in the sense of distributions.


Proof. The proof is a simple application for n = 3 of the general formulas developed in [16,
p. 439]. Let us however mention that the convention of this reference on the minus sign for the
operator A in its spectral representation has not been followed.


In particular, if f ∈ H` and f(rω) = g(r)Y`m(W ) for some g ∈ C∞
c (R+), then ϕ(A)f =


[ϕ(A)g]Y`m with


[ϕ(A)g](r) =
1√
2π


∫ ∞


0
ϕ̌
(
ln


(
r/s)


)
(r/s)1/2 g(s)


ds


r
, (8)


where the r.h.s. has again to be understood in the sense of distributions.
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3 New formulas for the wave operators


In this section we introduce the precise framework of our investigations and deduce a new formula
for the wave operators. All preliminary results can be found in the paper [15] or in the books
[4, 31].


Let us denote by H0 the usual Laplace operator −∆ on R3, with domain H2, the Sobolev
space of order 2 on R3. For the perturbation, we assume that V is a real function on R3 satisfying
for all x ∈ R3


|V (x)| ≤ c〈x〉−β (9)


for some c > 0 and β > 3, where 〈x〉 = (1+x2)1/2. In that situation, the operator H = H0+V is
self-adjoint with domain H2. The spectrum of H consists of an absolutely continuous part equal
to [0,∞) and of a finite number of eigenvalues which are all located in (−∞, 0]. Furthermore,
the wave operators


W± := s− lim
t→±∞ eiHt e−iH0t


exist and are asymptotically complete. Thus, the scattering operator S = W ∗
+ W− is unitary


and the isometries W± have support and range projections


W ∗
±W± = 1, W±W ∗


± = 1− Pp , (10)


where Pp is the projection on the subspace of H spanned by the eigenvectors of H.
Now, let U : H → ∫ ⊕


R+
H dλ, with H := L2(S2), be the unitary transformation that diago-


nalizes H0, i.e. that satisfies [UH0f ](λ, ω) = λ[Uf ](λ, ω), with f in the domain of H0, λ ∈ R+


and ω ∈ S2. Since the operator S commutes with H0, there exists a family {S(λ)}λ∈R+ of
unitary operators in H satisfying USU∗ = {S(λ)}λ∈R+ for almost every λ ∈ R+. Furthermore,
the operator S(λ) − 1 is Hilbert-Schmidt in H , and the family is continuous in λ ∈ R+ in the
Hilbert-Schmidt norm.


We shall now motivate the new formula for the wave operators and state the precise conjec-
ture. Since our analysis is based on their representations in terms of the generalized eigenfunc-
tions Ψ±, we first recall their constructions. A full derivation can be found in [4, Chap. 10] or in
[15]. For simplicity, we shall restrict ourselves to the study of W− (and thus Ψ−) and deduce the
form of W+ as a corollary. Because of our hypotheses on V , the Lipmann-Schwinger equation


Ψ−(x, k) = eik·x − 1
4π


∫


R3


ei|k| |x−y|


|x− y| V (y)Ψ−(y, k)dy (11)


has for all k ∈ R3 with k2 6= 0 a unique solution with the second term in the r.h.s. of (11) in
C0(R3) for the x-variable. Furthermore, the following asymptotic development holds:


Ψ−(x, k) = eik·x − i(2π)3/2 1√
2π


ei|k| |x|


|k| |x|
(
S(k2, ωx, ωk)− 1


)
+ ρ(x, k), (12)


where ωx = x
|x| , ωk = k


|k| and S(k2, ωx, ωk) − 1 is the kernel of the Hilbert Schmidt operator
S(k2)− 1. For fixed k, the term ρ(x, k) is o(|x|−1) as |x| → ∞.


Now, it is known that the wave operator can also be expressed in terms of the generalized
eigenfunctions. On any f ∈ H the relation reads


[W−f ](x) = (2π)−3/2


∫


R3


Ψ−(x, k) f̂(k)dk (13)
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where the integral has to be understood as a limit in the mean [15, Thm. 7]. By comparing (12)
with (13) one is naturally led to define for all f ∈ S(R3) and x 6= 0 the integral operator


[Tf ](x) = −i
1√
2π


∫


R+


eiκ |x|


κ |x| [F(f)](κωx)κ2dκ . (14)


An easy computation shows that this operator is invariant under the action of the dilation group.
Moreover, this operator is reduced by the decomposition (6). The following proposition contains
the precise statement of these heuristic considerations. For that purpose, let us define for each
` ∈ N the operator T` acting on any g ∈ C∞


c (R+) as


[T` g](r) = −i
1√
2π


∫


R+


κ2 eiκr


κr
[F` g](κ)dκ .


Proposition 2. The operator T` extends continuously to the bounded operator ϕ`(A) in Hr with
ϕ` ∈ C


(
[−∞,∞],C


)
given explicitly for every x ∈ R by


ϕ`(x) =
1
2
e−iπ`/2 Γ


(
1
2(` + 3/2 + ix)


)


Γ
(


1
2(` + 3/2− ix)


) Γ
(


1
2(3/2− ix)


)


Γ
(


1
2(3/2 + ix)


)(
1 + tanh(πx)− i cosh(πx)−1


)
.


and satisfying ϕ`(−∞) = 0 and ϕ`(∞) = 1. Furthermore, the operator T defined in (14) extends
continuously to the operator ϕ(A) ∈ B(H) acting as ϕ`(A) on H`.


