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We measure shear response in packings of glass beads by pulling a thin, rough, metal plate
vertically through a bed of volume fraction φ, which is set, before the plate is pulled, in the range
0.575 to 0.628. The yield stress is velocity independent over 4 decades and increases exponentially
with φ, with a transition at φ ≈ 0.595. An analysis of the measured force fluctuations indicates that
the shear modulus is significantly smaller than the bulk modulus.


PACS numbers:


INTRODUCTION


Granular matter is distinguished in part by its response
to shear stress. We examine here the response to shear
of beds of glass beads of diameter 200 µm. The granu-
lar bed is prepared (by fluidization and sedimentation in
water) in a well-defined homogeneous volume fraction φ
in the range 0.575− 0.628 . We measure the dependence
on volume fraction of the response of the bed to shear by
pulling a thin, rough, metal plate embedded in the mate-
rial. We find a transition indicated by a change of slope
of yield force as a function of φ at φ ≈ 0.595, consistent
with the phase transition at φ between 0.59 and 0.60 re-
ported in [1]. In the Discussion Section we argue that the
transition in the yield slope can be identified with the di-
latancy onset, the change in sign of the volume response
of a sheared system. Further, we suggest that the yield-
ing itself can be viewed as the transition between a solid-
like mechanically stable state and a granular fluid state.
In recent years this transition has often been discussed
in the context of the Jamming paradigm [2] proposed by
Liu and Nagel [3]. We show in the Discussion section how
the yield stress can be used to distinguish the regimes in
a jamming phase diagram [3, 4] for frictional particles.


EXPERIMENT


Our experimental set-up (Fig. 1(a)) consists of a verti-
cal glass tube (diameter 38.7 mm, height 550 mm) filled
with water and soda-lime glass beads (diameter d =
200±10 µm, average sample height 300 mm). The gran-
ular bed is fluidized by a computer-controlled gear pump
that produces 1 min long flow pulses, which are followed
by a 2 min settling time during which the bed completely
sediments [1]. This yields a homogeneous bed with a
packing fraction φ known with an accuracy of 10−4. The
packing fraction after sedimentation depends on the flow
rate during the fluidization phase: loose packings are ob-
tained using a small number of pulses of flow rates on
the order of 50 ml/min, while larger packing fractions
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FIG. 1: (a) Sketch of the experimental setup. The enlarge-
ment shows how the plate and nylon thread are held in place
during fluidization; then the force required to withdraw the
plate is measured. (b) Cartoon of the sheared zone (red) on
the sides of the plate and the compressed zone (blue) on top
of it. (c) A rod pulled through the bed experiences a much
smaller shear component.


are obtained by fluidizing the granular bed repeatedly
with pulses of decreasing flow rates. To check for the
role of the preparation history we also performed some
measurements where the bed was fluidized with a syringe
pump.


To measure the shear force needed to initiate a dis-
placement in the granular bed, a thin metallic plate (12.8
mm high × 9.8 mm wide × 0.1 mm thick) is pulled verti-
cally through the bed (depicted in Fig. 1(b). Both sides
of the plate are covered with glass beads (glued there
with 3M Bonding film 583); the resulting total thickness
of the plate is 0.6 mm. The measured vertical force re-
sults both from the shear at the sides of the plate and
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from compression due to the upward motion of the top
edge of the plate. To determine the value of the compres-
sion component we made measurements using a horizon-
tal cylindrical rod that has the same length as the plate
width (9.8mm) and a diameter the same as the thickness
of the plate (0.6mm) (Fig. 1(c).


The plate is immersed in the bed before fluidization
and is connected to a load cell (Honeywell Sensotec Model
31, range 250 g) by a nylon thread (diameter 150 µm,
length 275 mm, elastic constant 10 N/mm). To keep the
plate in place during the fluidization, a nylon thread is
attached to the plate bottom and the other end of the
thread is attached to a plastic rod (cf. Fig. 1). After
the sedimentation following the fluidization pulses, the
plastic rod is withdrawn through a metallic cylinder to
minimize disturbances to the granular bed. Then the
plate is free to move.


