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UMR-CNRS 6625, campus de Beaulieu, 35042 Rennes Cedex, France.


March 10, 2010


Abstract


Contrary to the finite dimensional case, Weyl and Wick quantizations are no more asymptotically
equivalent in the infinite dimensional bosonic second quantization. Moreover neither the Weyl calculus
defined for cylindrical symbols nor the Wick calculus defined for polynomials are preserved by the action
of a nonlinear flow. Nevertheless taking advantage carefully of the information brought by these two
calculuses in the mean field asymptotics, the propagation of Wigner measures for general states can be
proved, extending to the infinite dimensional case a standard result of semiclassical analysis.
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1 Introduction
Our main result is briefly presented in this introduction. Accurate definitions will be found in Section 2.
Let H = Γs(Z ) be the bosonic Fock space constructed over the complex separable Hilbert-space Z ,
Γs(Z ) = ⊕∞


n=0
∨n Z where


∨n Z is the symmetric n-th hilbertian tensor power of Z . Consider the
Hamiltonian


Hε = dΓ(A)+(
r


∑
j=2
〈z⊗ j , Q̃ jz⊗ j〉)Wick


defined for the self-adjoint operator (A,D(A)) on Z and Q̃ j = Q̃ j
∗ ∈L (


∨ j Z ). It is the Wick quantized
version of the classical Hamiltonian


h(z, z̄) = 〈z , Az〉+
r


∑
j=2
〈z⊗ j , Q̃ jz⊗ j〉 , z ∈D(A)⊂Z .


When Z = L2(Rd) , the operator Hε is formally written


Hε =
∫


R2d
A(x,y)a∗(x)a(y) dxdy+


r


∑
j=2


∫
R2d j


Q̃ j(x1, . . . ,x j , y1, . . . ,y j)a∗(x1) . . .a∗(x j)a(y1) . . .a(y j) dxdy ,


with the ε-dependent canonical commutation relations [a(x) , a∗(y)] = εδ (x− y) . Here A(., .) and Q̃ j(., .)
denote the kernels of the operators A and Q̃ j. The mean field asymptotics is concerned with the limit as
ε → 0, where 1


ε
= Nε represents a large number of particles and where ε enters in the CCR-relations by


∀ f ,g ∈Z , [a( f ) , a∗(g)] = ε〈 f , g〉 I .
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The number operator is N = dΓ(IZ ), with Nz⊗n = εnz⊗n. For a normal state ρε ∈L 1(
∨Nε Z )⊂L 1(H )


with Z = L2(Rd), a standard tool considered in the mean field limit is the BBGKY hierarchy of reduced
density matrices:


γ
(p)
ε (x,y) =


∫
R2d(Nε−p)


ρε(x,X ,y,X) dX , p ∈ N ,


and such a definition will be extended to general Z and normal states ρε ∈L 1(H ) fulfilling the condition
Tr
[
ρε Nk


]
< +∞ for all k ∈ N .


For a cylindrical function, b(z) = b(℘z) for some finite rank projection ℘ and b belonging to the Schwartz
class S (℘Z ), the Weyl quantization can be given by


bWeyl =
∫


℘Z
F [b](z) W (


√
2πz) Lp(dz) ,


where W (
√


2πz) = eiπ(a(z)+a∗(z)) and where Lp and F are respectively the Lebesgue measure on ℘Z and
the (ε-independent) Fourier-transform on S (℘Z ). Associated with a family (ρε)ε∈(0,ε̄), Wigner measures
can be defined by


lim
k→∞


Tr
[
ρεk bWeyl


]
=
∫


Z
b(z) dµ(z)


after extracting subsequences under the sole uniform estimate Tr
[
ρε Nδ


]
≤Cδ for some δ > 0 .


The problem of the mean field dynamics questions whether the asymptotic quantities as ε → 0 associ-
ated with


ρε(t) = e−i t
ε


Hε ρε e−i t
ε


Hε , t ∈ R


are transported by the flow Ft generated by the classical Hamiltonian h(z, z̄) and given, after writing zt =
Ft−s(zs), by


i∂tzt = (∂z̄h)(zt , z̄t) = Azt +
r


∑
j=2


j〈z⊗ j−1
t , Q̃ j z⊗ j


t 〉 . (1)


The finite dimensional case enters in the standard framework of semiclassical analysis and has been studied
extensively in the 80’s and 90’s by various authors and with various methods ([48][35][29][42] [18][43][24]
and references therein).
It was first considered by Hepp in [36] and extended by Ginibre and Velo in [30][31] by the squeezed
coherent states method well-known as the Hepp method (see also [49][6]). More recently the question
of the mean field dynamics has been tackled with the so-called BBGKY-hierarchy approach inspired by
the BBGKY-method of classical kinetic theory (see [52][13][22][14] [32][1] [3][23] and also the related
works [37][17]). In [25][26][27] a specific use of the structure of the Wick calculus in the bosonic Fock
space was used to make work truncated Dyson expansions for the mean field dynamics of specific states.
The aim of our work started in [7] was to restore the phase-space geometric nature of the problem in the
spirit of [11][33][38][39] and to extend as much as possible to the infinite dimensional case, the methods
well understood for the semiclassical finite dimensional problem. In this first article, we explained the
construction of Wigner measures, analyzed accurately the gap of information carried by Weyl observables
and Wick observables and use these Wigner (or semiclassical) measures to reformulate known propagation
results. In [8], we reconsidered the truncated Dyson expansion method of [25][26][27] in order to prove the
propagation of Wigner measures for some specific families of states. We are now able to state the following
general result (still with a regular interaction term contrary to many other works cited above).


Theorem 1.1 Let (ρε)ε∈(0,ε̄) be a family of normal states on H with a single Wigner measure µ0 and such
that


∀α ∈ N, lim
ε→0


Tr[ρε Nα ] =
∫


Z
|z|2α dµ0(z) < +∞ . (2)


Then for all t ∈ R, the family (ρε(t) = e−i t
ε


Hε ρε ei t
ε


Hε )ε∈(0,ε̄) has a unique Wigner measure µt = (Ft)∗µ0,
which is the initial measure µ0 pushed forward by the flow associated with (1).
Moreover the convergence


lim
ε→0


Tr
[
ρε(t)bWick


]
=
∫


Z
b◦Ft(z) dµ0(z)


2







holds for any b ∈Palg(Z ) =⊕alg
p,q∈NPp,q(Z ) .


Finally, the convergence of the reduced density matrices


lim
ε→0


γ
(p)
ε (t) =


1∫
Z |z|2p dµt(z)


∫
Z
|z⊗p〉〈z⊗p| dµt(z) =: γ


(p)
0 (t) ,


holds in the L 1(
∨p Z )-norm for all p ∈ N .


Comments: The existence of Wigner measures as Borel probability measures requires a uniform estimate
Tr
[
ρε Nδ


]
≤Cδ for some δ > 0, but such an assumption would be redundant with the existence of bounded


limits stated in (2).
The uniqueness of the Wigner measure µ0 is not really a strong assumption since it suffices to replace the
whole family (ρε)ε∈(0,ε̄) by a suitable extracted sequence (ρεk)k∈N, limk→∞ εk = 0, in order to fulfill this
requirement. Such a reduction argument after extraction will often be used.
The fact that the quantities Tr [ρε Nα ] are uniformly bounded w.r.t ε ∈ (0, ε̄) is also very natural within the
mean field framework and satisfied by all known physical examples.
Actually the strong assumption which is not satisfied in all cases is that the limit in (2) equals


∫
Z |z|2α dµ0.


This condition prevents from the phenomenon of “infinite dimensional defect of compactness” identified
in [7] and which was shown to appear in the physical example of the Bose-Einstein free gas (the non
condensated phase is responsible for a discrepancy between the left- and right-hand sides of (2)). The
analysis of this phenomenon is improved in Section 2.
Finally our proof no more uses truncated Dyson expansions of the quantum flow and relies only on the
good properties of the classical flow, after exploiting all the a priori information given by the Weyl and
Wick calculus.


Outline: The Section 2 introduces the various objects used for our analysis, Wick and Weyl calculuses,
Wigner measures, reduced density matrices. The conditions presented in [8] are reduced to the simple
equivalent form (2) in Subsection 2.7. After this the Subsection 2.8 is devoted to the notion of states local-
ized in a ball.
The dynamics is studied in Section 3. First a simple condition is proved to ensure, via some equicontinuity
argument, the possibility of a common extraction process (εk)k∈N for all times t ∈R . Then the propagation
of Wigner measures is proved for states localized in a ball. Then the truncation is removed and all the argu-
ments are gathered for the proof of Theorem 1.1 in Subsection 3.4. Finally, additional simple consequences
are listed in Subsection 3.5.
Examples are presented in Section 4. It is recalled that the regular interactions are physically relevant within
the modelling of the rapidly rotating Bose condensates in the Lowest Landau Level approximation. Details
are given about the propagation of non trivial Wigner measures supported on a torus, which shows the ad-
vantage of this formulation compared to the BBGKY hierarchy method. Finally, the propagation of Wigner
measures provides a nice formulation of the Hartree-von Neumann limit.


2 Information carried by Wigner measures
After introducing the symmetric Fock space with ε-dependent CCR’s and recalling some properties of
the Wick quantization, the connection between infinite dimensional Wigner measures and the BBGKY
presentation of the many body problem is explicitly specified. This section ends with the notion of states
localized in a ball, which will be usefull in the proof of Theorem 1.1.


2.1 Fock space
Consider a separable Hilbert space Z endowed with a scalar product 〈., .〉 which is anti-linear in the left
argument and linear in the right one and with the associated norm |z| =


√
〈z,z〉. Let σ = Im〈., .〉 and


S = Re〈., .〉 respectively denote the canonical symplectic form and the real scalar product over Z . The
symmetric Fock space on Z is the Hilbert space


H =
∞⊕


n=0


∨
nZ = Γs(Z ) ,
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where
∨n Z is the n-fold symmetric tensor product. Almost all the direct sums and tensor products are


completed within the Hilbert framework. This is omitted in the notation. On the contrary, a specific alg


superscript will be used for the algebraic direct sums or tensor products.
For any n ∈ N, the orthogonal projection of


⊗n Z onto the closed subspace
∨n Z will be denoted by


Sn. For any (ξ1,ξ2, . . . ,ξn) ∈Z n, the vector ξ1∨ξ2∨·· ·∨ξn ∈
∨n Z will be


ξ1∨ξ2∨·· ·∨ξn = Sn(ξ1⊗ξ2 · · ·⊗ξn) =
1
n! ∑


π∈Sn


ξπ(1)⊗ξπ(2) · · ·⊗ξπ(n) , (3)


where Sn is the symmetric group of degree n. The family of vectors (ξ1∨·· ·∨ξn)ξi∈Z is a total family of∨n Z and thanks to the polarization identity


ξ1∨ξ2∨·· ·∨ξn =
1


2nn! ∑
εi=±1


ε1 · · ·εn
( n


∑
j=1


ε jξ j)⊗n , (4)


the same property holds for (ξ⊗n)n∈N,ξ∈Z .
For two operators Ak :


∨ik Z →
∨ jk Z , k = 1,2, the notation A1


∨
A2 stands for


A1
∨


A2 = S j1+ j2 ◦ (A1⊗A2)◦Si1+i2 ∈L (
∨


i1+i2Z ,
∨


j1+ j2Z ) .


Any z ∈ Z is identified with the operator |z〉 :
∨0 Z = C 3 λ 7→ λ z ∈ Z =


∨1 Z while 〈z| denotes the
linear form Z 3 ξ 7→ 〈z , ξ 〉 ∈C. The creation and annihilation operators a∗(ξ ) and a(ξ ), parametrized by
ε > 0, are then defined by:


a(ξ )|∨n Z =
√


εn 〈ξ |⊗ I∨n−1 Z


a∗(ξ )|∨n Z =
√


ε(n+1) Sn+1 ◦ ( |ξ 〉⊗ I∨n Z ) =
√


ε(n+1) ξ
∨


I∨n Z


and satisfy the canonical commutation relations (CCR):


[a(ξ1),a(ξ2)] = [a∗(ξ1),a∗(ξ2)] = 0, [a(ξ1),a∗(ξ2)] = ε〈ξ1,ξ2〉I. (5)


We also consider the canonical quantization of the real variables Φ(ξ ) = 1√
2
(a∗(ξ )+ a(ξ )) and Π(ξ ) =


Φ(iξ ) = 1
i
√


2
(a(ξ )−a∗(ξ )). They are self-adjoint operators on H and satisfy the identities:


[Φ(ξ1),Φ(ξ2)] = iεσ(ξ1,ξ2)I, [Φ(ξ1),Π(ξ2)] = iεS(ξ1,ξ2)I.


The representation of the Weyl commutation relations in the Fock space


W (ξ1)W (ξ2) = e−
iε
2 σ(ξ1,ξ2)W (ξ1 +ξ2) (6)


= e−iεσ(ξ1,ξ2)W (ξ2)W (ξ1),


is obtained by setting W (ξ ) = eiΦ(ξ ). The number operator is also parametrized by ε > 0,


N|∨n Z = εnI|∨n Z .


It is convenient to introduce the subspace


H f in =
alg⊕


n∈N


∨
nZ


of H , which is a set of analytic vectors for N.
For any contraction S ∈L (Z ), |S|L (H ) ≤ 1, Γ(S) is the contraction in H defined by


Γ(S)|∨n Z = S⊗S · · ·⊗S .


More generally Γ(B) can be defined by the same formula as an operator on H f in for any B ∈ L (Z ).
Meanwhile, for any self-adjoint operator A : Z ⊃D(A)→Z , the operator dΓ(A) is the self-adjoint oper-
ator given by


e
it
ε


dΓ(A) = Γ(eitA)


dΓ(A)|∨n,alg D(A) = ε


 n


∑
k=1


I⊗·· ·⊗ A︸︷︷︸
k


⊗·· ·⊗ I


 .


For example N = dΓ(I) .
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2.2 Wick operators
The Wick symbolic calculus on (homogenous) polynomials as introduced in [7] is recalled with its basic
properties.


Definition 2.1 For p,q ∈ N, Pp,q(Z ) denotes the set of (p,q)-homogeneous polynomial functions on Z
which fulfill :


b(z) =
〈
z⊗q , b̃z⊗p〉 with b̃ ∈L (


∨
pZ ,


∨
qZ ) .


The subspace of Pp,q(Z ) made of polynomials b such that b̃ is a compact operator b̃ ∈L ∞(
∨p Z ,


∨q Z )
(resp. b ∈L r(


∨p Z ,
∨q Z )) is denoted by P∞


p,q(Z ) (resp. Pr
p,q(Z )).


On those spaces, the natural norms are


|b|Pp,q = |b̃|L (
∨p Z ,


∨q Z ) and |b|Pr
p,q = |b̃|L r(


∨p Z ,
∨q Z ) , 1≤ r .


The set of non homogeneous polynomials, the algebraic direct sum⊕alg
p,q∈NPp,q(Z ) (resp. ⊕alg


p,q∈NPr
p,q(Z )


with 1≤ r ≤ ∞), will be denoted by Palg(Z ) (resp. Pr
alg(Z )) .