Proof. For any g ∈ C∞
c (R+) one has


[T` g](r) = −i
1√
2π


∫


R+


κ2 eiκr


κr


[
(−i)`


∫


R+


s2 J`+1/2(κs)√
κs


g(s)ds
]
dκ


=
1√
2π


∫


R+


[
− i(−i)` r


s


∫


R+


κ
eiκr/s


√
κr/s


J`+1/2(κ)dκ
](s


r


)1/2
g(s)


ds


r


=
1√
2π


∫


R+


[
(−i)`


√
π


2
r


s


∫


R+


κH
(1)
1/2


(r


s
κ
)
J`+1/2(κ)dκ


](s


r


)1/2
g(s)


ds


r
, (15)


where H
(1)
1/2 is the Hankel function of the first kind and of order 1/2. Let us stress that the second


and the third equalities have to be understood in the sense of distributions on R+, cf. [25].
Now, by comparing (15) with (8) one observes that the operator T` is equal on dense set in


Hr to an operator ϕ`(A) for a function ϕ` whose inverse Fourier transform is the distribution
which satisfies for y ∈ R:


ϕ̌`(y) =
1
2


√
2πe−iπ`/2ey


∫


R+


κH
(1)
1/2


(
eyκ


)
J`+1/2(κ)dκ .


The Fourier transform of this distribution can be computed. Explicitly, one has in the sense of
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distributions :


ϕ`(x) =
1
2


e−iπ`/2


∫


R


[
e−ixy ey


∫


R+


κH
(1)
1/2


(
eyκ


)
J`+1/2(κ)dκ


]
dy


=
1
2


e−iπ`/2


∫


R+


[
κJ`+1/2(κ)


∫


R+


ds


s
s−ix+1 κix−1 H


(1)
1/2(s)


]
dκ


=
1
2


e−iπ`/2


∫


R+


κ(1+ix)−1 J`+1/2(κ)dκ


∫


R+


s(1−ix)−1 H
(1)
1/2(s)ds


=
1
2π


e−iπ(`+1/2)/2 eπx/2 Γ
(


1
2(` + 3/2 + ix)


)


Γ
(


1
2(` + 3/2− ix)


) Γ
(
(3/2− ix)/2


)
Γ
(
(1/2− ix)/2


)
.


The last equality is obtained by taking into account the relation between the Hankel function
H


(1)
ν and the Bessel function Kν of the second kind as well as the Mellin transform of the


functions Jν and the function Kν as presented in [28, Eq. 10.1 & 11.1]. Then, by taking into
account the equality Γ(z)Γ(1− z) = π


sin(πz) for z = 1
4 − ix


2 one obtains that


1
2π


e−iπ/4 eπx/2 Γ
(
(3/2− ix)/2


)
Γ
(
(1/2− ix)/2


)


=
Γ
(


1
2(3/2− ix)


)


Γ
(


1
2(3/2 + ix)


) eiπ/4 eπx/2


eiπ/4eπx/2 − e−iπ/4e−πx/2


=
1
2


Γ
(


1
2(3/2− ix)


)


Γ
(


1
2(3/2 + ix)


)(
1 + tanh(πx)− i cosh(πx)−1


)


which leads directly to the desired result. The asymptotic values of ϕ` can easily be obtained
by using the asymptotic development of the function Γ as presented in [1, Eq. 6.1.39].


For the final statement, it is sufficient to observe that the operator ϕ`(A) is clearly well
defined in H`m, but since it does not depend on m this operator is also well defined in H`.
Furthermore, since the norm of the operator ϕ`(A) is equal to 1 the collection {ϕ`(A)} defines
a bounded operator in H equal to the operator T on a dense set.


Corollary 3. One has ϕ0(x) = 1
2


(
1 + tanh(πx)− i cosh(πx)−1


)
.


By collecting these results, one can finally state our main conjecture and its consequence :


Conjecture 4. The kernel ρ in (12) defines a compact operator K on H by the formula
[Kf ](x) = (2π)−3/2


∫
R3 ρ(x, k) f̂(k)dk for any f ∈ H.


Theorem 5. Let V satisfy condition (9) and assume that Conjecture 4 is verified. Then the
wave operator W− for the scattering system (−∆ + V,−∆) satisfies the equality


W− = 1 + ϕ(A)(S − 1) + K (16)


with ϕ(A) defined in Proposition 2.


Proof. Formulas (12) and (13) together with Proposition 2 and Conjecture 4 lead directly to the
result.


8







Corollary 6. If the hypotheses of Theorem 5 are satisfied, then


W+ = 1 +
(
1−ϕ(A)


)
(S∗ − 1) + K


with K a compact operator in H.


Proof. Starting from the relation W ∗−W+ = S∗, one deduces from the asymptotic completeness
that


W+ = W−W ∗
−W+ = W−S∗ .


