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1. Introduction


Consider a binary mixture and denote byc its composition, that is the fraction
of one of its two components. Then the evolution of the composition is described
by the Cahn-Hilliard equation (see, e.g. [1], [10]):


∂c


∂t
= M∆


(


dφ


dc
−K∆c


)


, (1.1)


whereM andK are some constants andφ is the free energy density. In the station-
ary case we obtain the equation


∆(∆c + F (c)) = 0, (1.2)


whereF (c) = − 1


K


dφ


dc
. The existence, stability and some properties of solutionsof


the Cahn-Hilliard equation have been studied extensively in recent years (see e.g.
[3], [6], [10] ). In this work we investigate solvability of alinear fourth order
equation which can be considered as a linearized Cahn-Hilliard equation:


∆(∆u+ V (x)u+ au) = f(x). (1.3)
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Here the potentialV (x) is a smooth function vanishing at infinity. The precise con-
ditions on it will be specified below. The functionf(x) belongs to the appropriate
weighted Hölder space, which will imply its square integrability, anda is a nonneg-
ative constant. We will study this equation inR3.


Let us recall that Fredholm solvability conditions affirm that an operator equa-
tion Lu = f is solvable if and only if the right-hand side is orthogonal to all solu-
tionsw of the homogeneous adjoint equationL∗w = 0. This fundamental result is
true if the operatorL satisfies the Fredholm property, that is its kernel has a finite
dimension, its image is closed, the codimension of the imageis also finite.


The operator


Lu = ∆(∆u+ V (x)u+ au)


considered as acting fromH4(R3) into L2(R3) (or in the corresponding Hölder
spaces) does not satisfy the Fredholm property. Indeed, since V (x) vanishes at
infinity, then the essential spectrum of this operator is theset of all complexλ for
which the equation


∆(∆u+ au) = λu


has a nonzero bounded solution. Applying the Fourier transform, we obtain


λ = −ξ2(a− ξ2), x ∈ R.


Hence the essential spectrum contains the origin. Consequently, the operator does
not satisfy the Fredholm property, and solvability conditions of equation (1.3) are
not known. We will obtain solvability conditions for this equation using the method
developed in our previous papers [15], [16], [17], [18]. This method is based on
spectral decomposition of self-adjoint operators.


Obviously, the problem above can be conveniently rewrittenin the equivalent
form of the system of two second order equations


{


−∆v = f(x),


−∆u− V (x)u− au = v(x)
(1.4)


in which the first one has an explicit solution due to the fast rate of decay of its right
side stated in Assumption 3, namely


v0(x) :=
1


4π


∫


R3


f(y)


|x− y|dy (1.5)


with properties established in Lemma A1 of the Appendix. Note that both equations
of the system above involve second order differential operators without Fredholm
property. Their essential spectra areσess(−∆) = [0, ∞) andσess(−∆ − V (x) −
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a) = [−a, ∞) for V (x) → 0 at infinity (see e.g. [8]), such that neither of the op-
erators has a finite dimensional isolated kernel. Solvability conditions for operators
of that kind have been studied extensively in recent works for a single Schrödinger
type operator (see [15]), sums of second order differentialoperators (see [16]), the
Laplacian operator with the drift term (see [17]). Non Fredholm operators arise
as well while studying the existence and stability of stationary and travelling wave
solutions of certain reaction-diffusion equations (see e.g. [5], [7], [14] ). For
the second equation in system (1.4) we introduce the corresponding homogeneous
problem


−∆w − V (x)w − aw = 0. (1.6)


We make the following technical assumptions on the scalar potential and the right
side of equation (1.3). Note that the first one contains conditions onV (x) analogous
to those stated in Assumption 1.1 of [15] (see also [16], [17]) with the slight
difference that the precise rate of decay is assumed not a.e.as before but pointwise
since in the present work the potential function is considered to be smooth.


Assumption 1.The potential functionV (x) : R3 → R satisfies the estimate


|V (x)| ≤ C


1 + |x|3.5+δ


with someδ > 0 andx = (x1, x2, x3) ∈ R3 such that


4
1


9


9


8
(4π)−


2


3‖V ‖
1


9


L∞(R3)‖V ‖
8


9


L
4
3 (R3)


< 1 and
√
cHLS‖V ‖


L
3
2 (R3)


< 4π.