Owing to the condition b̃ ∈ L (
∨p Z ,


∨q Z ) for b ∈Pp,q(Z ), this definition implies that any Gâteaux
differential ∂


j
z ∂ k


z b(z) at the point z ∈Z belongs to L (
∨ kZ ,


∨ jZ ) with


〈ϕ,∂ j
z ∂


k
z b(z)ψ〉= p!


(p− k)!
q!


(q− j)!
〈z⊗q− j ∨ϕ, b̃ z⊗p−k ∨ψ〉 .


In particular, we recover the operator b̃ from b(z) via the relation


b̃ =
1
p!


1
q!


∂
p
z ∂


q
z b(z) ∈L (


∨
pZ ,


∨
qZ ) .


With any ”symbol” b∈Pp,q(Z ), a linear operator bWick called Wick monomial can be associated according
to:


bWick : H f in→H f in,


bWick
|
∨n Z = 1[p,+∞)(n)


√
n!(n+q− p)!


(n− p)!
ε


p+q
2


(
b̃
∨


I∨n−p Z


)
∈L (


∨
nZ ,


∨
n+q−pZ ) , (7)


with b̃ = (p!)−1(q!)−1∂
p
z ∂


q
z b(z) . The basic symbol-operator correspondence:


〈z,ξ 〉 ←→ a∗(ξ )
〈ξ ,z〉 ←→ a(ξ )


√
2S(ξ ,z) ←→ Φ(ξ )√
2σ(ξ ,z) ←→ Π(ξ )


〈z,Az〉 ←→ dΓ(A)
|z|2 ←→ N ,


and more generally (
p


∏
i=1
〈z,ηi〉×


q


∏
j=1
〈ξ j,z〉


)Wick


= a∗(η1) · · ·a∗(ηp)a(ξ1) · · ·a(ξq).


We have the following properties.


Proposition 2.2 The following identities hold true on H f in for every b ∈Pp,q(Z ):
(i)
(
bWick


)∗ = b̄Wick.


(ii)
(
C(z)b(z)A(z)


)Wick = CWickbWickAWick, if A ∈Pα,0(Z ), C ∈P0,β (Z ).


(iii) ei t
ε


dΓ(A)bWicke−i t
ε


dΓ(A) =
(
b(e−itAz)


)Wick, if A is a self-adjoint operator on Z .


A consequence of i) says that bWick is symmetric when q = p and b̃∗ = b̃. Moreover the definition (7) gives(
q = p and b̃≥ 0


)
⇒
(


bWick ≥ 0 on H f in


)
, (8)
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which is false for general non negative polynomial symbols1. For an increasing net of non negative opera-
tors (b̃α)α , b̃α ∈L (


∨p Z ) (again q = p), it also gives(
b̃ = sup


α


b̃α in L (
∨


pZ )
)
⇒
(
∀ϕ ∈H f in , 〈ϕ , bWick


ϕ〉= sup
α


〈ϕ , bWick
α ϕ〉


)
. (9)


When Z = L2(Rd ,dx), the general formula for bWick with b ∈Pp,q(Z ) is simply


bWick =
∫


Rd(p,q)
b̃(y1, . . . ,yq,x1, . . . ,xp)a∗(y1) . . .a∗(yq)a(x1) . . .a(xp) dx1 · · ·dxp dy1 · · ·dyq ,


where b̃(y,x) is the Schwartz kernel of b̃ and where a(xk) = a(δxk) according to the usual convention.


Proposition 2.3 For b ∈Pp,q(Z ), the following number estimate holds∣∣∣〈N〉− q
2 bWick 〈N〉−


p
2


∣∣∣
L (H )


≤ |b|Pp,q
. (10)


The relations (8) and (9) now become for b ∈Pp,p(Z ) or bα ∈Pp,p(Z )(
q = p and b̃≥ 0


)
⇒
(
〈N〉−p/2bWick〈N〉−p/2 ≥ 0 in L (H )


)
, (11)(


b̃ = supα b̃α in L (
∨p Z )


)
⇒
(
〈N〉−p/2bWick〈N〉−p/2 = supα 〈N〉−p/2bWick


α 〈N〉−p/2 in L (H )
)


.(12)


An important property of our class of Wick polynomials is that a composition of bWick
1 ◦bWick


2 with b1,b2 ∈
Palg(Z ) is a Wick polynomial with symbol in Palg(Z ). For b1 ∈Pp1,q1(Z ), b2 ∈Pp2,q2(Z ), k ∈
N and any fixed z ∈ Z , ∂ k


z b1(z) ∈ L (
∨k Z ;C) while ∂ k


z̄ b2(z) ∈
∨k Z . The C-bilinear duality product


∂ k
z b1(z).∂ k


z̄ b2(z) defines a function of z ∈ Z simply denoted by ∂ k
z b1.∂


k
z̄ b2 . We also use the following


notation for multiple Poisson brackets:


{b1,b2}(k) = ∂
k
z b1.∂


k
z̄ b2− ∂


k
z b2.∂


k
z̄ b1, k ∈ N ,


{b1,b2}= {b1,b2}(1).


Proposition 2.4 Let b1 ∈Pp1,q1(Z ) and b2 ∈Pp2,q2(Z ) .
For any k ∈ {0, . . . ,min{p1,q2}}, ∂ k


z b1.∂
k
z̄ b2 belongs to Pp2−k,q1−k(Z ) with the estimate


|∂ k
z b1.∂


k
z̄ b2|Pp2 ,q1


≤ p1!
(p1− k)!


q2!
(q2− k)!


|b1|Pp1 ,q1
|b2|Pp2 ,q2


.


The formulas


(i) bWick
1 ◦bWick


2 =


(
min{p1,q2}


∑
k=0


εk


k!
∂


k
z b1.∂


k
z̄ b2


)Wick


=
(


eε〈∂z,∂ω̄ 〉b1(z)b2(ω) |z=ω


)Wick
,


(ii) [bWick
1 ,bWick


2 ] =


(
max{min{p1,q2} ,min{p2,q1}}


∑
k=1


εk


k!
{b1,b2}(k)


)Wick


,


hold as identities on H f in.


2.3 Cylindrical functions and Weyl quantization
Let P denote the set of all finite rank orthogonal projections on Z and for a given p ∈ P let Lp(dz) denote
the Lebesgue measure on the finite dimensional subspace pZ . A function f : Z → C is said cylindrical if
there exists p ∈ P and a function g on pZ such that f (z) = g(pz), for all z ∈Z . In this case we say that f
is based on the subspace pZ . We set Scyl(Z ) to be the cylindrical Schwartz space:


( f ∈Scyl(Z ))⇔ (∃p ∈ P,∃g ∈S (pZ ), f (z) = g(pz)) .


1This property should not be confused with the positivity of the finite dimensional Anti-Wick quantization which associates a non
negative operator to any non negative symbol.
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The Fourier transform of a function f ∈Scyl(Z ) based on the subspace pZ is defined as


F [ f ](z) =
∫


pZ
f (ξ ) e−2πiS(z,ξ ) Lp(dξ )


and its inverse Fourier transform is


f (z) =
∫


pZ
F [ f ](z) e2πiS(z,ξ ) Lp(dz) .


With any symbol b ∈Scyl(Z ) based on pZ , a Weyl observable can be associated according to


bWeyl =
∫


pZ
F [b](z) W (


√
2πz) Lp(dz) . (13)


After the tensor decompositions


H = Γs(Z ) = Γs(pZ )⊗Γs((1− p)Z ) due to Z = pZ
⊥
⊕(1− p)Z


∀z ∈ pZ , W (
√


2πz) = WpZ (
√


2πz)⊗ IΓs(1−p)Z


where WpZ denotes the reduced representation in Γs(pZ ), one sees that the Weyl quantization of cylin-
drical observables based on pZ amounts to the usual finite-dimensional Weyl quantization. Hence more
general classes of symbols can be considered.
For p ∈ P, the symbol classes defined for 0≤ ν ≤ 1 on the finite dimensional phase space pZ ,


Sν


pZ =⊕alg
n∈ZS(〈z〉npZ ,


dz2


〈z〉2ν


pZ


) , (14)


where 〈z〉2p = 1 + |z|2pZ , are natural Weyl-Hörmander algebras associated with the finite dimensional har-


monic oscillator Hamiltonian, Np = (|z|2pZ )Wick = (|z|2pZ )Weyl − dim pZ
2 ε . They contains the polynomial


functions on pZ . The associated class of Weyl quantized operators after tensorization with IΓs((1−p))Z is
denoted by OpSν


pZ . For a cylindrical polynomial b ∈Palg(Z ) based on pZ , b(z) = b(pz), the asymptotic
equivalence of the Weyl and Wick quantization in finite dimension says for any ν ∈ [0,1]


bWick = bWeyl +Ob(ε) in OpSν


pZ . (15)


Such polynomials have finite rank kernels and make a dense set in P∞
alg(Z ) but not in Palg(Z ).


2.4 Wick observables and BBGKY hierarchy
When Z = L2(Rd), mean field results are often presented or even analyzed in terms of reduced density
matrices or more precisely in terms of a sequence (γ(p)


ε )p∈N with γ
(p)
ε ∈ L 1(


∨p Z ) . This follows the
general BBGKY approach of the kinetic theory and the γ


p
ε correspond in the classical case to the empirical


distributions.
The basic example is when ρε ∈L 1(


∨n Z ), n =
[ 1


ε


]
: For any p ∈ N, p≤ n, γ


(p)
ε ∈L 1(


∨p Z ) is defined
as the partially traced operator with the kernel


γ
(p)
ε (x1, . . . ,xp;y1 . . .yp) :=


∫
Rd(n−p)


ρε(x1, . . . ,xp,X ,y1, . . .yp,X) LRd(n−p)(dX) .


With the polarization identity (4), the family (|ψ⊗n〉〈ψ⊗n|)ψ∈Z forms a total set of L 1(
∨n Z ). Hence the


formal identity


ε
p n!
(n− p)!


|ψ|2(n−p)
ψ(x1) . . .ψ(xp)ψ(y1) . . .ψ(yp) = 〈a(y1) . . .a(yp)ψ⊗n , a(x1) . . .a(xp)ψ⊗n〉


= Tr
[
a∗(y1) . . .a∗(yp)a(x1) . . .a(xp)|ψ⊗n〉〈ψ⊗n|


]
carries over to ρε ∈L 1(


∨n Z ) :


∀p ∈ {1, . . . ,n} , ε
p n!
(n− p)!


γ
(p)
ε (x1, . . . ,xp,y1 . . . ,yp) = Tr [a∗(y1) . . .a∗(yp)a(x1) . . .a(xp)ρε ] .
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The correct meaning of this definition is


Tr
[
γ


(p)
ε b̃


]
=


1[p,+∞)(n)
ε pn(n−1) . . .(n− p+1)


Tr
[
ρε bWick


]
, ∀b ∈Pp,p(Z ) .


Moreover after noticing that the factor ε pn(n− 1) . . .(n− p + 1) is nothing but Tr
[
ρε(|z|2p)Wick


]
when


Tr [ρε ] = 1 and ρε ∈L 1(
∨n Z ), it becomes


Tr
[
γ


(p)
ε b̃


]
=


Tr [ρε ]
Tr [ρε(|z|2p)Wick]


Tr
[
ρε bWick


]
, ∀b ∈Pp,p(Z ) , (16)


with the convention that the right-hand side is 0 when Tr
[
ρε(|z|2p)Wick


]
= 0 . The extension to general


ρε ∈L 1(H ) requires an assumption. Moreover it works for a general separable Hilbert space Z .


Proposition 2.5 Assume that ρε ∈L 1(H ) satisfies ρε ≥ 0 and Nk/2ρε Nk/2 ∈L 1(H ) for all k∈N . Then
for any p ∈ N, the relation (16) defines a unique element γ


(p)
ε ≥ 0 of L 1(


∨p Z ) .


Proof. Suppose Tr
[
ρε(|z|2p)Wick


]
> 0 . Writing


Tr
[
ρε bWick


]
= Tr


[
(1+N)p/2


ρε(1+N)p/2(1+N)−p/2bWick(1+N)−p/2
]


with our assumptions and the estimates (10) ensures that b̃→ Tr
[
ρε bWick


]
defines a continuous linear form


on L (
∨p Z ) . The positivity comes from (11) and the normality of the associated state after normalization,


which says γ
(p)
ε ∈L 1(


∨p Z ), is a consequence of (12) . �


We end with this discussion with a natural definition.


Definition 2.6 When ρε ∈L 1(Z ) satisfies ρε ≥ 0 and Nk/2ρε Nk/2 ∈L 1(H ) for all k ∈ N, the reduced
density matrix γ


(p)
ε , p ∈ N, associated with ρε is the element of L 1(


∨p Z ) defined by


Tr
[
γ


(p)
ε b̃


]
=


Tr [ρε ]
Tr [ρε(|z|2p)Wick]


Tr
[
ρε bWick


]
, ∀b ∈Pp,p(Z ) , (17)


with γ
(p)
ε = 0 in the case when Tr


[
ρε(|z|2p)Wick


]
= 0 .


2.5 Wigner measures
The Wigner measures are defined after the next result proved in [7, Theorem 6.2].


Theorem 2.7 Let (ρε)ε∈(0,ε̄) be a family of normal states on H parametrized by ε . Assume Tr[ρε Nδ ]≤Cδ


uniformly w.r.t. ε ∈ (0,ε) for some fixed δ > 0 and Cδ ∈ (0,+∞). Then for every sequence (εn)n∈N with
limn→∞ εn = 0 there exists a subsequence (εnk)k∈N and a Borel probability measure µ on Z such that


lim
k→∞


Tr[ρεnk
bWeyl ] =


∫
Z


b(z) dµ(z) ,


for all b ∈ ∪p∈P F−1 (Mb(pZ )).


Moreover this probability measure µ satisfies
∫


Z
|z|2δ dµ(z) < ∞.


Definition 2.8 The set of Wigner measures associated with a family (ρε)ε∈(0,ε̄) (resp. a sequence (ρεn)n∈N)
which satisfies the assumptions of Theorem 2.7 is denoted by


M (ρε ,ε ∈ (0, ε̄)) , (resp. M (ρεn ,n ∈ N)) .


Wigner measures are in practice identified via their characteristic functions according to the relation


M (ρε ,ε ∈ (0, ε̄)) = {µ}⇔ lim
ε→0


Tr[ρε W (
√


2πξ )] = F (µ)(ξ ) .
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The expression M (ρε ,ε ∈ (0, ε̄)) = {µ} simply means that the family (ρε)ε∈(0,ε̄) is ”pure” in the sense


lim
ε→0


Tr
[
ρε bWeyl


]
=
∫


Z
b(z) dµ ,


for all cylindrical symbol b without extracting a subsequence. Actually the general case can be reduced to
this after reducing the range of parameter to ε ∈


{
εnk ,k ∈ N


}
.


A simple a priori estimate argument allows to extend the convergence to symbols which have a polyno-
mial growth and to test to Wick quantized symbols with compact kernels belonging to P∞


alg(Z ) (see [7,
Corollary 6.14]).