By taking the expression (16) into account, one readily obtains the result.


4 Constructing the algebras


In this section we define the C∗-algebras suitable for the scattering system introduced in the
previous section. In a different context, these algebras were studied in [13] from which we
recalled some preliminary results. We also mention that very similar algebras have already been
introduced a long time ago [8, 9, 11].


The forthcoming algebras are constructed with the help of the operator H0 and with the
generator A of dilations. The crucial property is that A and B := 1


2 ln(H0) satisfy the canonical
commutation relation [A,B] = i so that A generates translations in B and vice versa,


eitBAe−itB = A + t, eisABe−isA = B − s.


Furthermore, recall that these operators are reduced by the decomposition (6) and that the
spectrum of H0 is R+ and that of A is R. In the following paragraphs we shall freely use the
isomorphism between L2(R3) and L2(R+; H ) with H = L2(S2).


Let Eo be the closure in B(H) of the algebra generated by elements of the form η(A)ψ(H0),
where η is a norm-continuous function on R with values in K(H ) and which has limits at ±∞,
and ψ is a norm-continuous function R+ with values in K(H ) and which has limits at 0 and at
+∞. Stated differently, η ∈ C


(
R;K(H )


)
, where R = [−∞, +∞], and ψ ∈ C


(
R+;K(H )


)
with


R+ = [0, +∞], the continuity referring to the norm topology on K(H ). Let J be the norm
closed algebra generated by η(A)ψ(H0) with similar functions η and ψ for which the above
limits vanish. Clearly, J is a closed ideal in Eo and is equal to the algebra K(H) of compact
operators in H. These statements and the following ones follow from [13, Sec. 3.5] via the Mellin
transform.


To describe the quotient Eo/J we consider the square ¥ := R+ × R whose boundary ¤
is the union of four parts: ¤ = B1 ∪ B2 ∪ B3 ∪ B4, with B1 = {0} × R, B2 = R+ × {+∞},
B3 = {+∞}× R and B4 = R+ × {−∞}. We can also view C(¤) as the subalgebra of


C
(| |) := C(R)⊕ C(R+)⊕ C(R)⊕ C(R+)


given by elements Γ := (Γ1, Γ2, Γ3,Γ4) which coincide at the corresponding end points, that is,
for instance, Γ1(+∞) = Γ2(0). Then Eo/J is isomorphic to C


(
¤;K(H )


)
, and if we denote the


quotient map by
q : Eo → Eo/J ∼= C


(
¤;K(H )


)


then the image q
(
η(A)ψ(H0)


)
in C


(| |;K(H )
)


is given by Γ1 = η(·)ψ(0), Γ2 = η(+∞)ψ(·),
Γ3 = η(·)ψ(+∞) and Γ4 = η(−∞)ψ(·).
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By construction the algebra Eo does not contain a unit. For a non-unital algebra A, we
generically write A∼ for the algebra A with a unit added. So let us set E := E∼o for the closed
C∗-algebra generated by Eo and by the operator 1 ∈ B(H). Then the quotient algebra Q := E/J
is also unital and can be identified with the algebra C


(
¤;K(H )


)∼, the algebra generated by
C


(
¤;K(H )


)
and by the constant function 1 on ¤. Clearly, this algebra is isomorphic to the


algebra C
(
S;K(H )


)∼. Thus, the algebras introduced so far correspond to the one presented in
the introduction and it follows that the trace Tr on H induces a functional Tr∗ : K0(K(H)) →
Z, Tr∗([P ]0) = Tr(P ) for any projection P ∈ K(H) and this functional is an isomorphism.
Similarly the winding number w(Γ) of the determinant ¤ 3 t 7→ det


(
Γ(t)


)
induces a functional


w∗ : K1(Q) → Z, w∗([Γ]1) = w(Γ) for any unitary Γ ∈ Q which also yields to an isomorphism.
As a consequence, the groups K0(J ) and K1(Q) are both isomorphic to Z and so the index
map in (3) reduces to an homomorphism Z → Z, and hence to a multiple of the identity n id
for some n ∈ Z. In the next proposition we show that the factor n is equal to 1 for the algebras
introduced above.


Proposition 7. For the extension defined by E and J the factor n in the index map in (4) is
equal to 1.


Proof. Consider the index map ind : K1(Q)→K0(J ) relevant to our algebras, with J = K(H)
and Q isomorphic to the unital algebra C


(
S;K(H )


)∼. Upon identifying K0


(K(H)
) ∼= Z via


Tr∗ and K1


((
C(S;K(H )


)∼) ∼= Z via w∗ we get a group homomorphism Tr∗ ◦ ind ◦ w−1∗ :
Z → Z and hence Tr∗ ◦ ind ◦ w−1∗ = n id for some n. Hence n is determined by the equation
Tr∗


(
ind([Γ]1)


)
= nw∗([Γ]1) which must hold for all elements of K1(Q). We know furthermore


that Tr∗
(
ind([Γ]1)


)
= −index(W ) provided W ∈ E is a lift of Γ which is a partial isometry.