Here and further downC stands for a finite positive constant andcHLS given on
p.98 of [11] is the constant in the Hardy-Littlewood-Sobolev inequality


∣


∣


∣


∫


R3


∫


R3


f1(x)f1(y)


|x− y|2 dxdy
∣


∣


∣
≤ cHLS‖f1‖2


L
3
2 (R3)


, f1 ∈ L
3


2 (R3).


Here and below the norm of a functionf1 ∈ Lp(R3), 1 ≤ p ≤ ∞ is denoted as
‖f1‖Lp(R3).


Assumption 2. ∆V ∈ L2(R3) and ∇V ∈ L∞(R3).


We will use the notation


(f1(x), f2(x))L2(R3) :=


∫


R3


f1(x)f̄2(x)dx,


with a slight abuse of notations when these functions are notsquare integrable, like
for instance some of those used in the Assumption 3 below. Letus introduce the
auxiliary quantity


ρ(x) := (1 + |x|2) 1


2 , x = (x1, x2, x3) ∈ R
3 (1.7)
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and the spaceCµ
a (R


3), wherea is a real number and0 < µ < 1 consisting of all
functionsu for which


uρa ∈ Cµ(R3).


HereCµ(R3) stands for the Hölder space such that the norm onCµ
a (R


3) is defined
as


‖u‖Cµ


a (R3) := supx∈R3|ρa(x)u(x)|+ supx,y∈R3


|ρa(x)u(x)− ρa(y)u(y)|
|x− y|µ .


Then the space of all functions for which


∂αu ∈ C
µ


a+|α|(R
3), |α| ≤ l,


wherel is a nonnegative integer is being denoted asCµ+l
a (R3). LetP (s) be the set


of polynomials of three variables of the order less or equal to s for s ≥ 0 andP (s)
is empty whens < 0. We make the following assumption on the right side of the
linearized Cahn-Hilliard problem.


Assumption 3. Let f(x) ∈ C
µ
6+ε(R


3) for someε > 0 and the orthogonality
relation


(f(x), p(x))L2(R3) = 0 (1.8)


holds for any polynomialp(x) ∈ P (3) satisfying the equation∆p(x) = 0 .


Remark. A good example of such polynomials of the third order is


a


2
x3
1 +


b


2
x1x


2
2 +


c


2
x1x


2
3,


wherea, b and c are constants, such that3a + b + c = 0. The set of admissible
p(x) includes also constants, linear functions of three variables and many more
examples.


By means of Lemma 2.3 of [15], under our Assumption 1 above on the potential
function, the operator−∆ − V (x) − a is self-adjoint and unitarily equivalent to
−∆− a onL2(R3) via the wave operators (see [9], [13])


Ω± := s− limt→∓∞eit(−∆−V )eit∆


with the limit understood in the strongL2 sense (see e.g. [12] p.34, [4] p.90).
Therefore,−∆ − V (x)− a onL2(R3) has only the essential spectrumσess(−∆−
V (x) − a) = [−a, ∞). Via the spectral theorem, its functions of the continuous
spectrum satisfying


[−∆− V (x)]ϕk(x) = k2ϕk(x), k ∈ R
3, (1.9)
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in the integral formulation the Lippmann-Schwinger equation for the perturbed
plane waves (see e.g. [12] p.98)


ϕk(x) =
eikx


(2π)
3


2


+
1


4π


∫


R3


ei|k||x−y|


|x− y| (V ϕk)(y)dy (1.10)


and the orthogonality relations


(ϕk(x), ϕq(x))L2(R3) = δ(k − q), k, q ∈ R
3 (1.11)


form the complete system inL2(R3). We introduce the following auxiliary func-
tional space (see also [17], [18])


W̃ 2,∞(R3) := {w(x) : R3 → C | w,∇w,∆w ∈ L∞(R3)}. (1.12)


As distinct from the standard Sobolev space we require here not the boundedness
of all second partial derivatives of the function but of its Laplacian. Our main result
is as follows.


Theorem 4.Let Assumptions 1, 2 and 3 hold,a ≥ 0 andv0(x) is given by (1.5).
Then problem (1.3) admits a unique solutionua ∈ H4(R3) if and only if


(v0(x), w(x))L2(R3) = 0 (1.13)


for anyw(x) ∈ W̃ 2,∞(R3) satisfying equation (1.6).