Proposition 2.9 Let (ρε)ε∈(0,ε̄) be a family of normal states on L (H ) parametrized by ε such that
Tr[ρε Nα ]≤Cα holds uniformly with respect to ε ∈ (0, ε̄) for all α ∈ N and such that M (ρε ,ε ∈ (0, ε̄)) =
{µ}. Then the convergence


lim
ε→0


Tr[ρε bquantized] =
∫


Z
b(z) dµ(z) , (18)


holds for the Weyl quantization of any b ∈ Sν


pZ with p ∈ P and ν ∈ [0,1], and for the Wick quantization of
any b ∈P∞


alg(Z ).


Wigner measures are completely identified by testing with Weyl-quantized observable and possibly by re-
stricting to some countable subset ∪n∈N Dn,pn where Dn,pn is a countable dense subset of F−1(Mb(pnZ )),
and (pn)n∈N is a sequence of P such that supn∈N pn = IZ (see [7]). One may question whether testing on
all the bWick with b ∈P∞


alg(Z ) also identifies the Wigner measures. When Z is finite dimensional, this
amounts to the well-known Hambürger moment problem of identifying a probability measure ν on R from
its moments an =


∫
R xndν(x), n ∈N, for which uniqueness fails without growth conditions on the sequence


(an)n∈N ([47] [5]), which can be translated in our case to growth conditions of (supε∈(0,ε̄) Tr [ρε Nα ])α∈N.
We shall circumvent this difficulty, by identifying the Wigner measures in two steps by approximating the
states (ρε)ε∈(0,ε̄) by states (ρapp


ε )ε∈(0,ε̄) for which the growth condition is satisfied. We shall reconsider the
moment problem later, but the comparison argument is given below.


Proposition 2.10 Let (ρ j
ε )ε∈(0,ε̄), j = 1,2, be two families (or sequences) of normal states on H such that


Tr
[
ρ


j
ε Nδ


]
≤Cδ uniformly w.r.t. ε ∈ (0, ε̄) for some δ > 0 and Cδ ∈ (0,+∞). Assume further M (ρ j


ε ,ε ∈
(0, ε̄)) =


{
µ j
}


for j = 1,2. Then ∫
|µ1−µ2| ≤ liminf


ε→0
|ρ1


ε −ρ
2
ε |L 1(H ) .


Proof. For a symbol b ∈Scyl(Z ), the finite dimensional Weyl semiclassical calculus says |bWeyl |L (H ) ≤
‖b‖∞ +Ob(ε) with ‖b‖∞ = ‖b‖L∞(pZ ) . This implies for a given b ∈Scyl(Z ),


|
∫


Z
b(z)d(µ1−µ2)(z)|= lim


ε→0


∣∣∣Tr[(ρ1
ε −ρ


2
ε )bWeyl ]


∣∣∣≤ ‖b‖∞ liminf
ε→0


|ρ1
ε −ρ


2
ε |L 1(H ) .


The measure µ1−µ2 is absolutely continuous with respect to the Borel probability measure µ1+µ2
2 . Hence


there exists a Borel function λ on Z such that µ1−µ2 = λ (z) µ1+µ2
2 with the additional property |λ (z)| ≤ 2


µ1+µ2
2 -almost everywhere. But for any Borel probability measure ν on Z , it was checked in [7] that


Scyl(Z ) is dense in Lp(Z ,ν) for p ∈ [1,∞) on the basis of a general measurable version of Stone-
Weierstrass theorem (see for instance [19]). Hence there exists a sequence (βn)n∈N in Scyl(Z ) such that


lim
n→∞
‖βn−


|λ |
λ


1{λ 6=0}‖L1(Z ,
µ1+µ2


2 ) = 0


and after extraction limk→∞ βnk(z) = |λ |
λ


(z)1{λ 6=0}(z),
µ1+µ2


2 -almost everywhere. By setting bk = 2
βnk


1+|βnk |
2 ,


we get a sequence (bk)k∈N such that


∀k ∈ N, bk ∈Scyl and ‖bk‖∞ ≤ 1 ,


lim
k→∞


bk(z) =
|λ |(z)
λ (z)


1{λ 6=0}(z)
µ1 + µ2


2
a.e.
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We conclude with∫
|µ1−µ2|=


∫
Z
|λ (z)| d µ1 + µ2


2
(z) =


∣∣∣∣ limk→∞


∫
Z


bk(z) d(µ
1−µ


2)(z)
∣∣∣∣≤ 1× liminf


ε→0
|ρ1


ε −ρ
2
ε |L 1(H ) .


�
When the two sets M (ρ j


ε ,ε ∈ (0, ε̄)) have more than one element, the extraction of subsequences, (εn)n∈N,
can be made simultaneously and the result has to be modified into:


inf
(µ1,µ2)∈M (ρ1


ε ,ε∈(0,ε̄))×M (ρ2
ε ,ε∈(0,ε̄))


∫
|µ1−µ2| ≤ limsup


ε→0
|ρ1


ε −ρ
2
ε |L 1(H ) . (19)


2.6 Wigner measures and the BBGKY hierarchy
The compactness condition b ∈P∞


alg(Z ) for the Wick quantization in Proposition 2.9 is not a technical
restriction and the convergence is no more true for a general b ∈Palg(Z ). It was identified in [7] as a
“dimensional defect of compactness” and illustrated with examples, one of them being related with the
Bose-Einstein condensation of the free Bose gas.
This terminology comes from the idea that this defect of compactness does not come from the infinity in
the phase space like in the finite dimensional case (see [53][28]) but from the non compactness in the norm
topology of balls in infinite dimension. Actually this was made more accurate in [8]: under the assumptions
M (ρε ,ε ∈ (0, ε̄)) = {µ} and Tr


[
ρε Nk


]
≤ λ k, we proved (T )⇒ (P) with


(P) ∀b ∈Palg(Z ), lim
ε→0


Tr
[
ρε bWick


]
=
∫


Z
b(z) dµ(z) ;


(T ) ∀η > 0,∃Pη ∈ P, Tr [(1−Γ(Pη))ρε ] < η ,


where (T ) appears as a quantum Prokhorov condition (or tightness condition in the strong topology).
The condition (P) which will be simplified in the next subsection, actually contains, for all α ∈ N, the
uniform bound w.r.t. ε of Tr [ρε Nα ] since Nα = [(|z|2)Wick]α . It implies actually a strong relationship
between the Wigner measure formulation and the convergence of reduced density matrices.


Proposition 2.11 Assume that (ρε)ε∈(0,ε̄) is a family of L 1(H ) with ρε ≥ 0, Tr[ρε ] = 1, M (ρε ,ε ∈
(0, ε̄)) = {µ} with the condition (P) and assume µ 6= δ0. Define for p ∈ N


γ
(p)
0 :=


1∫
Z |z|2p dµ(z)


∫
Z
|z⊗p〉〈z⊗p| dµ(z) (20)


Then for all p ∈ N, the reduced density matrix γ
(p)
ε converges to γ


(p)
0 in the L 1-norm.


Proof. For p = 0, the result is nothing but 1 =
∫


µ = limε→0 Tr[ρε ] = 1.
For p ∈ N∗, the condition (P) with µ 6= δ0 says first


lim
ε→0


Tr
[
ρε(|z|2p)Wick


]
=
∫


Z
|z|2p dµ(z) > 0 .


Hence, the reduced density matrix γ
(p)
ε is well defined according to Definition 2.6 for ε < ε̄p small enough


(with Tr[ρε ] = 1). The condition (P) gives the general convergence:


lim
ε→0


Tr
[
γ


(p)
ε b̃


]
= lim


ε→0


Tr
[
ρε bWick


]
Tr [ρε(|z|2p)Wick]


=
∫
Z b(z) dµ(z)∫
Z |z|2p dµ(z)


= Tr
[
γ


(p)
0 b̃


]
,


for all b ∈Pp,p(Z ), where the last equality is a µ-integration of the equality of continuous functions


b(z) = 〈z⊗p , b̃z⊗p〉= Tr
[
|z⊗p〉〈z⊗p|b̃


]
.


This proves the weak convergence of γ
(p)
ε to γ


(p)
0 in L 1(


∨p Z ). But since γ(p)ε and γ
(p)
0 are non negative


with Tr[γ(p)
ε ] = 1 = Tr


[
γ


(p)
0


]
, this implies the norm convergence according to [50][4][20]).2 �


2In a more general framework, it is said that L 1(
∨p Z ) has a uniform Kadec-Klee property (see [40] and references therein).
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2.7 A simple criterion for the reliability of Wick observables
The proof of Proposition 2.11 can be adapted in order to make an equivalent condition to (P) with a weaker
and easier to handle formulation:


(PI) ∀α ∈ N, lim
ε→0


Tr [ρε Nα ] =
∫


Z
|z|2α dµ(z) < +∞.


Proposition 2.12 For a family (ρε)ε∈(0,ε̄) in L 1(H ) such that ρε ≥ 0, Tr[ρε ] = 1, M (ρε ,ε ∈ (0, ε̄)) =
{µ}, the condition (P) and (PI) are equivalent:(


∀α ∈ N, lim
ε→0


Tr [ρε Nα ] =
∫


Z
|z|2α dµ(z)


)
⇔
(
∀b ∈Palg(Z ), lim


ε→0
Tr
[
ρε bWick


]
=
∫


Z
b dµ


)
Proof. The condition (PI) is a particular case of (P). Let us prove (PI)⇒ (P) .
We start with two remarks:


• For k ∈ N∗, (|z|2k)Wick = N(N− ε) . . .(N− (k−1)ε). Hence the condition (PI) is equivalent to


∀α ∈ N, lim
ε→0


Tr
[
ρε(|z|2α)Wick


]
=
∫


Z
|z|2α dµ(z) .


• For p = 0 (resp q = 0) the operators in L (C,
∨q Z ) (resp. in L (


∨p Z ,C)) are compact and
P0,q(Z ) = P∞


0,q(Z ) (resp. Pp,0(Z ) = P∞
p,0(Z )). Hence the convergence limε→0 Tr[ρε bWick] =∫


b dµ , is consequence of Proposition 2.9 when p = 0 or q = 0.


According to Proposition 2.11, there are two cases.
If µ = δ0: Then for b ∈Pp,p(Z ), p ∈ N∗, such that b̃ ≥ 0, the inequality 0 ≤ b̃ ≤ |b|Pp,p I∨p Z and the
positivity (11) says


0≤ lim
ε→0


Tr
[
ρε bWick


]
≤ lim


ε→0
|b|p,pTr


[
ρε(|z|2p)Wick


]
=
∫


Z
|z|2p


δ0(z) = 0 .


For a general b ∈Pp,p(Z ), p ∈ N∗, the decomposition b̃ = b̃R,+− b̃R,−+ ib̃I,+− ib̃I,− with all the b̃• ≥ 0
now gives


∀p ∈ N∗,∀b ∈Pp,p(Z ), lim
ε→0


Tr
[
ρε bWick


]
= 0 .


For p 6= q, p,q ∈ N∗, write∣∣∣Tr
[
ρε bWick


]∣∣∣= ∣∣∣Tr
[
ρ


1/2
ε (ρ1/2


ε bWick)
]∣∣∣≤ Tr[ρε ]1/2Tr


[
ρε bWickbWick,∗


]1/2
.


Proposition 2.4 says that bWickbWick,∗ = ∑
p
`=0


ε`


`! ∂ `
z b.∂ `


z̄ b̄ belongs to ⊕p+q
k=0 Pk,k(Z ) with an O(ε) term in


P0,0(Z ). We have proved


∀p,q ∈ N∗, ∀b ∈Pp,q(Z ), lim
ε→0


Tr
[
ρε bWick


]
= 0 =


∫
Z


b(z)δ0(z) ,


while the cases (0,q) and (p,0) are already known.


If µ 6= δ0: Then we know by Proposition 2.11 that limε→0 ‖γ(p)
ε − γ


(p)
0 ‖L 1 = 0, which implies


∀b ∈Pp,p(Z ) , lim
ε→0


Tr
[
ρε bWick


]
= lim


ε→0
Tr
[
γ


(p)
ε b̃


]
= Tr


[
γ


(p)
0 b̃


]
=
∫


Z
b(z) dµ(z) .


Let us consider the general case b ∈Pp,q(Z ). The above convergence is still true when the kernel b̃ is
compact by Proposition 2.9. Consider now a general b ∈Pp,q(Z ). Since


∫
Z |z⊗p〉〈z⊗q| dµ(z) is nuclear


(or trace-class in
∨q Z ⊕


∨p Z ), for any n ∈ N there exists a compact operator b̃n ∈ L ∞(
∨p Z ,


∨q Z )
such that |bn|Pp,q = |b̃n|L (


∨p Z ,
∨q Z ) = |b̃|L (


∨p Z ,
∨q Z ) = |b|Pp,q and∣∣∣∣∫


Z
(b(z)−bn(z)) dµ(z)


∣∣∣∣= ∣∣∣∣Tr
[∫


Z
|z⊗p〉〈z⊗q| dµ(z)[b̃− b̃n]


]∣∣∣∣≤ 1
n+1


.
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The Lebesgue convergence theorem with


∀n ∈ N, |b(z)−bn(z)|r ≤ (2|b|Pp,q)
r|z|r(p+q) ,


∫
Z
|z|r(p+q) dµ(z) < ∞ ,


∀z ∈Z , lim
n→∞


bn(z) = lim
n→∞
〈z⊗q , b̃nz⊗p〉= b(z) ,


yields


lim
n→∞


∫
Z
|b(z)−bn(z)|r dµ(z) = 0 .


Set ηr(n) =
∫
Z |b(z)−bn(z)|r dµ(z) and use again the Cauchy-Schwarz inequality∣∣∣Tr


[
ρε(bWick−bWick


n )
]∣∣∣≤ Tr


[
ρε(bWick−bWick


n )(bWick,∗−bWick,∗
n )


]1/2
.


Owing to the result valid when p = q we deduce


limsup
ε→0


∣∣∣Tr
[
ρε(bWick−bWick


n )
]∣∣∣≤ [∫


Z
|b(z)−bn(z)|2 dµ(z)


]1/2


= η2(n)1/2 .


Since for n ∈ N fixed, limε→0 Tr
[
ρε bWick


n
]
=
∫
Z bn(z) dµ(z), we deduce


∀n ∈ N, limsup
ε→0


∣∣∣∣Tr
[
ρε bWick


]
−
∫


Z
b(z) dµ(z)


∣∣∣∣≤ 1
n+1


+η2(n)1/2 ,


while the right-hand side goes to 0 as n→ ∞ . �


2.8 States localized in a ball
The condition, Tr [ρε Nα ]≤ λ α for all α ∈ N, used in [8] is actually equivalent to


ρε = 1[0,λ ](N)ρε 1[0,λ ](N)


(locate the spectral measure of ρε for the self-adjoint operator N). Such an assumption remains an important
step in the present analysis, and N = (|z|2)Wick suggests that such a state is localized in ball of the phase-
space.