Taking W = Wα−, the wave operator for some point interaction α < 0 recalled in Section 7, we
infer from our explicit calculation that index(Wα−) = −1 and w


(
q(Wα−)


)
= 1. Hence n = 1.


Let us now present an alternative description of the C∗-algebra E . As already mentioned,
the algebra Eo has been introduced and thoroughly studied in another context in [13, Sec. 3.5].
All the proofs of the following statements can be mimicked from the corresponding ones in that
paper. We also use the convention of that reference, that is: if a symbol like T (∗) appears in a
relation, it means that this relation holds for T and for its adjoint T ∗. The function χ denotes
the characteristic function.


Lemma 8. An operator W belongs to E if and only if there exist Γ1, Γ3 ∈ C
(
R;K(H )


)∼ and
Γ2, Γ4 ∈ C


(
R+;K(H )


)∼ such that the following conditions are satisfied:


(i) limε→0 ‖χ(H0 ≤ ε)(W − Γ1(A))(∗)‖ = 0, and limε→+∞ ‖χ(H0 ≥ ε)(W − Γ3(A))(∗)‖ = 0,


(ii) limt→−∞ ‖χ(A ≤ t)(W − Γ4(H0))(∗)‖ = 0, and limt→+∞ ‖χ(A ≥ t)(W − Γ2(H0))(∗)‖ = 0.


Let us note that conditions (i) and (ii) can also be rewritten as


lim
t→−∞ ‖χ(H0 ≤ 1)UA


t (W −Γ1(A))(∗) UA
−t‖ = 0, lim


t→+∞ ‖χ(H0 ≥ 1)UA
t (W −Γ3(A))(∗) UA


−t‖ = 0 ,


lim
t→−∞ ‖χ(A ≤ 0)UB


−t (W−Γ4(H0))(∗) UB
t ‖ = 0, lim


t→+∞ ‖χ(A ≥ 0)UB
−t (W−Γ2(H0))(∗) UB


t ‖ = 0 ,


where UA
t = e−itA, UB


t = e−itB and B = 1
2 ln(H0). It also follows from these conditions


that one necessarily has in the strong topology s − limt→±∞ UA
t W UA−t = Γ3/1(A) and s −
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limt→±∞ UB−t W UB
t = Γ2/4(H0). As a final remark in this section, let us mention that W is a


compact operator in H if and only if it satisfies conditions (i) and (ii) of Lemma 8 with Γj = 0
for j ∈ {1, 2, 3, 4}. And so, such a property holds for all elements in J .


5 The affiliation property and its consequences


In this section, we show how the affiliation property is solved by formula (1). More precisely,
we prove that the operator W− belongs to the algebra E , and derive the expressions for the
related operators Γj with j ∈ {1, 2, 3, 4}. In fact, all these operators are already known, but our
approach gives a global framework, and provides a stronger convergence to them.


As already mentioned, the scattering operator S is a function of the Laplace operator with
a function R+ 3 λ 7→ S(λ) − 1 ∈ K(H ) that is continuous in the Hilbert-Schmidt norm. A
fortiori, this map is continuous in the norm topology on K(H ), and in fact the map λ 7→ S(λ)
belongs to C


(
R+;K(H )


)∼. Indeed, it is well known that S(λ) converges to 1 as λ →∞, see for
example [4, Prop. 12.5]. For the low energy behavior, see [18], where the norm convergence of
the S(λ) for λ → 0 is proved under a more restrictive condition on the potential: β > 5 in (9).
The picture is the following: If H does not possess a 0-energy resonance, then S(0) is equal to 1,
but if such a resonance exists, then S(0) is equal to 1− 2P00, where P00 denotes the orthogonal
projection on the one-dimensional subspace of H spanned by Y00.


Now, the operator ϕ(A) in (1) is a function of the generator A of dilations with a function
ϕ which belongs to C


(
R,B(H )


)
, where B(H ) is endowed with the strong operator topology.


Indeed, this easily follows from Proposition 2. However, once multiplied with the operator(
S(0)− 1


)
, the map R 3 ξ 7→ ϕ(ξ)


(
S(0)− 1


) ∈ K(H ) is norm continuous and admits limits at
±∞. In fact, if H does not possess a 0-energy resonance then this map is trivial, but if such a
resonance exists then the corresponding map is not trivial since S(0)− 1 6= 0.


By collecting these information one can now prove the main result of this section :


Proposition 9. Let V satisfy condition (9) with β > 5 and assume that Conjecture 4 is verified.
Then the wave operator W− belongs to E and its image through the quotient map q : E → E/J
is a unitary element of C


(
¤;K(H )


)∼ given by
(
1 + ϕ(·)(S(0)− 1


)
, S(·), 1, 1


)
. (17)


In other words, Γ1 = 1 + ϕ(·)(S(0)− 1
)
, Γ2 = S(·), Γ3 = 1 and Γ4 = 1.