During a measurement, a translation stage driven by
a DC-Servo motor pulls the plate upwards over a dis-
tance of 1 mm at a constant velocity of 0.15 mm/min
(except for a set of measurements made to determine the
velocity dependence). Before the measurement the upper
edge of the plate is 160 ± 5 mm below the sand surface.
The shear force is measured with the load cell connected
to a bridge amplifier (Omega DMD-465WB); its output
voltage is digitized with a 16 bit data acquisition card
(NI PCI-6036E) at a frequency of 100 Hz. This corre-
sponds to one data point every 1×10−4 grain diameters.
The noise level of this setup corresponds to about 1 mN,
as determined from a measurement lifting a plate in an
empty tube.


RESULTS


Typical measurements of the force as a function of the
displacement of the plate are presented in Fig. 2. For
φ < 0.59, the force is constant for the whole displace-
ment. For larger φ the force reaches a maximum value
in the first 0.5 mm before it begins to decrease again.
We take this maximum to be the yield stress, the force
needed to initiate a reorganization of the structure of the
bed. This yield force is measured as the average over a
length of approximately two grain diameters centered on
the position of the maximum. The dependence of the
yield force on packing fraction is shown in Fig. 3 as open
circles. Though the data are noisy, there is a clear change
in slope at φ ≈ 0.595. To test if the noise stems from
minute differences in the packing preparation, which are
unavoidable using a gear pump, we prepared samples us-
ing a syringe pump and two different protocols of flow
pulses (cf. the triangular points in Fig. 3). The absence
of a systematic shift of these measurements suggests that
the noise is due to the finite size of our probe.


As discussed above, the plate not only shears the sam-
ple but also exerts compression. To quantify this com-


FIG. 2: Force needed to pull the plate up at different packing
fractions. The circle corresponds to one bead diameter.
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FIG. 3: Yield force as a function of the volume fraction. Open
circles and filled triangles correspond to the force required to
pull the plate. Filled squares show the force needed to pull a
horizontal rod of the same horizontal dimensions as the up-
per edge of the plate. The solid lines are exponential fits that
intersect at 0.595 for the plate and 0.6 for the rod. The beds
were prepared using a gear pump (circles and squares), a sy-
ringe pump delivering a sequence of flow pulses with decreas-
ing flow rates (up triangles), and a syringe pump delivering
a large number of constant small flow rate pulses (down tri-
angles). The datum at the highest volume fraction was taken
with a Model 31 load cell with the range 10 N.


pression we measured the yield force when the horizontal
rod was pulled vertically (cf. Fig. 1(c)); the results are
given by the filled squares in Fig. 3. Again the observa-
tions are consistent with the existence of a phase transi-
tion, in this case at 0.6. Since the bed yields for a force
only about 30% of the plate yield force, we conclude that
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FIG. 4: The yield force is velocity independent. All other
measurement presented in this paper were made at a velocity
of 0.0125 grain diameters per second.


the plate measurements are indicative of the yield shear
stress alone.


Figure 4 shows that the measured yield force is inde-
pendent of the velocity of the plate, both above and below
φ = 0.595. The larger fluctuations at lower velocities and
higher packing fractions are an unexpected result.


The fluctuations in the force measurements shown in
Fig. 2 contain information concerning the elastic re-
sponse of the granular medium. The force measure-
ments reveal stick-slip motion, that is, smooth “elastic”
increases of force followed by rapid plastic decreases, as
Fig. 5(a)-(c) illustrates. An analysis of the fluctuations,
inspired by work of Cantat and Pitois [5], yields an elastic
constant


e =
E A


L
=


∆F


∆x
, (1)


where ∆F/∆x is the slope of the elastic increases (cf.
inset of Fig. 6(a)), A is the area of the plate, and L is the
apriori unknown width of the sheared or compressed zone
(cf. Fig. 1(b) and (c)). Since the rod mostly compresses
the sample, its elastic modulus E corresponds to the bulk
modulus B of the sample. For the plate, the measured
force arises from both compression and shear, so E is a
combination of B and the shear modulus G.