Definition 2.13 A family (ρε)ε∈(0,ε̄) (or a sequence (ρεn)n∈N) of normal states on H , is said to be localized
in the ball of radius R > 0, if ρε = 1[0,R2](N)ρε 1[0,R2](N) for all ε ∈ (0, ε̄) .


The meaning of the geometric intuition contained in the terminology “localized in a ball of radius R”, can
be made more accurate.


Lemma 2.14 For a family(ρε)ε∈(0,ε̄) (or a sequence (ρεn)n∈N) of normal states on H localized in a ball
of radius R > 0, all its Wigner measures are supported in the ball {|z| ≤ R} .


Proof. A family (ρε)ε∈(0,ε̄) localized in a ball of radius R satisfies Tr
[
ρε Nδ


]
≤ R2δ for all δ > 0. Therefore


the set of Wigner measures M (ρε ,ε ∈ (0, ε̄)) is well defined and the convergence after extraction can be
tested with Weyl-quantized cylindrical functions in the symbol class Sν


p introduced in (14) for any p ∈ P.
Let µ ∈M (ρε ,ε ∈ (0, ε̄)) be associated with the sequence (εn)n∈N. For any finite rank projection p∈ P, the
Wick quantized operator (|pz|2)Wick is Np⊗ IΓs((1−p)Z ) where Np is the number operator on Γs(pZ ) and
equals (|z|2pZ −Cpε)Weyl in the finite dimensional framework of pZ . For any cut-off function χ ∈ C ∞


0 (R)
such that χ ≡ 1 on


[
0,R2


]
, the finite dimensional Weyl semiclassical calculus tells us (1− χ)(Np) = (1−


χ)(|z|2pZ )Weyl +Op(ε) in L (Γs(pZ )). Further the commutative decomposition N = Np⊗ IΓs((1−p)Z ) +
IΓs(pZ )⊗N(1−p) ≥ Np⊗ IΓs((1−p)Z ) and choosing χ decreasing on [0,+∞) implies


(1−χ)(|pz|2)Weyl +Op(ε)≤ (1−χ)(Np⊗ IΓ((1−p)Z ))≤ (1−χ)(N) .


We deduce


0≤
∫


Z
(1−χ(|pz)|2) dµ(z) = lim


n→∞
Tr
[
ρε(1−χ(|pz|2))Weyl


]
≤ lim


n→∞
Tr
[
ρεn1[0,R2](N)(1−χ(N))


]
= 0 .


Hence the measure µ vanishes outside a cylinder {|pz| ≥ R}. This yields the result. �
With such localized states we can solve the moment problem.
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Proposition 2.15 Let (ρε)ε∈(0,ε̄) be a family (or a sequence (ρεn)n∈N) of normal states on H , localized in
the ball of radius R > 0 . If there exists a Borel measure µ on Z such that


∀b ∈P∞
alg(Z ) , lim


ε→0
Tr
[
ρε bWick


]
=
∫


Z
b(z) dµ(z) ,


then
M (ρε ,ε ∈ (0, ε̄)) = {µ} .


Proof. Although this is shown in [7, Proposition 6.15], we provide here a different proof.
Let p ∈ P and consider the direct image by p of the measure µ:


∀E ∈B(pZ ) , µp(E) =
∫


Z
1p−1(E)(z) dµ(z) ,


where B(pZ ) denotes the Borel σ -set on pZ .
For any b ∈P∞


alg(Z ), such that b(pz) = b(z) we have


lim
ε→0


Tr
[
ρε bWick


]
=
∫


pZ
b(z) dµp(z) .


This holds in particular when b(z) = |pz|2k with bWick = Nk
p +O(ε)≤ Nk +O(ε) with∫


pZ
|z|2k dµp(z)≤ lim


ε→0
Tr
[
ρε Nk


p


]
≤ lim


ε→0
Tr
[
ρε Nk


]
≤ R2k .


Hence all the moments
∫


pZ |z|2k dµp(z) are bounded by R2k and the finite dimensional moment problem


applies (see [47][5]): µp is completely determined by the set of values
{∫


pZ b dµp , b polynomial
}


. Let µ ′


be a Wigner measure of the family (ρε)ε∈(0,ε̄). It is supported in the ball {z ∈Z , |z| ≤ R} so that its direct
image by p, µ ′p is supported in the ball {z ∈ pZ , |z| ≤ R}. Moreover there exists a sequence (εn)n∈N, such
that


∀b ∈ Sν


pZ , lim
n→∞


Tr
[
ρεn bWeyl


]
=
∫


pZ
b(z) dµ


′
p(z) ,


where the bWeyl can be replaced by bWick for any polynomial b such that b(z) = b(pz) according to the finite
dimensional comparison of the Weyl and Wick calculus in (15). We deduce µp = µ ′p. Since this holds for
all the p ∈ P, this ends the proof. �


Let χ be a continuous cut-off function supported in [0,1], with 0≤ χ ≤ 1 and such that χ ≡ 1 in [0, 1
2 ].


Within the assumptions of Theorem 2.7 and especially Tr[ρε Nδ ]≤Cδ , the difference between the state ρε


and the localized state ρ
χ,R
ε = 1


Tr
[
ρε χ2( N


R2 )
]χ( N


R2 )ρε χ( N
R2 ) can be made arbitrarily small according to


∀ε ∈ (0, ε̄) , |ρε −ρ
χ,R
ε |L 1(H ) ≤


Cδ


(R/2)2δ −Cδ


, (21)


where the right-hand side vanishes as R→ ∞. Then the comparison result in Proposition 2.10 or its variant
(19) says that the Wigner measures (ρε)ε∈(0,ε̄) can be identified by its approximation by states localized in
balls:


inf
(µ,µ ′)∈M (ρε ,ε∈(0,ε̄))×M (ρχ,R


ε ,ε∈(0,ε̄))


∫
|µ−µ


′| ≤ Cδ


(R/2)2δ −Cδ


. (22)


Then the question arises whether the family (ρχ,R
ε )ε∈(0,ε̄), or an extracted subsequence, satisfies the condi-


tion (PI) (or equivalently (P)) if the family (ρε)ε∈(0,ε̄) does.


Proposition 2.16 Assume that the family (ρε)ε∈(0,ε̄) of normal states on H satisfies M (ρε ,ε ∈ (0, ε̄)) =
{µ} and the condition (PI) . Let the function f ∈ C 0([0,+∞),R) be polynomially bounded such that the
quantity Tr[ρε f 2(N)] is uniformly bounded from below for ε ∈ (0, ε̄) . Then the family (ρ f


ε )ε∈(0,ε̄) given by


ρ
f


ε = 1
Tr[ρε f 2(N)] f (N)ρε f (N) has a unique Wigner measure M (ρ f


ε ,ε ∈ (0, ε̄)) =
{


f 2(|z|2)µ∫
f 2(|z|2)dµ


}
and satisfies


the condition (PI) .
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We will need the next lemma


Lemma 2.17 Let the family (ρε)ε∈(0,ε̄) (or a sequence (ρεn)n∈N) of normal states be localized in the ball
of radius R and assume the condition (PI) with M (ρε ,ε ∈ (0, ε̄)) = {µ}. Then the equality


lim
ε→0


Tr
[
eα1N


ρε eα2NbWick
]


=
∫


Z
e(α1+α2)|z|2b(z) dµ(z) (23)


holds for all α1,α2 ∈ C and all b ∈Palg(Z ) .


Proof. The right-hand side of (23) is the sum of the double series


∑
k1,k2∈N


(α1)k1(α2)k2


k1!k2!


∫
Z
|z|2k1+2k2b(z) dµ(z) ,


for µ is a Borel probability measure supported in {|z| ≤ R} and b is a polynomial function.
Due to ρε = ρε 1[0,R2](N), the sum


SK2,k =
K2


∑
k2=0


ρε


(α2N)k2


k2!
(1+N)k , K2,k ∈ N


and the remainder term


RK2,k = ρε eα2N(1+N)k−SK2,k =
∫ 1


0


(1− t)K2


K2!
ρε(α2N)K2+1eα2tN(1+N)k dt


satisfy


1[0,R2](N)SK2,k = SK2,k with |SK2,k |L 1(H ) ≤ e|α2|R2
(1+R2)k ,


and 1[0,R2](N)RK2,k = RK2,k with |RK2,k|L 1(H ) ≤ e|α2|R2
(1+R2)k (|α2|R2)K2+1


(K2 +1)!
.


Repeating the same estimate on the left hand side with SK2,k and RK2,k instead of ρε implies that the L 1(H )
norm of


(1+N)k


[
eα1N


ρε eα2N−
K1


∑
k1=0


K2


∑
k2=0


(α1N)k1


k1!
ρε


(α2N)k2


k2!


]
(1+N)k


is bounded by


e|α2|R2+|α1|R2
(1+R2)2k


[
(|α1|R2)K1+1


(K1 +1)!
+


(|α2|R2)K2+1


(K2 +1)!
+


(|α1|R2)K1+1(|α2|R2)K2+1


(K1 +1)!(K2 +1)!


]
,


which vanishes as min(K1,K2)→ ∞ . We conclude with a δ/3-argument after noticing that (1+N)−kbWick


(1 + N)−k is bounded for k ≥ kb and that the convergence as ε → 0 holds for b ∈Palg(Z ) fixed and for
the finite sums ∑


K1
k1=0 ∑


K2
k2=0 owing to the condition (PI). �


Proof of Proposition 2.16: Let C f > 1 be a constant such that Tr
[
ρε f 2(N)


]
≥ 1


C f
and sups∈[0,+∞) f (s)(1+


s)−ν ≤C f . The inequalities Tr[ρ f
ε Nα ]≤C2


f Tr
[
ρε Nα(1+N)2ν


]
, α ∈ N, ensure that the family (ρ f


ε )ε∈(0,ε̄)
admits Wigner measures without any way to identify them for the moment. So take a sequence (εn)n∈N,
such that limn→∞ εn = 0 and M (ρ f


εn ,n ∈ N) =
{


µ f
}


. We first prove that the sequence (ρ f
εn)n∈N satisfies


the condition (PI), then check that µ f = f 2(|z|2)µ∫
f 2(|z|2)dµ


in the cases when (ρε)ε∈(0,ε̄) is localized in a ball and
then when f is compactly supported, and finally conclude with approximation arguments.
1) The condition (PI) for the sequence: The uniform control of Tr


[
ρ


f
εnNα


]
≤ Cα , α ∈ N, implies∫


Z |z|2α dµ f (z) < +∞ and the Proposition 2.9 says that the convergence


lim
n→∞


Tr
[
ρ


f
εnbWick


]
=
∫


Z
b(z) dµ


f (z)
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holds for any b ∈P∞
alg(Z ) with a compact kernel. In particular for b(z) = |pz|2k with p ∈ P and k ∈ N,


lim
n→∞


Tr
[


ρ
f


εn


(
(|pz|2)Wick


)k
]


= lim
n→∞


Tr
[
ρ


f
εn(|pz|2k)Wick


]
=
∫


Z
|pz|2k dµ


f (z) , (24)


while we assumed
∀b ∈Palg(Z ) , lim


n→∞
Tr
[
ρεnbWick


]
=
∫


Z
b(z) dµ(z) . (25)


Fix α ∈ N∗ and take δ > 0. By Lebesgue’s convergence, there exists p ∈ P such that∫
Z


∣∣|z|2α −|pz|2α
∣∣ dµ


f (z)≤ δ


and
∫


Z


∣∣|z|2α −|pz|2α
∣∣(1+ |z|2)2ν dµ(z)≤ δ .


Remember that (|pz|2)Wick = Np⊗ IΓs((1−p)Z ) = Np with Nα
p ≤ Nα where both sides commute with f (N)


and we get:


0≤ Tr
[
ρ


f
εn(N


α −Nα
p )
]
≤ C f Tr


[
f (N)(Nα −Nα


p )1/2
ρεn(N


α −Nα
p )1/2 f (N)


]
≤ C f | f (N)(1+N)−ν |2L (H )


×Tr
[
(1+N)ν(Nα −Nα


p )1/2
ρεn(N


α −Nα
p )1/2(1+N)ν


]
≤ C3


f Tr
[
ρεn(N


α −Nα
p )(1+N)2ν


]
.


But we know by (25) that the right-hand side converges as n→ ∞ to


C3
f


∫
Z


(|z|2α −|pz|2α)(1+ |z|2)2ν dµ(z)≤C3
f δ ,


while (24) with (|pz|2)Wick = Np gives


lim
n→∞


Tr
[
ρ


f
εnNα


p


]
=
∫


Z
|pz|2α dµ


f (z) .


Hence there exist nδ ∈ N such that


∀n≥ nδ ,


∣∣∣∣Tr
[
ρ


f
εnNα


]
−
∫


Z
|pz|2α dµ


f (z)
∣∣∣∣≤ (C3


f +1)δ .


From
∫
Z ||z|2α −|pz|2α | dµ f (z)≤ δ , we deduce


limsup
n→∞


|Tr
[
ρ


f
εnNα


]
−
∫


Z
|z|2α dµ(z)| ≤ (C3


f +2)δ .


Letting δ → 0 ends the proof of this part.
2) Identification of µ f when (ρε)ε∈(0,ε̄) is localized in a ball: Assume that (ρε)ε∈(0,ε̄) is localized in a
ball of radius R > 0. The Lemma 2.17 tells us


∀t1, t2 ∈ R, ∀b ∈Palg(Z ) , lim
n→∞


Tr
[
eit2N


ρεneit1NbWick
]


=
∫


Z
ei(t1+t2)|z|2b(z) µ(z) ,


while the uniform boundedness of (1+N)−kbbWick(1+N)−kb entail∣∣∣Tr
[
eit2N


ρεneit1NbWick
]∣∣∣≤CbTr


[
ρεn(1+N)2kb


]
≤Cb(1+R2)2kb .


Hence for f ∈F−1(L1(R)), we get


lim
n→∞


Tr
[


f (N)ρεn f (N)bWick
]


Tr [ f (N)ρεn f (N)]
=
∫
Z f (|z|2)2 b(z) dµ(z)∫


Z f (|z|2)2 dµ(z)
.
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We have proved:


∀b ∈Palg(Z ) , lim
n→∞


Tr
[
ρ


f
εnbWick


]
=
∫
Z f (|z|2)2 b(z) dµ(z)∫


Z f (|z|2)2 dµ(z)
.


The part 1) and 1[0,R2](N)ρ f
εn1[0,R2](N) = ρ


f
εn ensure that (ρ f


εn)n∈N satisfies the sufficient conditions for


solving the moment problem (Proposition 2.15) and µ f = f (|z|2)2 µ∫
Z f (|z|2)2 dµ


in this case.


3) Identification of µ f when f is compactly supported: Assume that f ∈ C 0
c ([0,+∞)) is supported in


[0,R0]. Consider for χ ∈ C 0
c ([0,+∞)), 0≤ χ ≤ 1, χ ≡ 1 on [0,1/2] and for R > 0, the truncated states


ρ
R
εn =


1


Tr
[
ρεn χ2( N


R2 )
]χ(


N
R2 )ρεn χ(


N
R2 ) , n ∈ N .