Proof. It has been proved in Theorem 5 that W− = 1+ϕ(A)(S−1)+K. Clearly, the operators
1 and K belong to E and thus one only has to show that ϕ(A)(S − 1) ∈ E . As mentioned
above, the map λ 7→ S(λ) − 1 belongs to C


(
R+;K(H )


)
but the map ξ 7→ ϕ(ξ) only belongs


to C
(
R,B(H )


)
. However, this lack of compactness for the image of ϕ(·) does not bother


since ϕ(A) is multiplied by S − 1 and, for the angular part the multiplication of a bounded
operator with a compact operator is compact. More precisely, let us work in the spectral
representation of A which is obtained via the Mellin transform. The corresponding Hilbert
space is L2(R; H ), and in that representation the operator A corresponds to the multiplication
by the variable Q and the operator B = 1


2 ln(H0) corresponds to its conjugate operator P .
Clearly, this Hilbert space is isomorphic to L2(R)⊗H and let U denote the final isomorphism
between H and the latter space. We recalled this construction in order to use a result from [13,
Sec. 3.5], namely that UEU−1 is equal to C∗[η(Q)ψ(P )]⊗K(H ) with C∗[η(Q)ψ(P )] the closure
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in B(
L2(R)


)
of the algebra generated by products of the form η(Q)ψ(P ) with η, ψ ∈ C(R).


Then, one concludes by observing that U(S − 1)U−1 = ψ̃(P ) with ψ̃ ∈ C(R) ⊗ K(H ) and
UϕU−1 = η̃(Q) with η̃ ∈ C(R)⊗B(H ), which means that the product Uϕ(A)(S−1)U∗ belongs
to C∗[η(Q)ψ(P )]⊗K(H ). One has thus obtained ϕ(A)(S − 1) ∈ E .


Now, the unitarity of q(W−) follows from the fact that W− is a partial isometry with finite
kernel and co-kernel, and thus its image through the quotient by the compact operators is a
unitary element of the Calkin algebra. A fortiori this image is also unitary in the smaller algebra
Q. Finally, the asymptotic operators are easily calculated. Since the compactor operator K does
not give any contribution for them, one has to take care of the contributions coming from the
restrictions of 1 + ϕ(A)(S − 1) as explained in Section 4.


Let us now explain why the asymptotic operators Γ1(A), Γ3(A) and Γ2(H0),Γ4(H0) are very
natural, and how they could be guessed. It is mentioned at the end of Section 4 that if W−
belongs to E , then one necessarily has Γ2/4(H0) = s− limt→±∞ UB−t W−UB


t . But the intertwining
relation for the wave operator, the invariance principle and the asymptotic completeness imply
that s − limt→−∞ UB−t W− UB


t = W ∗− W− and that s − limt→+∞ UB−t W− UB
t = W ∗


+ W−. The
former is equal to 1 by the relation (10), and the latter is by definition the scattering operator.
What we want to emphasize in this paper is that the convergences to these operators do not
only hold in the strong topology, but in the stronger topology indicated by Lemma 8.


The operator Γ3(A) corresponds to the asymptotic of the wave operator W− at high energy.
Heuristically, it is not surprising that the wave operator is close to the identity at high energy.
In fact, statements like


(W− − 1)χ(H0 ≥ ε)χ(A ≥ 0) ∈ K(H) for all ε > 0 ,


(see for example [12, 30]) are a weaker formulation of both our statements on the convergence
of W− to Γ3(A) and to Γ4(H0).


The operator Γ1(A) and the convergence of the wave operator to it deserves a special atten-
tion. It is easily observed that the following equality holds:


e−itA W−(H0 + V, H0)eitA = W−(H(t),H0) ,


where H(t) = H0+e−2tV (e−t·). For clarity, the dependence of W− on both self-adjoint operators
used to define it is mentioned. It has been proved in [2, 3] that the limit, as t → −∞, of the
operator H(t) converges in the resolvent sense to a zero-range perturbation of the Laplacian.
More precisely, if H ≡ H(0) does not possess a 0-energy resonance, then H(t) converges in the
resolvent sense to −∆, but if H possesses a 0-energy resonance, it converges to H0, the one point
perturbation of the Laplacian with the parameter equal to 0. For completeness, the one-point
perturbation systems in R3 are briefly recalled in Section 7. The topology of the convergence of
the resolvent depends on the presence or the absence of a 0-energy eigenvalue: norm topology if
there is no 0-energy eigenvalue, strong topology otherwise. However, it seems to us that these
convergences could still be improved by considering the operator


χ(H0 ≤ 1)
(
(H(t)− z)−1 − (H(−∞)− z)−1


)


for z ∈ C \ R.
Now, it is known that if the operator H(t) converges in a suitable sense as t tends to


−∞ to an operator H(−∞), then the corresponding operator W−(H(t),H0) also converges to
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W (H(−∞),H0), also in a suitable topology, see for example [10] or [19, Sec. 10.4.6]. Obviously,
if H(−∞) is the free Laplacian, then W−(−∆,H0) = 1, and that is what is expected if H as no
0-energy resonance. But if H has such a 0-energy resonance, then H(t) converges to H0, and
the corresponding wave operator W−(H0,H0) is equal to


1− (
1 + tanh(πA)− i cosh(πA)−1


)
P00 (18)


as proved in [21] and recalled in Section 7.
Let us finally observe that these results match perfectly with what has been obtained in


Proposition 9. Indeed, as already mentioned, if H has a 0-energy resonance, then S(0) = 1−2P00,
and otherwise S(0) = 1, which corresponds respectively to Γ1(A) = 1 − (


1 + tanh(πA) −
i cosh(πA)−1


)
P00 and to Γ1(A) = 1. And as a final comment, let us note an apparently new


observation on the one point interaction systems: For the parameter equal to 0 and ∞, the
corresponding wave operators can be seen as the restriction at energy 0 of the wave operators
for more regular Schrödinger operators in R3.