Remark. Note thatϕk(x) ∈ W̃ 2,∞(R3), k ∈ R3, which was proven in Lemma
A3 of [17]. By means of (1.9) these perturbed plane waves satisfy the homogeneous
problem (1.6) when the wave vectork belongs to the sphere in three dimensions
centered at the origin of radius


√
a.


2. Proof of the main result


Armed with the technical lemma of the Appendix we proceed to prove the main
result.


Proof of Theorem 4.The linearized Cahn-Hillard equation (1.3) is equivalent to
system (1.4) in which the first equation admits a solutionv0(x) given by (1.5). The
functionv0(x) ∈ L2(R3) ∩ L∞(R3) and |x|v0(x) ∈ L1(R3) by means of Lemma
A1 and Assumption 3. Then according to Theorem 3 of [18] the second equation
in system (1.4) withv0(x) in its right side admits a unique solution inH2(R3) if
and only if the orthogonality relation (1.13) holds. This solution of problem (1.3)
ua(x) ∈ H2(R3) ⊂ L∞(R3) via the Sobolev embedding theorem,a ≥ 0 satisfies
the equation


−∆ua − V (x)ua − aua = v0(x).
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We use the formula


∆(V ua) = V∆ua + 2∇V.∇ua + ua∆V (2.14)


with the “dot” denoting the standard scalar product of two vectors in three dimen-
sions. The first term in the right side of (2.14) is square integrable sinceV (x) is
bounded and∆ua(x) ∈ L2(R3). Similarlyua∆V ∈ L2(R3) sinceua(x) is bounded
and∆V is square integrable by means of Assumption 2. For the secondterm in the
right side of (2.14) we have∇ua(x) ∈ L2(R3) and∇V is bounded via Assump-
tion 2, which yields∇V.∇ua ∈ L2(R3) and therefore,∆(V ua) ∈ L2(R3). The
right side of problem (1.3) belongs toL2(R3) due to Assumption 3. Indeed, since
supx∈R3 |ρ6+εf | ≤ C, we arrive at the estimate


|f(x)| ≤ C


(ρ(x))6+ε
, x ∈ R


3 (2.15)


with ρ(x) defined explicitly in (1.7). Hence from equation (1.3) we deduce that
∆2ua ∈ L2(R3). Any partial third derivative ofua is also square integrable due to
the trivial estimate in terms of theL2(R3) norms ofua and∆2ua, which are finite.
This implies thatua ∈ H4(R3).


To investigate the issue of uniqueness we supposeu1, u2 ∈ H4(R3) are two
solutions of problem (1.3). Then their differenceu(x) = u1(x)− u2(x) ∈ H4(R3)
satisfies equation (1.3) with vanishing right side. Clearlyu,∆u ∈ L2(R3) and
V u ∈ L2(R3). Therefore,v(x) = −∆u − V (x)u − au ∈ L2(R3) and solves the
equation∆v = 0. Since the Laplace operator does not have any nontrivial square
integrable zero modes,v(x) = 0 a.e. inR3. Hence, we arrive at the homogeneous
problem(−∆ − V (x) − a)u = 0, u(x) ∈ L2(R3). The operator in brackets is
unitarily equivalent to−∆−a onL2(R3) as discussed above and thereforeu(x) = 0
a.e. inR3.


3. Appendix


Lemma A1. Let Assumption 3 hold. Thenv0(x) ∈ L2(R3) ∩ L∞(R3) and
xv0(x) ∈ L1(R3).


Proof. According to the result of [2], for the solution of the Poisson equation
(1.5) under the conditionf(x) ∈ C


µ
6+ε(R


3) and orthogonality relation (1.8) given in
Assumption 3 we havev0(x) ∈ C


µ+2
4+ε (R


3). Hence supx∈R3|ρ4+εv0| ≤ C, such that


|v0(x)| ≤
C


(ρ(x))4+ε
, x ∈ R


3.


The statement of the lemma easily follows from definition (1.7).


Remark. Note that the boundedness ofv0(x) can be easily shown via the ar-
gument of Lemma 2.1 of [15], which relies on Young’s inequality. The square
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integrability ofv0(x) can be proven by applying the Fourier transform to it, using
the facts thatf(x) ∈ L2(R3), |x|f(x) ∈ L1(R3) and its Fourier image vanishes at
the origin since it is orthogonal to a constant by means of Assumption 3.
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