For R≥ 2R0, we have


∀n ∈ N∗ , ρ
f


εn =
1


Tr
[
ρR


εn f 2(N)
] f (N)ρR


εn f (N) .


By extracting a subsequence we can assume M
(


ρR
εnk


,k ∈ N
)


=
{


µR
}


, and Part 1) applied to (ρR
εnk


)k∈N


ensures that the pair (ρ f
εnk


,ρR
εnk


) fulfills all the assumptions of Part 2) if f ∈ C 0
c ([0,+∞))∩F−1L1(R).


Thus the measure µ f equals | f (|z|2)|2µR∫
Z | f (|z|2)|2 dµR . From the comparison (22) we know


∫
|µR−µ|= O(R−1) and


since f is a bounded function ∫ ∣∣∣∣µ f − | f (|z|2)2µ∫
| f (|z|2)|2 dµ


∣∣∣∣≤ C
R


.


Taking the limit as R→ 0 gives the result when f ∈ C 0
c ([0,+∞))∩F−1L1(R) . Removing the condition


f ∈F−1L1(R) is obtained by a comparison argument between ρ
f


εn and ρ
f`


εn with f` ∈ C 0
c ∩F−1L1(R) and


sups∈[0,+∞] | f (s)− f`(s)| ≤ 1
`+1 , for ` ∈ N .


4) Final approximation argument and uniqueness of µ f : Consider now the complete problem with the


extracted sequence (ρ f
εn)n∈N. We again use the cut-off χ( N


R2 ) but now to compare ρ
f


εn with ρ
f χ(R−2.)


εn . After


extracting a subsequence, we can assume M
(


ρ
f χ(R−2.)


εnk
,k ∈ N


)
=
{


µ f χ(R−2.)
}


. The pair (ρ f χ(R−2.)
εn ,ρεn)


fulfills the assumptions of Part 3) and


µ
f χ(R−2.) =


f 2(|z|2)χ2(R−2|z|2)µ∫
f 2(|z|2)χ2(R−2|z|2) dµ


.


But from the inequalities f (s)(1− χ(R−2s))(1 + s)−ν−1 ≤CR−2 and Tr
[
ρε(1+N)2ν+2


]
≤ C̃ν we deduce


the uniform estimate:


∀k ∈ N ,
∣∣∣ρ f


εnk
−ρ


f χ(R−2.)
εnk


∣∣∣
L 1(H )


≤
C′f
R2 .


Again the comparison argument (22) gives∫ ∣∣∣∣µ f − f 2(|z|2)χ2(R−2|z|2)µ∫
f 2(|z|2)χ2(R−2|z|2) dµ


∣∣∣∣≤ C′f
R2 ,


and we take the limit as R → ∞. We have proved µ f = f 2(|z|2)µ∫
f 2(|z|2) dµ


for any sequence extracted from


(ρ f
ε )ε∈(0,ε̄) with a single Wigner measure. This proves M (ρε ,ε ∈ (0, ε̄)) =


{
f 2(|z|2)µ∫
f 2(|z|2) dµ


}
while the condi-


tion (PI) was checked in Part 1). �


3 Dynamical mean field limit
Let Q be a real-valued polynomial in Palg(Z ) given by


Q =
r


∑
j=2


Q j, with Q j ∈P j, j(Z ) .
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We consider the many-body quantum Hamiltonian for a system of bosons


Hε = dΓ(A)+QWick , (26)


with A a given self-adjoint operator on Z . Here QWick is the operator ∑
r
j=2 QWick


j with QWick
j given by


(7). Clearly, Hε acts as a self-adjoint operator on the symmetric Fock space H . When Z = L2(Rd), the
Schrödinger Hamiltonian A =−∆+V (x) and the semi-relativistic Hamiltonian A =


√
−∆+m2 +V (x) are


among the typical examples (e.g. [21]).


3.1 Existence of Wigner measure for all times.
The first step to prove Theorem 1.1 is to show the existence of Wigner measures for all times. This is
accomplished in the Proposition 3.3 by following the same lines as in the proof of Theorem 2.7. For this
task two useful lemmas are stated below with the first one being proved in [7, Proposition 2.10].


Lemma 3.1 For any b ∈Palg(Z ) we have:
(i) bWick is a closable operator with the domain of its closure containing


H0 = vect{W (ϕ)ψ,ψ ∈H f in,ϕ ∈Z } .


(ii) For any ϕ ∈Z the identity


W (ξ )∗ bWick W (ξ ) = (b(z+
iε√


2
ξ ))Wick


holds on H0 with b(·+ iε√
2
ξ ) ∈Palg(Z ) .


Lemma 3.2 For any k ∈ N there exists a ε-independent constant Ck > 0 such that


W (ξ )∗〈N〉k W (ξ )≤Ck〈ε̄〉k〈ξ 〉k〈N〉k , (27)


for any ξ ∈Z and uniformly in ε ∈ (0, ε̄).


Proof. Since N is a self-adjoint operator, the functional calculus provides the inequality


〈N〉k ≤ (1+N)k .


Therefore, it is enough to prove (27) with 〈N〉 in the l.h.s replaced by (1 + N). The Wick calculus in
Proposition 2.4 tell us that (1+N)k is a Wick operator with symbol bk(z) in ⊕k


j=0P j, j(Z ), i.e.:


bk(z) =
k


∑
j=0
〈z⊗ j, b̃( j)


k z⊗ j〉 with b( j)
k ∈P j, j(Z ).


Now, applying Lemma 3.1 yields


W (ξ )∗ (1+N)k W (ξ ) = W (ξ )∗ bWick
k W (ξ ) = (bk(z+


iε√
2


ξ ))Wick .


A Taylor expansion of the symbol gives us


bk(z+
iε√


2
ξ ) =


k


∑
j=0


(iε) j


j!
√


2 j
D( j)bk(z)[ξ ] ,


with D( j) is the jth derivatives and D( j)bk(z)[ξ ] ∈ ⊕k− j
m,n=0Pm,n(Z ). So, by the number estimate (2.3) we


can derive the following bound∣∣∣∣〈N〉−k/2
(


D( j)bk(z)[ξ ]
)Wick


〈N〉−k/2
∣∣∣∣≤ C̃k〈ξ 〉 j
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with C̃k only depending on k ∈ N. Hence, we obtain∣∣∣∣∣〈N〉−k/2
k


∑
j=0


(iε) j


j!
√


2 j


(
D( j)bk(z)[ξ ]


)Wick
〈N〉−k/2


∣∣∣∣∣≤Ck〈ε̄〉k〈ξ 〉k ,


with Ck only depending on k ∈ N. Thus, we conclude that W (ξ )∗ (1 + N)k W (ξ ) as a positive quadratic
form is bounded by Ck〈ε̄〉k〈ξ 〉k〈N〉k. �


Proposition 3.3 Let (ρε)ε∈(0,ε̄) be a family of normal states on H satisfying the uniform estimate Tr[ρε Nr]
≤Cr for some r > 0 .
Then for any sequence (εn)n∈N in (0, ε̄) such that limn→∞ εn = 0 there exists a subsequence (εnk)k∈N and a
family of Borel probability measures (µt)t∈R satisfying


M (e−i t
εn Hεn ρεn ei t


εn Hεn ,n ∈ N) = {µt} ,


for any t ∈ R. Moreover, we have ∫
Z
|z|2r dµt(z)≤Cr .


Proof. We set


ρε(t) = e−i t
ε


Hε ρε ei t
ε


Hε and ρ̃ε(t) = ei t
ε


dΓ(A)e−i t
ε


Hε ρε ei t
ε


Hε e−i t
ε


dΓ(A) .


(i) Consider for ε > 0 the function


Gε(t,ξ ) = Tr
[
ρ̃ε(t)W (


√
2πξ )


]
.


Write for any (s,ξ ),(t,η) ∈ R×Z


|Gε(t,η)−Gε(s,ξ )| ≤
∣∣∣Tr
[
(ρ̃ε(t)− ρ̃ε(s))W (


√
2πη)


]∣∣∣+ ∣∣∣Tr
[
ρ̃ε(s)


(
W (
√


2πη)−W (
√


2πξ )
)]∣∣∣ .


By differentiation, we get∣∣∣Tr
[
[ρ̃ε(t)− ρ̃ε(s)]W (


√
2πη)


]∣∣∣≤ 1
ε


∣∣∣∣∫ t


s
Tr
[
ρ̃ε(t ′)[QWick


t ′ ,W (
√


2πη)]
]


dt ′
∣∣∣∣ (28)


with Qt ′(z) = Q(e−it ′Az), while the second term is estimated by∣∣∣Tr
[
ρ̃ε(s)


(
W (
√


2πη)−W (
√


2πξ )
)]∣∣∣≤ (1+Cr)


∣∣∣[W (
√


2πη)−W (
√


2πξ )](N+1)−1
∣∣∣
L (H )


. (29)


Now, we claim that there exists a constant c > 0 such that the r.h.s of (28) is bounded by


c|t− s|(
r


∑
j=2
||Q̃ j||)


2r


∑
i=1


ε
i−1|η |i . (30)


This can be proved by first writing


Tr
[
ρ̃ε(t ′)[QWick


t ′ ,W (
√


2πη)]
]


= (31)


Tr
[
〈N〉rρ̃ε(t ′)〈N〉r


(
〈N〉−rW (


√
2πη)〈N〉r


)
〈N〉−r[W (


√
2πη)∗QWick


t ′ W (
√


2πη)−QWick
t ′ ]〈N〉−r


]
and second estimating the r.h.s of (31) using Lemma 3.2 and Lemma 3.1 (ii) so that∣∣∣∣∫ t


s
Tr
[
ρ̃ε(t ′)[QWick


t ′ ,W (
√


2πη)]
]


dt ′
∣∣∣∣≤ c|t− s| sup


t ′∈[s,t]


∣∣∣∣〈N〉−r[Qt ′(.+
iε√


2
η)Wick−QWick


t ′ ]〈N〉−r
∣∣∣∣
L (H )


.
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Thus, the bound (30) follows from the number estimate in Proposition 2.3.
We recall the inequality proved in [7, Lemma 3.1],∣∣∣[W (


√
2πη)−W (


√
2πξ )](N+1)−1/2


∣∣∣≤ C̃ |η−ξ | [min(ε|η |,ε|ξ |)+max(1,ε)] .


This leads to the following bound on the r.h.s of (29)


C̃ 〈ε̄〉 |η−ξ |
(


1+
√
|η |2 + |ξ |2


)
.


Thus, we conclude that ∀(s,ξ ),(t,η) ∈ R×Z ,


|Gε(t,η)−Gε(s,ξ )| ≤ c̃
(
|t− s|(|η |+1)2r + |η−ξ |


√
|η |2 + |ξ |2


)
, (32)


uniformly w.r.t. ε ∈ (0,ε). Recall also that we have the uniform estimate |Gε(s,ξ )| ≤ 1.
Now, we apply an Ascoli type argument:


• Since R×Z is separable, it admits a countable dense set N = {(t`,ξ`), ` ∈ N}. For any ` ∈ N the
set {Gε(t`,ξ`)}ε∈(0,ε̄) remains in {σ ∈ C, |σ | ≤ 1}. Hence for any sequence (εn)n∈N such that εn→ 0
there exists by a diagonal extraction process a subsequence, still denoted by (εn)n∈N, such that for all
` ∈ N, Gεn(t`,ξ`) converges in {σ ∈ C, |σ | ≤ 1} as n→ ∞. Set


G(t`,ξ`) := lim
n→∞


Gεn(t`,ξ`)


for all ` ∈ N.


• The uniform estimate (32) implies that the limit G is uniformly continuous on any set


N ∩{(t,z) ∈ R×Z : |t|+ |z| ≤ R} .


Hence it admits a continuous extension still denoted G in (R×Z , | |R×Z ). An “epsilon/3”-argument
shows that for any (t,ξ ) ∈ R×Z , limn→∞ Gεn(t,ξ ) exists and equals G(t,ξ ).


Finally for any t ∈ R, G(t, .) is a norm continuous normalized function of positive type since


G(t,0) = lim
n→∞


Tr [ρ̃ε(t)] = 1


N


∑
i, j=1


λiλ j G(t,ξi−ξ j) = lim
n→∞


N


∑
i, j=1


λiλ j Tr
[
ρ̃εn(t)W (


√
2π(ξi−ξ j))


]
eiεnπ2σ(ξi,ξ j) ≥ 0 .


The positivity in the last statement follows by Weyl commutation relations (6). Therefore, according to the
Bochner theorem (e.g. [12, Corollary 1.4.2]) for any t ∈ R, G(t, .) is a characteristic function of a weak
distribution or equivalently a cylindrical measure µ̃t on Z (see [51] and also [7, Section 6] for specific
information).
(ii) The fact that µ̃t are Borel probability measures satisfying


µ̃t(|z|2r)≤Cr < ∞ , (33)


follows directly by [46, Theorem 2.5 Chap.VI] or by part (iv) in the proof of [7, Theorem 6.2].
(iii) Using (13) we see that for any b ∈Scyl(Z ) based on a finite dimensional subspace pZ with p ∈ P


lim
n→∞


Tr
[
ρ̃εn(t)bWeyl


]
= lim


n→∞


∫
pZ


Gεn(t,ξ ) F [b](ξ )Lp(dξ )


=
∫


pZ
G(t,ξ ) F [b](ξ )Lp(dξ ) =


∫
Z


b(z)dµ̃t(z) .


Therefore, according to Definition 2.8 of Wigner measures we conclude that


∀t ∈ R, M (ρ̃εn(t),n ∈ N) = {µ̃t} .


(iv) Finally the family of measures µt which satisfy the claimed statement in the proposition are the push-
forward measures


µt = (e−itA)∗µ̃t .


Furthermore, an analogue of (33) can be easily checked for the measures µt . �
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3.2 Polynomial approximations of the classical flow.
With the classical hamiltonian


h(z) = 〈z , Az〉+Q(z) = 〈z , Az〉+
r


∑
j=2
〈z⊗ j , Q̃ jz⊗ j〉, z ∈D(A) ,


the related nonlinear field equation is {
i∂tzt = Azt +∂zQt(zt)
zt=0 = z0 .


Actually this Cauchy problem is better studied when reformulated as an integral equation


zt = e−itAz− i
∫ t


0
e−i(t−s)A


∂z̄Q(zs)ds, for z ∈Z , (34)


which admits a classical C 0-flow Ft : R×Z → Z : 1) since the Q̃ j are bounded a fixed point argument
gives the local in time existence and uniqueness; 2) then the conservation |zt | = |z0| ensures the global in
time result. As a classical C 0-flow, F is a C 0-map satisfying Ft+s(z) = Ft ◦Fs(z) and Ft(z) solves (34) for
any z ∈Z .
Moreover, if zt solves (34), and Qt(z) = Q(e−itAz), then wt = eitAzt solves the differential equation


d
dt


wt =−i∂z̄Qt(wt) .


Therefore for any b ∈Pp,q(Z ), the following identity holds


d
dt


b(wt) = ∂z̄b(wt)[−i∂z̄Qt(wt)]+∂zb(wt)[−i∂z̄Qt(wt)]


= i{Qt ,b}(wt).