6 Explicit formulas for the topological Levinson’s theorem


In this section, we state a precise version of the topological Levinson’s theorem already sketched
in the introduction. For that purpose, let us start by rewriting a precise version of (3). Recall
that the quadruple Γ :=


(
1+ϕ(·)(S(0)−1


)
, S(·), 1, 1


)
obtained in (17) corresponds to the image


of the wave operator W− in the quotient algebra Q ≡ C
(
¤;K(H )


)∼. Recall furthermore that
this quadruple is a unitary element of the mentioned algebra and that the projection Pp on the
subspace spanned by the eigenvectors of H, is an element of the algebra J ≡ K(H).


Proposition 10. Let V satisfy condition (9) with β > 5 and assume that Conjecture 4 is
verified. Then one has


ind
([(


1 + ϕ(·)(S(0)− 1
)
, S(·), 1, 1


)]
1


)
= −[Pp]0


where ind is the index map from the K1-group of Q to the K0-group of J .


Clearly, if H has no 0-energy resonance, then S(0)− 1 is equal to 0, and thus the quadruple
Γ can be identified with S(·). But if such a resonance exists, then the contribution of the wave
operator at energy 0, that is the operator Γ1(A), is not trivial and is given by (18). This allows
us to obtain a concrete computable version of our topological Levinson’s theorem and show how
this operator accounts for the correction ν in (2).


As already mentioned for the class of perturbations we are considering the map R+ 3 λ 7→
S(λ) − 1 ∈ K(H ) is continuous in the Hilbert-Schmidt norm. Furthermore, it is known that
this map is even continuously differentiable in the norm topology. In particular, the on-shell
time delay operator −i S(λ)∗ S′(λ) is well defined for each λ ∈ R+, see [16, 17] for details. It
then follows that :


Theorem 11. Let V satisfy condition (9) with β > 5 and assume that Conjecture 4 is verified.
Then for any p ≥ 2 one has


2π Tr[Pp] =
∫ ∞


−∞
tr


[
i
(
1− Γ1(ξ)


)pΓ1(ξ)∗ Γ′1(ξ)
]
dξ +


∫ ∞


0
tr


[
i
(
1− S(λ)


)p
S(λ)∗ S′(λ)


]
dλ. (19)


If the map λ 7→ S(λ) − 1 is continuously differentiable even in the Hilbert-Schmidt norm, then
the above equality holds also for p = 1.
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Proof. We apply (4) with n = 1 (Proposition 7). Thus w(q(W−)) = −Tr(Pp) and our aim is to
determine a computable expression for the l.h.s.. Clearly, only Γ1 and Γ2 = S(·) will contribute
in that calculation. Γ1 is very regular, Γ1(ξ) − 1 having finite rank and being smooth in ξ.
Thus under the given hypothesis, the function ¤ 3 t 7→ Γ(t) − 1 is continuous with values in
the space of Hilbert Schmidt operators on H and is continuously differentiable in norm. Hence
t 7→ det2


(
Γ(t)


)
admits a winding number and this winding number corresponds to w


(
q(W−)


)
.


Moreover, t 7→ detp


(
Γ(t)


)
is differentiable for all p ≥ 3 so that the winding number can be


evaluated using equation (5) :


w
(
q(W−)


)
=


1
2πi


∫


¤
d ln detp(Γ)


=
1


2πi


∫ ∞


−∞
tr


[(
1− Γ1(ξ)


)p−1Γ1(ξ)∗ Γ′1(ξ)
]
dξ


+
1


2πi


∫ ∞


0
tr


[(
1− S(λ)


)p−1
S(λ)∗ S′(λ)


]
dλ


Under the stronger hypotheses that λ 7→ S(λ) − 1 is continuously differentiable even in the
Hilbert-Schmidt norm already t 7→ det2(Γ(t)) is differentiable so that we can use the above
argument for p = 2.