Figure 7 shows the φ-dependence of the elastic con-
stants ep for the plate and er for the rod. The magnitudes
of ep and er are similar. Both elastic ep and er exhibit
a change in behavior at φ ≈ 0.595, just as found for the
average elastic load amplitudes (Fig. 6). Additionally we
found ep to be velocity-independent for a wide range of
forcings, just as found for the shear force. The values of
ep in Fig. 7 obtained for the two highest packing fraction
values are well below the line given by the nearby data;
this is consistent with the absence of measured stick-slip
motion in Fig. 5(d).
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FIG. 5: Stick-slip events are evident in force measurements
for φ values (a) 0.584 (plate), (b) 0.623 (plate), and (c) 0.626
(rod), but not in the measurements in (d) for the plate at
φ = 0.626. The dots in (b) are the minima and maxima used
for the analysis; consecutive extrema are separated by at least
5 mN, which is about five times the noise level.


0.57 0.58 0.59 0.6 0.61 0.62 0.63
0


0.01


0.02


0.03


0.04


0.05


0.06


 a
m


pl
itu


de
 (


N
)


E
la


st
ic


 lo
ad


Packing fraction φ


FIG. 6: The average ∆F during the elastic load phases. For
φ > 0.6, the amplitudes measured with the plate (open cir-
cles) begin to become higher than the amplitudes for the ver-
tical rod (filled squares).


DISCUSSION


We have found that both the yield force and its elas-
tic response exhibit a change in behavior at φ ≈ 0.595,
the same value of φ (within experimental uncertainty)
as the previously observed phase transition in a pene-
tration experiment [1]. In contrast with the penetration
experiment, the yield force measured here (Fig. 3) is cre-
ated mostly by shear. Recent measurements show that
the the onset of dilatancy [6, 7] (the change in sign of
the volume response of a sheared system) also occurs for
φ about 0.59-0.60, probably with small dependence on
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FIG. 7: Elastic constants ep for the plate (open circles) and
er for the rod (filled squares). Given the scatter, the data
are consistent with a possible transition around φ = 0.595.
The error bars correspond to the standard deviation of the
∆F/∆x slope distributions.


friction coefficient. The basic theoretical understanding
of dilatancy goes back to Reynolds [8]: a dense granu-
lar material must expand when sheared since intertwined
layers must separate if they are forced past one another,
while a low density granular material contracts rather
than expands under shear. Whether the dilantancy on-


set, the transition from contraction to expansion under
shear, occurs so suddenly as to constitute a phase tran-
sition has not been directly determined experimentally,
but on the theory side there is a model predicting this,
[9], an adaption of the Edwards model [10] of granular
matter to include the above mechanism of Reynolds.


Thus there are two shear responses, one associated
with yield exhibiting a transition (Fig. 3) and the other,
dilatancy onset, in which the Reynolds mechanism pro-
duces a phase transition in a model. Both responses are
observed to occur at the same volume fraction within the
experimental uncertainty. In addition, there is a phase
transition at the same volume fraction (again, within
the experimental uncertainty) indicated by a response to
penetration forces that are a mixture of shear and com-
pression. Since a phase transition often leads to discon-
tinuous behavior in a variety of material properties, this
suggests that the yield transition data we report here,
and dilatancy onset, are aspects of the same phase tran-
sition.


A second main point concerns the interpretation of the
shear yield stress in Fig. 3. For small shear stress, the
system will flow but then arrest in a new configuration,
while for shear stress larger than the yield stress the sys-
tem will flow and not come to rest [11]. These solid-like
and liquid-like states can be mapped in a diagram with
the axes volume fraction, pressure, and shear stress, as
Fig. 8 illustrates. Therefore, the data presented in Fig. 3
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FIG. 8: Sketch of the granular phase diagram. The two lines
in the horizontal plane correspond to the exponential fits for
the sheared plate in Fig. 3.


correspond to the jammed-unjammed transition in the
classical jamming phase diagram [3, 4] at a given pres-
sure [12] and friction coefficient.