Hence, we obtain the Duhamel formula


b(zt) = bt(z)+ i
∫ t


0
{Qt1 ,bt}(eit1Azt1) dt1 . (35)


A simple iteration of (35) yields


b(zt) = bt(z)+ i
∫ t


0
{Qt1 ,bt}(z) dt1 + i2


∫ t


0
dt1
∫ t1


0
dt2 {Qt2 ,{Qt1 ,bt}}(eit2Azt2) .


Therefore, by induction and after setting Ft(z) = zt , we obtain for any K > 1:


b◦Ft(z) = bt(z)+
K−1


∑
k=1


ik
∫ t


0
dt1 · · ·


∫ tk−1


0
dtk {Qtk ,{. . . ,{Qt1 ,bt} . . .}}(z)


+ iK
∫ t


0
dt1 · · ·


∫ tK−1


0
dtK {QtK ,{. . . ,{Qt1 ,bt} . . .}}(eitKAztK ) .


With the polynomial Q we associate the norm


‖Q‖= max
j∈{2,...,r}


|Q j|P j, j = max
j∈{2,...,r}


|Q̃ j|L (
∨ j Z ,


∨ j Z ) (36)


and we note that ‖Qt‖= ‖Q‖ for all t ∈ R . Notice that the flow Ft preserves the norm


∀z ∈Z , |Ft(z)|= |z| ,


and is gauge invariant
∀z ∈Z , ∀θ ∈ R, Ft(eiθ z) = eiθ Ft(z) .
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But for a given polynomial b(z), the map z 7→ b(zt) does not remain a polynomial. Starting from a polyno-
mial b(z) ∈Pp,q(Z ), we study polynomial approximations of b(zt).
Consider the expression


bK(t,z) = bt(z)+
K−1


∑
k=1


ik
∫ t


0
dt1 · · ·


∫ tk−1


0
dtk {Qtk ,{. . . ,{Qt1 ,bt} . . .}}(z) =


K−1


∑
k=0


bk(t,z) (37)


RK(t,z) = iK
∫ t


0
dt1 · · ·


∫ tK−1


0
dtK {QtK ,{. . . ,{Qt1 ,bt} . . .}}(eitKAztK ) . (38)


The two approximation results that we will use are given in the two next propositions.


Proposition 3.4 For b ∈Pp,q(Z ), the polynomial bK(t,z) = ∑
K
k=0 bk(t,z) defined in (37) belongs to


⊕K(r−1)
j=1 P j+p, j+q(Z ) with the estimates


|bk(t,z)| ≤ 2
p+q


2(r−1) (p+q)(4r3)k ‖Q‖k |b|Pp,q |t|
k〈z〉2k(r−1)+p+q . (39)


Moreover, we have for RK(t,z) the estimates


|RK(t,z)| ≤ 2
p+q


2(r−1) (p+q)(4r3)K ‖Q‖K |b|Pp,q |t|
K〈z〉2K(r−1)+p+q . (40)


Proof. With b ∈Pp,q(Z ) and Qt = ∑
r
j=2 Q j,t , the polynomial


bk(t) = (i)k
∫ t


0
dt1 · · ·


∫ tk−1


0
dtk {Qtk ,{. . . ,{Qt1 ,bt} . . .}}(z)


is the sum of (r−1)k ≤ rk monomials


bk(t) = ∑
α∈{2,...,r}k


bk,α(t)


with bk,α(t) = (i)k
∫ t


0
dt1 · · ·


∫ tk−1


0
dtk{Qαk,tk ,{. . . ,{Qα1,t1 ,bt} . . .}} ∈P|α|−k+p,|α|−k+q(Z ) .


A consequence of Proposition 2.4 says for c ∈Pp′,q′(Z ) ,


|{Qα1,t1 ,c}(z)| ≤ r(p′+q′) |Qα1 |Pα1 ,α1
|c|Pp′,q′


〈z〉p
′+q′+2(α1−1).


We deduce


|bk,α(t,z)| ≤
∫ t


0
dt1 · · ·


∫ tk−1


0
dtk rk(p+q) · · ·(p+q+2k(r−1)) ‖Q‖k |b|Pp,q 〈z〉


p+q+2|α|−2k


≤ (p+q)rk(2(r−1))k−1|t|k Γ(a+ k +2)
Γ(k +1)Γ(a+1)


1
a+ k +1


‖Q‖k |b|Pp,q 〈z〉
p+q+2k(r−1)


with a = p+q
2(r−1) and Γ denotes the Gamma function. Now, we notice the relation with the Beta function


B(k +1,a+1) =
Γ(k +1)Γ(a+1)


Γ(a+ k +2)
=
∫ 1


0
tk(1− t)a dt ≥ 1


2a+k+1(a+ k +1)
,


which yields (39).
The remainder


RK(t,z) = i
{


Qt ,bK}= iK
∫ t


0
dt1 · · ·


∫ tK−1


0
dtK {QtK ,{. . . ,{Qt1 ,bt} . . .}}(eitKAztK )


is analyzed like the term bk(t) . �


Proposition 3.5 Let µ be a positive Borel measure on Z supported in the ball {|z| ≤ R}, R > 0, then for
any polynomial b ∈Pp,q(Z ),∫


Z
|RK(t,z)| dµ(z)≤ 〈R〉p+q 2


p+q
2(r−1) (p+q)|b|Pp,q


[
4r3‖Q‖〈R〉2(r−1)|t|


]K
.


Proof. It easily follows from (40). �
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3.3 Transport for a state localized in a ball
The previous approximation result allows to prove partly Theorem 1.1 for states localized in a ball, intro-
duced according to Definition 2.13 and studied in Subsection 2.8.


Proposition 3.6 Let (ρεn)n∈N be a sequence of normal states on H localized in a ball with radius R > 0
and such that


∀t ∈ [−T,T ] , M (e−i t
εn Hεn ρεnei t


εn Hεn , n ∈ N) = {µt} ,


and ∀α ∈ N , lim
k→∞


Tr[ρεnk
Nα ] =


∫
Z
|z|2α dµ0(z) .


Then for all t ∈ [−T,T ], the probability measure µt is the push-forward by the flow Ft of the measure µ0,
i.e., µt = (Ft)∗µ0 . Moreover the identity


lim
n→∞


Tr
[
e−i t


εn Hεn ρεnei t
εn Hεn bquantized


]
=
∫


Z
b(z) dµt(z) =


∫
Z


b(Ft(z)) dµ0(z) ,


holds for Weyl quantized cylindrical functions b ∈
⋃


p∈P F−1(Mb(pZ )) and general Wick quantized poly-
nomials b ∈Palg(Z ).


Proof. We set
ρ̃εn(t) := ei t


εn dΓ(A)e−i t
εn Hεn ρε ei t


εn Hεn e−i t
εn dΓ(A) .


It is worth noticing that for all t ∈ R, the sequence (ρ̃εn(t))n∈N is localized in the ball with radius R.
For a fixed b ∈Pp,q(Z ), differentiating with respect to t the quantity Tr[ρ̃ε(t)bWick], we obtain


Tr[ρ̃εn(t)bWick] = Tr[ρ̃εn(0)bWick]+
i


εn


∫ t


0
Tr
[
ρ̃εn(s) [Q


Wick
s ,bWick]


]
ds (41)


and replacing b by bt we end up with


Tr[ρεn(t)bWick] = Tr[ρεn(0)bWick
t ]+ i


∫ t


0
Tr
[
ρ̃εn(s){Qs,bt}Wick


]
ds (42)


+i
r


∑
j=2


ε
j−1


n


j!


∫ t


0
Tr
[


ρ̃εn(s)
(
{Qs,bt}( j)


)Wick
]


ds .


Consider now the case when b ∈ P∞
p,q(Z ) with a compact kernel, b̃ ∈ L ∞(


∨p Z ;
∨q Z ) . Then we


know that the left-hand side converges to
∫
Z b(z) dµt(z). The number estimate of Proposition 2.3 with


Tr [Nα ρεn ]≤ R2α implies that the last term of the right-hand side converges to 0 as n→ ∞. Finally the first
term of the right-hand side converges to


∫
Z b(z) dµ0(z), even when b̃ is not compact.


We conclude that the limit of the second term of the r.h.s exists with∫
Z


b(z) dµt(z) =
∫


Z
bt(z) dµ0(z)+ lim


n→∞
i
∫ t


0
Tr
[
ρ̃εn(s){Qs,bt}Wick


]
ds ,


and this initiates our induction process.
Given K ∈ N, take the approximation bK(t) = ∑


K
k=0 bk(t) to b(Ft(z)) given in (37), and assume∫


Z
b(z) dµt(z) =


∫
Z


bK(t,z) dµ0(z) (43)


+ lim
n→∞


iK
∫ t


0
dt1 · · ·


∫ tK−1


0
dtK Tr


[
ρ̃εn(tK)({QtK , · · ·{Qt1 ,bt}· · ·})Wick


]
. (44)


A simple differentiation with respect to tK gives for Θ ∈Palg(Z ),


Tr
[
ρ̃εn(tK)ΘWick


]
= Tr


[
ρ̃εn(0)ΘWick


]
+ i
∫ tK+1


0
dtK+1Tr


[
ρ̃εn(0)


(
{QtK+1 ,Θ}


)Wick
]


+i
r


∑
j=2


ε
j−1


n


j!


∫ tK


0
Tr
[


ρ̃εn(tK+1)
(
{QtK+1 ,Θ}


( j)
)Wick


]
dtK+1 .
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Hence, choosing Θ = {QtK , · · ·{Qt1 ,bt}· · ·} yields∫
Z


b(z) dµt(z) =
∫


Z
bK(t,z) dµ0(z)


+ lim
n→∞


{
iK
∫ t


0
dt1 · · ·


∫ tK−1


0
dtK Tr


[
ρ̃εn(0)({QtK , · · ·{Qt1 ,bt}· · ·})Wick


]
+ i


r


∑
j=2


ε
j−1


n


j!


∫ t


0
dt1 · · ·


∫ tK+1


0
dtK+1Tr


[
ρ̃εn(tK+1)


(
{QtK+1 , · · ·{Qt1 ,bt}· · ·}


)Wick
]}


=: I+ lim
n→∞


(II+ III).


For any K, when n→∞, the second term (II) converges to
∫
Z Θ(z) dµ0(z) because the initial states ρ̃εn(0) =


ρεn satisfies limε→0 Tr
[
ρεncWick


]
=
∫
Z c(z) dµ0(z) according to Proposition 2.12. Moreover, the third term


(III) vanishes, when n→∞, thanks to the number estimate in Proposition 2.3 and the fact that Tr [ρεnNα ]≤
R2α . Therefore, we have∫


Z
b(z) dµt(z) =


∫
Z


bK+1(t,z) dµ0(z)


+ lim
n→∞


iK+1
∫ t


0
dt1 · · ·


∫ tK


0
dtK+1 Tr


[
ρ̃εn(tK+1)


(
{QtK+1 , · · ·{Qt1 ,bt}· · ·}


)Wick
]


.


By Proposition 3.5 and the fact that µ0 is supported in {|z| ≤ R}, we deduce∣∣∣∣∫Z
b(z) dµt(z)−


∫
Z


b(Ft(z)) dµ0


∣∣∣∣≤ 〈R〉p+q2
p+q


2(r−1) (p+q)|b|Pp,q


[
4r3‖Q‖〈R〉2(r−1)|t|


]K
(45)


+
∣∣∣∣ limn→∞


∫ t


0
dt1 · · ·


∫ tK−1


0
dtK Tr


[
ρ̃εn(tK)({QtK , · · ·{Qt1 ,bt}· · ·})Wick


]∣∣∣∣ .
The number estimate of Proposition 2.3 with the inequality (39) of Proposition 3.4 implies∣∣∣〈N〉− q+K(r−1)


2 ({QtK , · · ·{Qt1 ,bt}· · ·})Wick 〈N〉−
p+K(r−1)


2


∣∣∣
L (H )


≤ 2
p+q


2(r−1) (p+q)(4r3)K ‖Q‖K |b|Pp,q .


This provides for the last term in the r.h.s of (45) the upper bound


〈R〉
p+q


2 +K(r−1) 2
p+q


2(r−1) (p+q)(4r3)K ‖Q‖K |b|Pp,q |t|
K .


For small times, |t| ≤ Tδ = δ


(4r3)‖Q‖〈R〉r−1 with δ < 1, taking the limit as K→ ∞ now gives


∀b ∈P∞
p,q(Z ) ,


∫
Z


b(z) dµt(z) =
∫


Z
b(Ft(z)) dµ0(z) .


But according to Proposition 3.6, the measure µt is a Borel probability measure supported in the ball
{|z| ≤ R} which is weakly compact. Meanwhile cylindrical polynomials which are contained in P∞


alg(Z ),
because they are associated with finite rank kernels, make a dense set in the C 0(B(0,R)weak,C) and there-
fore in L1(Z ,dµ) . Thus, we have proved


∀t ∈ [−Tδ ,Tδ ] , µt = (Ft)∗µ0 .


Finally, since |Ft(z)| = |z| and [Hε ,N] = 0, the pair ((ρεn(t))n∈N,µt) satisfies the same assumptions as
((ρεn)n∈N,µ0). Since the time Tδ depends only on Q and R the result extends to all t ∈ R . �


3.4 Proof of the main result
Gathering all the information of Section 2 and 3, we are now in position to prove Theorem 1.1.
Proof of Theorem 1.1:
Let (ρε)ε∈(0,ε̄) be a family of normal states satisfying hypothesis of Theorem 1.1 and let χ ∈ C 0([0,∞),R)
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be a continuous cutoff function such that 0≤ χ ≤ 1, χ(x) = 1 if x≤ 1/2 and χ(x) = 0 if x≥ 1. For R > 0,
consider the family of normal states


ρ
R
ε =


χ(N/R2)ρε χ(N/R2)
Tr[χ(N/R2)ρε χ(N/R2)]


,


localized in the ball of radius R. By Proposition 2.16, we know that


(i) M (ρR
ε ,ε ∈ (0, ε̄)) =


{
χ2(|z|2/R2)∫


Z χ2(|z|2/R2)dµ0
µ0


}
=: {µR


0 }


(ii) ∀α ∈ N, lim
ε→0


Tr[ρR
ε Nα ] =


∫
Z
|z|2α dµ


R
0 (z) .


Next, we use the notations


ρε(t) = e−i t
ε


Hε ρε ei t
ε


Hε and ρ
R
ε (t) = e−i t


ε
Hε ρ


R
ε ei t


ε
Hε .


For any sequence (εn)n∈N there exists by Proposition 3.3 a subsequence (εnk)k∈N and a family of Borel
probability measures (µR


t )t∈R such that


(i)′ M (ρR
εnk


(t),k ∈ N) = {µR
t }


(ii)′ ∀α ∈ N, lim
k→∞


Tr[ρR
εnk


Nα ] =
∫


Z
|z|2α dµ


R
0 (z) .