Comparing this result with the form of Levinson’s theorem recalled in (2) we see that in the
absence of a resonance at 0, in which Γ1 = 1, only the S-term contributes but contains already
the term proportional to c to be subtracted. In the presence of a resonance at 0 the real part of
the integral of the term Γ1 yields


<
{ 1


2πi


∫ ∞


−∞
tr


[(
1− Γ1(ξ)


)pΓ1(ξ)∗Γ′1(ξ)
]
dξ


}
=


1
2


which accounts for the correction usually found in Levinson’s theorem. Note that only the real
part of this expression is of interest since its imaginary part will cancel with the corresponding
imaginary part of term involving S(·).
Remark 12. We note that the flexibility of using larger p allows to obtain from Theorem 11


Tr[Pp] = −ν +
1
2π


∫ ∞


0
tr


[
ρ(S(λ))iS∗(λ)S′(λ)


]
dλ.


where ρ : S → R is any function of the form ρ(z) = <
(∑∞


p=2 ap(1− z)p
)


with ap ∈ C such


that
∑∞


p=2 ap = 1 and
∑∞


p=2 |ap|2p < ∞. Note that ρ(1) = 0, ρ′(1) = 0 and 1
2π


∫
S ρ = 1. This


shows that the regularized integral on the l.h.s. of (2) corresponds to the integral of the trace of
a regularized time delay, the latter being the time delay multiplied by a not necessarily positive
density function 1


2πρ which vanishes (to second order) at energy values in channels for which
there is no scattering.


7 Point interaction


In this short section, we briefly recall the result obtained in [21] for the system of one point
interaction in R3. For that model all calculations are explicit, that is, the exact expression
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for the wave operators and the scattering operator have been determined. However, the main
difference with potential scattering as presented above is that for point interaction, the operator
Γ3(A) is in general not equal to 1.


Let us consider the operator −∆ defined on C∞
c (R3 \ {0}). It has deficiency indices (1, 1)


and all its self-adjoint extensions Hα can be parameterized by an index α belonging to R∪{∞}.
This parameter determines a certain boundary condition at 0, and −4πα also has a physical
interpretation as the inverse of the scattering length. The choice α = ∞ corresponds to the free
Laplacian −∆. The operator Hα has a single eigenvalue for α < 0 of value −(4πα)2 but no
point spectrum for α ∈ [0,∞]. Furthermore, the action of the wave operator Wα− for the couple
(Hα,−∆) on any f ∈ L2(R3) is given by [3] :


[
(Wα


− − 1)f
]
(x) = s− lim


R→∞
(2π)−3/2


∫


κ≤R
κ2 dκ


∫


S2
dω


eiκ|x|


(4πα− iκ)|x| f̂(κω) .


It is easily observed that Wα− − 1 acts trivially on the orthocomplement of the range of P00.
Finally, the scattering operator Sα for this system is given by


Sα = 1− P00 +
4πα + i


√−∆
4πα− i


√−∆
P00 .


Now, it has been proved in [21] that the wave operator can be rewritten as


Wα
− = 1 +


1
2
(
1 + tanh(πA)− i cosh(πA)−1


)
(Sα − 1)P00 .


So let us set
r(ξ) = − tanh(πξ) + i cosh(πξ)−1 .


and


sα(λ) =
4πα + i


√
λ


4πα− i
√


λ


As a consequence of the expression for Wα−, the operators Γ1(A), Γ3(A) and Γ2(H0),Γ4(H0)
are all equal to 1 on the orthocomplement of the range of P00. So let us give in the following
table the expressions of these operators restricted to H00. We also compute their corresponding
contribution to the winding number of q(Wα−)P00


Γ1 Γ2 Γ3 Γ4 w1 w2 w3 w4 w
(
q(Wα−)P00


)


α < 0 1 sα r 1 0 −1
2 −1


2 0 −1
α = 0 r −1 r 1 1


2 0 −1
2 0 0


α > 0 1 sα r 1 0 1
2 −1


2 0 0
α = ∞ 1 1 1 1 0 0 0 0 0


and we see that the total winding number of w
(
q(Wα−)P00


)
is equal to minus the number of


bound states of Hα. This corresponds exactly to the topological Levinson’s theorem (4).


8 Appendix


Let H be an abstract Hilbert space and Γ be a map S → U(H) such that Γ(t) − 1 ∈ K(H) for
all t ∈ S. Let p ∈ N and let Sp denote the Schatten ideal in K(H).
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Lemma 13. Assume that the map S 3 t 7→ Γ(t) − 1 ∈ Sp is continuous in norm of Sp and
is continuously differentiable in norm of K(H). Then the map S 37→ detp+1


(
Γ(t)


) ∈ C is
continuously differentiable and the following equality holds:


d ln detp+1


(
Γ(t)


)


dt
= tr


[(
1− Γ(t)


)pΓ(t)∗Γ′(t)
]
. (20)


Furthermore, if the map S 3 t 7→ Γ(t)−1 ∈ Sp is continuously differentiable in norm of Sp, then
the statement already holds for p instead of p + 1.


Proof. For simplicity, let us set A(t) := 1− Γ(t) for any t ∈ S and recall from [14, Eq. XI.2.11]
that detp+1


(
Γ(t)


)
= det


(
1 + Rp+1(t)


)
with


Rp+1(t) := Γ(t) exp
{ p∑


j=1


1
j
A(t)j


}
− 1 .