Jamming phase diagrams in the literature are usually
cartoons, but they could be made quantitative by using
experimental data to map the separation of the jammed
and unjammed states, as in Fig. 3. Diagrams for real
granular matter might include several phase transitions
(see for instance [13–15] concerning a possible transition
at random close packing, φ ≈ 0.64).


In connecting our results with the jamming phase di-
agram for frictionless spheres, we note some ambigu-
ity in the question of the equivalent of point J in fric-
tional systems. The jamming point φJ = 0.64 obtained
in simulations of frictionless soft spheres corresponds
to two phenomena. First it is the only possible den-
sity of amorphous packings of undeformed pressure-free
spheres. Denser packings can only be built from com-
pressed spheres and therefore need to have a finite pres-
sure. This statement is independent of friction and hence
also applicable to a physical granular system, as shown
in a recent 2-dimensional experiment [16]. Second, point
J is also the lower limit in which a system supports a
positive yield stress. However, with friction there exists
(as demonstrated by many experiments), for any pres-
sure, mechanically stable states at a continuum of pack-
ing fractions below φ = 0.64. The lowest volume fraction
at which a finite yield stress can be measured then de-
pends on pressure and friction. Its zero pressure limit
is the random loose packing (RLP) limit, and in recent
work it has been repeatedly taken as the equivalent of
point J [17–19]. Figure 8 is based on such an interpreta-
tion.


Extrapolating from the penetration experiments in [1],
we expect a significant pressure dependence. Addition-
ally, previous measurements have shown that, even at a
constant depth in the sample as in our measurements, the
pressure depends on volume fraction and sample prepa-
ration [20]. Therefore, future work should include inde-
pendent measurements of pressure.
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Our results on the elastic properties can be interpreted
in the framework of a model in which bulk compression
and shear are represented by compression and stretching
of parallel elastic springs. These springs can be thought
of as the individual force chains originating at the probe.
In the plate measurements there are considerably more
shear springs present than in the rod measurements. The
almost equal outcome for the two cases indicates that
the shear elastic response is significantly weaker than the
compression elastic response. If we assume that the rele-
vant length scale L is about the same for shear and com-
pression, this result is equivalent to assuming that the
shear modulus of the granular medium is significantly
smaller than its bulk modulus. In comparison, in the
jamming paradigm the ratio of the shear modulus to the
compression modulus goes to zero when the volume frac-
tion approaches point J from above [4, 21, 22].


The velocity independence of both the yield shear
stress and the elastic properties that we find contrasts
with the previously observed logarithmic velocity depen-
dence in sheared 2-dimensional photoelastic discs [23, 24].
This might be either related to the difference in dimen-
sionality or to the different values of the Young’s moduli
of the materials used: 70 GPa/m2 for glass beads and 4
MPa/m2 for photoelastic discs.


In this paper we have focused on unjamming proper-
ties under shear of 3-dimensional packings of frictional
spheres. We have found that both yield shear stress and
shear modulus per length exhibit a transition at packing
fraction φ ≈ 0.595. As we have discussed, this particu-
lar value of φ could correspond to a phase transition and
could coincide with dilatancy onset. In addition, we have
shown that the shear stress is velocity independent over
a range of four decades, both below and above φ ≈ 0.595.
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[19] M. Jerkins, M. Schröter, H. L. Swinney, T. J. Senden,


M. Saadatfar, and T. Aste, Phys. Rev. Lett. 101, 018301
(2008).


[20] L. Vanel and E. Clément, Eur. Phys. J. B 11, 525 (1999).
[21] H. A. Makse, N. Gland, D. L. Johnson, and L. M.


Schwartz, Phys. Rev. Lett. 83, 5070 (1999).
[22] W. G. Ellenbroek, Z. Zeravcic, W. van Saarloos, and


M. van Hecke, Euro. Phys. Lett. 87, 34004 (2009).
[23] R. R. Hartley and R. P. Behringer, Nature 421, 928


(2003).
[24] R. P. Behringer, D. Bi, B. Chakraborty, S. Henkes, and


R. R. Hartley, Phys. Rev. Lett. 101, 268301 (2008).