Applying now Proposition 3.6 with (i)′− (ii)′, we obtain that


M (ρR
εnk


(t),k ∈ N) = {(Ft)∗µR
0 } , (46)


for any time t ∈ R. Since for any sequence (εn)n∈N we can extract a subsequence (εnk)k∈N such that (46)
holds we conclude that


M (ρR
ε (t),ε ∈ (0, ε̄)) = {(Ft)∗µR


0 } , (47)


for any R > 0 and t ∈ R. Again applying Proposition 3.3 for (ρε)ε∈(0,ε̄), there exists for any sequence
(εn)n∈N a subsequence (εnk)k∈N and a family of Borel probability measures (µt)t∈R such that


M (ρεnk
(t),k ∈ N) = {µt} .


The identification of the measures (µt)t∈R follows by a δ/3 argument. For any b ∈Scyl(Z ) based in pZ ,
p ∈ P, we write∣∣∣∣Tr[ρεnk


(t)bWeyl ]−
∫


Z
b(z)d(Ft)∗µ0


∣∣∣∣ ≤ ∣∣∣Tr[ρεnk
(t)bWeyl ]−Tr[ρR


εnk
(t)bWeyl ]


∣∣∣ (48)


+
∣∣∣∣Tr[ρR


εnk
(t)bWeyl ]−


∫
Z


b(z)dµ
R
t


∣∣∣∣ (49)


+
∣∣∣∣∫


Z
b(Ft(z))dµ


R
0 −


∫
Z


b(Ft(z))dµ0


∣∣∣∣ . (50)


Each term (48)-(50) can be made arbitrarily small by choosing R and k large enough and respectively
using the bound (21), the relation (47) and the dominated convergence theorem. So, we conclude that
µt = (Ft)∗µ0 and hence we have proved


M (ρε ,ε ∈ (0, ε̄)) = {(Ft)∗µ0} .


Finally, the use of Proposition 2.12 with ρε(t) yields


lim
ε→0


Tr
[
ρε(t)bWick


]
=
∫


Z
b◦Ft(z) dµ0(z) ,


since limε→ 0 Tr[ρε(t)Nα ] = limε→ 0 Tr[ρε Nα ] =
∫
Z |z|2α dµ0 =


∫
Z |z|2α dµt , for all α ∈N. The reformula-


tion of this result in terms of BBGKY hierarchy of reduced matrices is a consequence of Proposition 2.11.
�
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3.5 Additional results
Although it was not written in Theorem 1.1, remember that the existence of Wigner measures contains a
result for Weyl observables.


Corollary 3.7 Let (ρε)ε∈(0,ε̄) be a family of normal states on H satisfying the hypothesis of Theorem 1.1.
The limit


lim
ε→0


Tr[e−i t
ε


Hε ρε ei t
ε


Hε bWeyl ] =
∫


Z
b◦Ft(z) dµ0


holds for any b in the cylindrical Schwartz space Scyl(Z ) , any t ∈ R and any b ∈ Sν


pZ , ν ∈ [0,1], p ∈ P .


The next result, shows that the class of observables can be extended to functions of Wick-quantized sym-
bols.


Corollary 3.8 Let (ρε)ε∈(0,ε̄) be a family of normal states on H satisfying the hypothesis of Theorem 1.1.
Then


i) The limit


lim
ε→0


Tr[e−i t
ε


Hε ρε ei t
ε


Hε f (bWick)] =
∫


Z
f (b◦Ft(z)) dµ0 (51)


holds for any f ∈F−1(Mb(R)) and any b ∈Pp,p(Z ) such that b̃∗ = b̃.


ii) If additionally (ρε)ε∈(0,ε̄) is a family of localized states on a ball of radius R > 0, then the limit (51)
holds for any entire function f (x) = ∑


∞
k=0 akxk over C and any b ∈Pp,p(Z ) such that b̃∗ = b̃.


Proof. i) Let χ ∈ C 0([0,∞),R) be a continuous cutoff function such that 0 ≤ χ ≤ 1, χ(x) = 1 if x ≤ 1/2
and χ(x) = 0 if x≥ 1. Consider the family (ρε(t) = e−i t


ε
Hε ρε ei t


ε
Hε )ε∈(0,ε̄) with


ρ
R
ε =


χ(N/R2)ρε χ(N/R2)
Tr[χ(N/R2)ρε χ(N/R2)]


, R > 0.


Let b∈Pp,p(Z ) such that b̃∗= b̃, then bWick extends to a self-adjoint operator on H satisfying [N,bWick] =
0. We claim that


∀θ ∈ R, Tr[ρR
ε (t)eiθbWick


] =
∞


∑
k=0


ik


k!
θ


kTr[ρR
ε (t)(bWick)k] . (52)


Thanks to the estimate∣∣∣Tr[ρR
ε (t)(bWick)k]


∣∣∣ =
∣∣∣Tr[〈N〉pk/2


ρ
R
ε (t)〈N〉pk/2(〈N〉−p/2bWick〈N〉−p/2)k]


∣∣∣
≤ 〈R〉pk |b|kPp,p


, (53)


the l.h.s of (52) is an absolutely convergent series uniformly in ε ∈ (0, ε̄). Moreover, on can easily show
the strong limit


s− lim
N→∞


N


∑
k=0


ik


k!
θ


k(bWick)k1[0,R2](N) = eiθbWick
1[0,R2](N) .


Therefore, we see that


∞


∑
k=0


ik


k!
θ


kTr[ρR
ε (t)(bWick)k] =


∞


∑
k=0


ik


k!
θ


kTr[ρR
ε (t)(bWick)k 1[0,R2](N)] = Tr[ρR


ε (t)eiθbWick
] .


This proves (52) and again by the uniform estimate (53) with respect to ε ∈ (0, ε̄), we obtain


lim
ε→0


Tr[ρR
ε (t)eiθbWick


] =
∞


∑
k=0


ik


k!
θ


k
∫


Z
b(Ft(z))kdµ0 =


∫
Z


e−iθb(Ft (z))dµ0 .
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Now, a similar δ/3 argument as in the proof of Theorem 1.1∣∣∣∣Tr[ρεnk
(t)eiθbWick


]−
∫


Z
eiθb(Ft (z))dµ0


∣∣∣∣ ≤ ∣∣∣ρεnk
−ρ


R
εnk


∣∣∣
L 1(H )


+
∣∣∣∣Tr[ρR


εnk
(t)eiθbWick


]−
∫


Z
eiθb(Ft (z))dµ


R
0


∣∣∣∣
+
∣∣∣∣∫


Z
eiθb(Ft (z))dµ


R
0 −


∫
Z


eiθb(Ft (z))dµ0


∣∣∣∣ ,
using the bound (21), the relation (47) and the dominated convergence theorem, yields the limit


lim
ε→0


Tr[ρεnk
(t)eiθbWick


] =
∫


Z
eiθb(Ft (z))dµ0 .


By integrating with respect to F ( f ) ∈Mb(R), we end the proof.
ii) The proof is similar to (i). Indeed, one shows


Tr[ρε(t) f (bWick)] =
∞


∑
k=0


akTr[ρε(t)(bWick)k] , (54)


with a l.h.s absolutely convergent series uniformly in ε ∈ (0, ε̄). Letting ε → 0 in (54) yields the result. �


4 Examples
We review a series of examples. Firstly, the propagation of coherent states and Hermite states is recalled.
Secondly, bounded interactions occur naturally within the modelling of rapidly rotating Bose-Einstein con-
densates, owing to some hypercontractivity property. Thirdly, the tensor decomposition of the Fock space
allows to specify some Wigner measures for which the propagation cannot be translated in terms of the
reduced density matrices without writing all the BBGKY hierarchy. Finally, the result of Theorem 1.1
provides a new way to consider the Hartree-von Neumann limit in the mean field regime.


4.1 Coherent and Hermite states


The coherent states on the Fock space, Γs(Z ) are given by E(ξ ) =W (
√


2
iε ξ )Ω = e


a∗(ξ )−a(ξ )
ε Ω, where Ω is the


vacuum vector of Γs(Z ), ξ ∈Z and [a( f ),a∗(g)] = ε〈 f ,g〉 I . The Hepp method ([36][30][31]) consists
in studying the propagation of squeezed coherent states a slightly larger class which includes covariance
deformations. The normal state made with E(ξ ) is


ρε(ξ ) :=
∣∣W (
√


2
iε


ξ )Ω
〉〈


W (
√


2
iε


ξ )Ω
∣∣ .


We proved in [7] that M (ρε(ξ ),ε ∈ (0, ε̄)) = {δξ} and a simple computation shows that the property (PI)
is satisfied:


lim
ε→0


Tr[ρε Nk] = |ξ |2k = δξ (|z|2k) .


A second example is given by Hermite states, also well studied within the propagation of chaos technique
or other works (e.g., [44][13][23]). They are given by


ρN(ϕ) := |ϕ⊗N〉〈ϕ⊗N | , (55)


with ϕ ∈ Z , |ϕ|Z = 1 and discrete values for ε = 1
N . We know from [7] that M (ρN(ϕ),N ∈ N) =


{ 1
2π


∫ 2π


0 δeiθ ϕ
dθ} where the rotation invariance is the phase-space translation of the gauge invariance of


the Hermite states ϕ → eiθ ϕ . One easily checks the property (PI):


lim
N→∞


Tr[ρN(ϕ)Nk] = 1 =
1


2π


∫ 2π


0
|z|2k


δeiθ ϕ
(z)dθ .


It is convenient to introduce a notation for this Wigner measure.
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Definition 4.1 For ϕ ∈Z , the symbol δ S1
ϕ denotes the Borel probability measure


δ
S1


ϕ =
1


2π


∫ 2π


0
δeiθ ϕ


dθ .


Theorem 1.1 applies and the Wigner measures associated with


(e−i t
ε


Hε ρε(ξ )ei t
ε


Hε )ε∈(0,ε̄) and (e−i t
ε


Hε ρN(ϕ)ei t
ε


Hε )ε=1/N,N∈N∗


are respectively δξt and δ S1
ϕt , where ξt or ϕt evolves according to the classical flow.


For example when


Hε = dΓ(−∆)+
1
2


∫
R2d


V (x− y)a∗(x)a∗(y)a(x)a(y) dxdy


with Z = L2(Rd) the classical flow is the Hartree equation


i∂tψ =−∆ψ +(V ∗ |ψ|2)ψ .


We conclude by noticing that for such states (ρN(ϕ) and ρε(ξ )) the asymptotic one particle reduced density
matrix γ


(1)
0 (t) solves the equation i∂tγ


(1)
0 =


[
−∆+(V ∗n


γ
(1)
0


) ,γ(1)
0


]
γ


(1)
0 (t = 0) = |ξ 〉〈ξ | for ρε(ξ ) ,


(
resp. γ


(1)
0 (t = 0) = |ϕ〉〈ϕ| for ρN(ϕ)


)
,


(56)


with n
γ
(1)
0


(x) = γ
(1)
0 (x,x) .


4.2 LLL-mean field dynamics for rapidly rotating Bose-Einstein condensates
The case of bounded interaction terms occurs exactly in the modelling of rapidly rotating Bose-Einstein
condensates in the Lowest-Landau-Level (LLL) regime. The (LLL) one particle states can be described
(see [2]) within the Bargmann space


Z =
{


f ∈ L2(Cζ1
,e−


|ζ1 |
2


h L(dζ1)) , ∂
ζ̄1


f = 0
}


where L(dζ1) is the Lebesgue measure on C, h > 0 is a parameter which is small in the rapid rotation
regime and where the norm on Z is given by


| f |2Z =
∫


C
| f (ζ1)|2e−


|ζ1 |
2


h
L(dζ1)
(πh)


=
1


πh
|u|2L2 , u(ζ1) = f (ζ1)e−


|ζ1 |
2


2h .


The multiparticle bosonic problem has been considered in [41] and the (LLL)-model has been justified
for the stationary states of such a system not only in the mean field asymptotics. The k-particle states are
elements of


k∨
Z =


{
F ∈ L2(Ck


ζ
,e−


|ζ |2
h L(dζ ))) , ∂


ζ̄
F = 0 , F(ζσ(1) . . . ,ζσ(k)) = F , ∀σ ∈Sk


}
,


with the norm


|F |2∨k Z
=
∫


Ck
|F(ζ )|2 L(dζ )


(πh)k .


With or without the symmetry condition,
⊗k Z and


∨k Z are closed subspaces of L2(Ck
ζ
,e−


|ζ |2
h L(dζ ))


and they are the image of the orthogonal projection (add the symmetry for
∨k Z )


(Πk
hG)(ζ ) =


∫
Ck


e
ζ .τ−|τ|2


h G(τ)
L(dτ)
(πh)k .
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Within the modelling of rapidly rotating Bose-Einstein condensates, the one particle kinetic energy term is
A = hζ1∂ζ1


and it is associated with


0≤ Ekin( f ) = 〈 f ,hζ1∂ζ1
f 〉Z .


The standard one particle nonlinear energy is given by


α


∫
C
|u|4 L(dζ1) , u(ζ1) = f (ζ1)e−


|ζ1 |
2


2h .


where α > 0 is another parameter provided by the physics (see[2]), but more general energies can be
considered


ENL( f ) =
r


∑
p=2


αp


∫
C
|u|2p L(dζ1) , u(ζ1) = f (ζ1)e−


|ζ1 |
2


2h , αp > 0 . (57)


The mean field Hamiltonian is thus given by


h( f ) = Ekin( f )+ENL( f ) = 〈 f , hζ1∂ζ1
f 〉+


r


∑
p=2


αp


∫
C
| f (ζ1)|2pe−


p|ζ1 |
2


h L(dζ1) .


An important property of these nonlinear energies comes from the hypercontractivity of the semigroup
(e−thξ ∂ξ )t≥0 proved in [16] which can be written as


|U |L2p ≤Cp,h,d |U |L2 if U(ζ ) = F(ζ )e−
|ζ |2
2h , F ∈


k
⊗Z , p ∈ [2,+∞] . (58)


This implies that the nonlinear energy is a norm continuous polynomial with respect to f ∈Z and therefore
the nonlinear mean field equation


i∂t f = hζ1∂ζ1
f +


r


∑
p=2


pαpΠ
1
h(|u|2(p−1)u)Π1


h f (59)


defines a nonlinear flow on the phase-space Z according to Subection 3.2 (we refer the reader to [45] for a
more detailed analysis of the nonlinear dynamics of the LLL-model) .
Let us consider the second quantized version Hε of the energy h in Γs(Z ). The kinetic energy is nothing
but dΓ(A):


dΓ(A)
∣∣∨k Z


= ε


k


∑
j=1


hζ j∂ζ j = εhζ .∂ζ .


and the quantum Hamiltonian Hε is then


Hε = dΓ(A)+
r


∑
p=2


αpQWick
p (60)


with Qp( f ) =
∫


C
|u(ζ1)|2p L(dζ1) =


∫
C
| f (z)|2pe−


p|ζ1 |
2


h L(dζ1) = 〈 f⊗p , Q̃p f⊗p〉 . (61)


The operator Q̃p is easily identified after removing the center of mass in multiple integrals (see [41] for
details) as


Q̃pF(ζ ) = Π
h
p


([
p−1


∏
j=1


δ (ζ ′j)


]
F


)
(ζ ) =


1
(πh)p F


(
ζ1 + · · ·+ζp


p
, . . . ,


ζ1 + · · ·+ζp


p


)


with ζ ′j = ζ j−
ζ1+···+ζp


p . One easily checks as well, by using additionally the hypercontractivity estimate
(58) with p = +∞, that Q̃p ∈L (


∨p Z ).
The propagation result of Theorem 1.1 applies for such a model for all initial states which fulfill its


assumptions (boundedness of all moments and condition (PI)).