Then, for any t, s ∈ S with s 6= t one has


detp+1


(
Γ(s)


)


detp+1


(
Γ(t)


) =
det


(
1 + Rp+1(s)


)


det
(
1 + Rp+1(t)


)


=
det


[(
1 + Rp+1(t)


)(
1 + Bp+1(t, s)


)]


det
(
1 + Rp+1(t)


)


= det
(
1 + Bp+1(t, s)


)


with Bp+1(t, s) =
(
1 + Rp+1(t)


)−1(
Rp+1(s) − Rp+1(t)


)
. Note that 1 + Rp+1(t) is invertible in


B(H) because detp+1


(
Γ(t)


)
is non-zero. With these information let us observe that


detp+1(Γ(s))−detp+1(Γ(t))
|s−t|


detp+1(Γ(t))
=


1
|s− t|


[
det


(
1 + Bp+1(t, s)


)− 1
]


. (21)


Thus, the statement will be obtained if the limit s → t of this expression exists and if this limit
is equal to the r.h.s. of (20).


Now, by taking into account the asymptotic development of det(1+ εX) for ε small enough,
one obtains that


lim
s→t


1
|s− t|


[
det


(
1 + Bp+1(t, s)


)− 1
]


= lim
s→t


tr
[
Bp+1(t, s)
|s− t|


]


= lim
s→t


tr
[
Hp+1(t)−1 Hp+1(s)−Hp+1(t)


|s− t|
]


(22)


with Hp+1(t) :=
(
1 − A(t)


)
exp


{∑p
j=1


1
j A(t)j


}
. Furthermore, it is known that the function h


defined for z ∈ C by h(z) := z−(p+1)(1−z) exp
{∑p


j=1
1
j zj


}
is an entire function, see for example


[33, Lem. 6.1]. Thus, from the equality


Hp+1(t) = A(t)p+1h
(
A(t)


)
(23)
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and from the hypotheses on A(t) ≡ 1 − Γ(t) it follows that the map S 3 t 7→ Hp+1(t) ∈ S1


is continuously differentiable in the norm of S1. Thus, the limit (22) exists, or equivalently
the limit (21) also exists. Then, an easy computation using the geometric series leads to the
expected result, i.e. the limit in (22) is equal to the r.h.s. of (20).


Finally, for the last statement of the lemma, it is enough to observe from (23) that the map
S 3 t 7→ Hp(t) ∈ S1 is continuously differentiable in the norm of S1 if the map S 3 t 7→ Γ(t)−1 ∈
Sp is continuously differentiable in norm of Sp. Thus the entire proof holds already for p instead
of p + 1.


Lemma 14. Assume that the map S 3 t 7→ Γ(t) − 1 ∈ Sp is continuous in norm of Sp and is
continuously differentiable in norm of K(H). Then for an arbitrary q ≥ p one has:


∫


S
tr


[(
1− Γ(t)


)qΓ(t)∗Γ′(t)
]
dt =


∫


S
tr


[(
1− Γ(t)


)pΓ(t)∗Γ′(t)
]
dt .


Proof. One first observe that for q > p one has


Mq(t) := tr
[(


1− Γ(t)
)qΓ(t)∗Γ′(t)


]


= tr
[(


1− Γ(t)
)q−1Γ(t)∗Γ′(t)− Γ(t)


(
1− Γ(t)


)q−1Γ(t)∗Γ′(t)
]


= Mq−1(t)− tr
[(


1− Γ(t)
)q−1Γ′(t)


]


where the unitarity of Γ(t) has been used in the third equality. Thus the statement will be
proved by reiteration if one can show that∫


S
tr


[(
1− Γ(t)


)q−1Γ′(t)
]
dt (24)


is equal to 0.
For that purpose, let us set for simplicity A(t) := 1− Γ(t) and observe that for t, s ∈ S with


s 6= t one has


tr[A(s)q]− tr[A(t)q] = tr
[
A(s)q −A(t)q


]
= tr


[
Pq−1


(
A(s), A(t)


) (
A(s)−A(t)


)]


where Pq−1


(
A(s), A(t)


)
is a polynomial of degree q − 1 in the two non commutative variables


A(s) and A(t). Note that we were able to use the cyclicity because on the assumptions q−1 ≥ p
and A(t) ∈ Sp for all t ∈ S. Now, let us observe that


∣∣∣∣
1


|s− t|tr
[
Pq−1


(
A(s), A(t)


) (
A(s)−A(t)


)]− tr
[
Pq−1


(
A(t), A(t)


)
A′(t)


]∣∣∣∣


≤
∥∥∥A(s)−A(t)


|s− t|
∥∥∥


∣∣∣tr
[
Pq−1


(
A(s), A(t)


)− Pq−1


(
A(t), A(t)


)]∣∣∣


+
∥∥∥A(s)−A(t)


|s− t| −A′(t)
∥∥∥


∣∣∣tr
[
Pq−1


(
A(t), A(t)


)]∣∣∣ .


By assumptions, both terms vanish as s → t. Furthermore, one observes that Pq−1


(
A(t), A(t)


)
=


qA(t)q−1. Collecting these expressions one has shown that:


lim
s→t


tr[A(s)q]− tr[A(t)q]
|s− t| − q tr[A(t)q−1A′(t)] = 0 ,


or in simpler terms 1
q


d tr[A(t)q ]
dt = tr[A(t)q−1A′(t)]. By inserting this equality into (24) one directly


obtains that this integral is equal to 0, as expected.
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