28







4.3 Fock tensorization
We have already used, and it is the basis of the introduction of cylindrical observables, the fact that


Γs(Z )∼ Γs(Z1)⊗Γs(Z2) when Z = Z1
⊥
⊕Z2 . The definition of Wigner measures introduced via cylin-


drical observables, yields the next result.


Lemma 4.2 Assume Z = Z1
⊥
⊕Z2 and let (ρ1


ε )ε∈(0,ε̄), (ρ2
ε )ε∈(0,ε̄) be two families of normal states on


Γs(Z1) and Γs(Z2) such that Tr
[
ρ`


ε Nδ
`


]
≤Cδ holds uniformly for some δ > 0 and M (ρ`


ε , ε ∈ (0, ε̄)) ={
µ`
}


for ` = 1,2 . Let ρε be the state on Γs(Z ) identified with ρ1
ε ⊗ρ2


ε in the decomposition Γs(Z ) ∼
Γs(Z1)⊗Γs(Z2). Then the family (ρε)ε∈(0,ε̄) admits the unique Wigner measure µ = µ1×µ2 on the phase
space Z = Z1×Z2 .


Before giving applications and variations on this result it is worth to notice that the identification of
the “tensor” state ρε requires some care. It is not equal in general to ρ1


ε ⊗ρ2
ε since such a states does not


preserve the symmetric Fock space Γs(Z ) .
Here is a simple example, take ϕ1 ∈Z1 and ϕ2 ∈Z2 with |ϕ`|Z`


= 1, N1 ,N2 ∈N, and set ρ` = |ϕ⊗N`
` 〉〈ϕ⊗N`


` |
for ` = 1,2 . The tensor states ρ1⊗ρ2 is the pure state |ϕ⊗N1


1 ⊗ϕ
⊗N2
2 〉〈ϕ⊗N1


1 ⊗ϕ
⊗N2
2 | in Γs(Z1)⊗Γs(Z2) .


It suffices to identify the vector ϕ∨(N1,N2) ∈ Γs(Z ) associated with ϕ
⊗N1
1 ⊗ϕ


⊗N2
2 . It is the symmetric vector


in
∨N1+N2 Z made with N1-times ϕ1 and N2-times ϕ2 and we can summarize the situation with


ϕ
⊗N`
` =


1√
εN`N`!


N` times
a∗(ϕ`) . . .a∗(ϕ`) |Ω`〉 in Γs(Z`) , ` = 1,2,


ϕ
∨(N1,N2) =


√
(N1 +N2)!


ε(N1+N2)N1!N2!
SN1+N2(ϕ


⊗N1
1 ⊗ϕ


⊗N2
2 )


=
1√


εN1+N2N1!N2!


N1 times
a∗(ϕ1) . . .a∗(ϕ1)


N2 times
a∗(ϕ2) . . .a∗(ϕ2) |Ω〉 in Γs(Z ) .


The tensor decomposition is especially useful when Z is endowed with a Hilbert basis (e j) j∈N∗ . An Hilbert
basis of Γs(Z ) is (e∨α)α∈∪∞


j=0(N∗) j given by:


e∨α =


√
|α|!
α!


S|α|
(
e⊗α


)
=


1√
ε |α||α|!


[a∗(e)]α |Ω〉


with a natural multi-index notation α = (α1, . . . ,αk), |α|= α1 + · · ·+αk , e⊗α = e⊗α1
1 ⊗·· ·⊗ eαk


k and


[a∗(e)]α = a∗(e1)α1 . . .a∗(ek)αk .


For example, the identification between Γs(Ce1)⊗Γs((Ce1)⊥) and Γs(Z ) is done via the mapping defined
by e


∨
α1


1 ⊗ e
∨


α ′ → e
∨


(α1,α ′), for all α1 ∈ N and all α ′ ∈ ∪∞
k=0(N \ {0,1})k . This can be iterated but re-


member that the definition of infinite tensor products requires the additional specification of one vector per
component which is hopefully rather canonical for Fock spaces endowed with a vacuum vector (see [34]) .
Below is a notation convenient to the definition of tensor states and which allows some extensions. Consider
the linear isometry C j on H = Γs(Z ) defined by its action on the Hilbert basis (e∨α)


α∈∪∞
k=0(N∗)k


C je∨α =
1


|a∗(e j)e∨α |
a∗(e j)e∨α =


1√
ε(α j +1)


a∗(e j)e∨α = e∨(α+1 j) , (62)


with |1 j|= 1 and (1 j) j = 1 . In the tensor decomposition Γs(Z )∼ Γs(Ce j)⊗Γs((Ce j)⊥), this isometry C j


is nothing but the tensor product
[


1√
N j


a∗(e j)
]
⊗ I .


Definition 4.3 Let Z be endowed with a Hilbert basis (e j) j∈N∗ , for j ∈ N∗, and take the isometries
(C j) j∈N∗ defined in H by (62). For j ∈ N∗, the operator E j is defined on L 1(H ) by


E jρ = C jρC∗j , ∀ρ ∈L 1(H ) .
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For λ = (λ j) j∈N∗ ∈ `1([0,+∞)) such that ∑
∞
j=1 λ j = 1, the notation λ .E means


λ .E =
∞


∑
j=1


λ jE j .


The operators E j and λ .E transform normal states on
∨k−1 Z into normal states on


∨k Z and they all
commute. After taking ϕ1 = e1 and ϕ2 = e2 the tensor state on Γs(Z ) identified with ρ1⊗ρ2 and studied
above with Z1 = Ce1 and Z2 = (Ce1)⊥ is nothing but


E(N1,N2)|Ω〉〈Ω|= EN1
1 EN2


2 |Ω〉〈Ω|= EN2
2 EN1


1 |Ω〉〈Ω| .


Moreover the multinomial formula holds


(λ .E)N = ∑
|α|=N


N!
α!


λ
α Eα . (63)


We use these notion to formulate the propagation of nontrivial Wigner measures. The Hamiltonian is


Hε = dΓ(A)+


(
r


∑
j=2
〈z⊗ j , Q̃ jz⊗ j〉


)Wick


, ε =
1
N


with (A,D(A)) self-adjoint and Q̃ j = Q̃∗j ∈L (
∨ j Z ) . It is associated with the mean field Hamiltonian


h(z, z̄) = 〈z , Az〉+
r


∑
j=2


Q j(z)


and the flow (Ft)t∈R in the phase space Z .


Proposition 4.4 Let Z be endowed with an orthonormal basis (e j) j∈N∗ and let the family (E j) j∈N∗ be as
in Definition 4.3. Once ρε(0) is fixed ρε(t) is defined by ρε(t) = e−i t


ε
Hε ρε(0)ei t


ε
Hε .


1) For k ∈ N∗ and (ν1, . . . ,νk) ∈ [0,1]k fixed such that ∑
k
`=1 ν` = 1, assume that N` equals the integer part


[ν`N] for ` ∈ {1, . . . ,k}. Then the family of states (ρε(t))ε=1/N given by ρε(0) = E(N1,...,Nk)|Ω〉〈Ω| admits a
unique Wigner measure


µt = (Ft)∗µ0 = (Ft)∗(δ S1√
ν1e1
×·· ·×δ


S1√
νkek


) .


The reduced density matrices γ
(p)
ε (t) converge in L 1(


∨p Z ) to


γ
(p)
0 (t) =


∫
Z
|z⊗p


t 〉〈z
⊗p
t | dµ0(z) (64)


by setting zt = Ftz .
2) Let λ = (λ j) j∈N∗ ∈ `1([0,+∞)) be such that ∑


∞
j=1 λ j = 1. Then the family of states (ρε(t))ε=1/N given


by ρε = (λ .E)N |Ω〉〈Ω| satisfies the same properties as above with


µ0 =
∞


×
j=1


δ
S1√


λ je j
.


Proof. Actually it suffices to identify the measure µ0 and to check the assumptions of Theorem 1.1 at time
t = 0 .
1) It is a simple application of Lemma 4.2 with the decomposition


Γs(Z )∼ Γs(Ce1)⊗·· ·⊗Γs((Cek−1))⊗Γs((Ce1⊕·· ·⊕Cek−1)⊥) .


In this decomposition E(N1,...,Nk)|Ω〉〈Ω| is nothing but a tensor product of Hermite states. |e⊗N`
` 〉〈e⊗N`


` | and
the result is a simple tensorization of the result for Hermite states with ε = ν`


N`
.


2) The state ρε(0) = (λ .E)N |Ω〉〈Ω| belongs to L 1(
∨N Z ) . It is therefore localized in the ball with radius


1 . According to Proposition 2.15, its Wigner measures are completely determined if we know the limits of


Tr
[
ρε(0)bWick


]
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for all the b ∈P∞
alg(Z ) . Due to Pythagorean summation, the measure µ0 = ×∞


j=1 δ S1√
λ je j


is supported in


the ball of radius 1. The estimates∣∣∣Tr
[
ρε(0)(b−b′)Wick


]∣∣∣= ∣∣∣Tr
[
ρε(0)χ(N)(b−b′)Wick


χ(N)
]∣∣∣≤Cp,q|b−b′|Pp,q ,


and
∣∣∣∣∫


Z
(b(z)−b′(z)) dµ0(z)


∣∣∣∣= ∣∣∣∣∫
Z


(b(z)−b′(z))χ
2(|z|2) dµ0(z)


∣∣∣∣= Cp,q|b−b′|Pp,q ,


with the first one deduced from the number estimate (10) in Proposition 2.3, hold for all b,b′ ∈P∞
p,q(Z ),


p,q ∈ N as soon as χ ∈ C ∞
0 ([0,+∞)) is chosen such that χ ≡ 1 on [0,1] . Hence it suffices to prove


limε→0 Tr
[
ρε(0)bWick


]
=
∫
Z b(z) dµ0(z) for a total set of P∞


alg(Z ) . With the compact kernel condition,
any b̃ ∈L ∞(


∨p Z ,
∨q Z ) can be approximated by a linear combination of rank one operators of the form


|e∨γ〉〈e∨β |=
√


β !γ!
|β |!|γ|!S|γ||e


⊗γ〉〈e⊗β |S|β |, |β |= p, |γ|= q . With


(〈z⊗q , e⊗γ〉〈e⊗β , z⊗p〉)Wick = [a∗(e)]γ [a(e)]β


and ρε(0) = ∑
|α|=N


λ
α N!


α!
|e∨α〉〈e∨α | ,


we can compute directly


Tr
[
ρε(0)(〈z⊗q , e⊗γ〉〈e⊗β , z⊗p〉)Wick


]
= ∑
|α|=N


N!
α!


λ
α〈a(e)γ e∨α ,a(e)β e∨α〉 .


Actually


a(e)β e∨α =


{ √
ε p α!


α ′! e∨α ′ if α = α ′+β ,


0 else ,


with a similar identity for γ yields


Tr
[
ρε(0)(〈z⊗q , e⊗γ〉〈e⊗β , z⊗p〉)Wick


]
= δβ ,γ ε


p N!
(N− p)!


(
∑


|α ′|=N−p


(N− p)!
α ′!


λ
α ′


)
λ


β


= δβ ,γ ε
pN(N−1) . . .(N− p+1)λ β .


With ε = 1/N and (p,q) fixed, we obtain


Tr
[
ρε(0)(〈z⊗q , e⊗γ〉〈e⊗β , z⊗p〉)Wick


]
= δβ ,γ λ


β =
∫


Z
〈z⊗q , e⊗γ〉〈e⊗β , z⊗p〉 dµ0(z) .


�
We conclude with two remarks:


• The tensorized Hermite state E(N1,...N`...)|Ω〉〈Ω| with N` = [λ`N] and ∑
∞
j=1 λ j = 1 can be studied and


behaves asymptotically like (λ .E)N |Ω〉〈Ω| .


• When those tensor states are not Hermite states, the reduced density matrices satisfy no closed equa-
tion and all the hierarchy has to be considered. In the example leading to (56) for Hermite states the
general equation for γ


(1)
0 (t) writes


i∂tγ
(1)
0 (x,y) = [−∆,γ


(1)
0 ](x,y)+


∫
Rd


V (x− x′)γ(2)
0 (x′,x,x′,y)− γ


(2)
0 (x′,x,x′,y)V (y− x′) dx′ ,


and the equation for γ
(2)
0 involves γ


(3)
0 and so on. . . The propagation of Wigner measures gathers all


the asymptotic information in this case. Geometrically it is interesting to notice that if the initial
Wigner measure is δ S1√


λ1e1
×δ S1√


λ2e1
, with λ1 +λ2 = 1, it is supported by a 2-dimensional torus. After


the action of the continuous flow, the support of µt remains topologically a 2-dimensional torus but in
general deformed in the infinite dimensional phase space with no exact finite dimensional reduction.
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4.4 Condition (PI) for Gibbs states
For σ(ε) ∈L 1(Z ), which is a non negative strict contraction:


σ(ε) =
∞


∑
i=1


σi(ε)|ei(ε)〉〈ei(ε)| , 0≤ σi(ε) < 1 ,
∞


∑
i=1


σi(ε) < +∞ ,


where (ei(ε))i∈N∗ is a Hilbert basis of Z , the operator Γ(σ(ε)) belongs to L 1(H ) . It equals Γ(σ(ε)) =
∑


∞
n=0 Sn(σ(ε))⊗nSn and the tensor decomposition gives


Tr [Γ(σ(ε))] =
∞


∏
i=1


1
1−σi(ε)


∈ R+ .


Hence we can consider the quasi-free state


ρε =
1


Tr [Γ(σ(ε))]
Γ(σ(ε)) .


It is more convenient to write


σi(ε) =
νi(ε)


νi(ε)+ ε
with νi(ε) ∈ [0,+∞) ,


and the condition ∑
∞
i=1 σi(ε) < +∞ is equivalent to ∑ j=1 νi(ε) < +∞ .


Lemma 4.5 For σ(ε) = ∑
∞
i=1


νi(ε)
νi(ε)+ε


|ei(ε)〉〈ei(ε)| ∈L 1(Z ), the quasi-free state ρε = 1
Tr[Γ(σ(ε))]Γ(σ(ε))


satisfies
∀k ∈ N , sup


ε∈(0,ε̄)
Tr
[
ρε Nk


]
< +∞


if and only if there exists C > 0 such that ∑
∞
i=1 νi(ε)≤C . In such a case, the quantity Tr


[
ρε Nk


]
, k ∈ N, is


equivalent to
k! ∑
|α|=k


ν(ε)α


as ε → 0, with the usual multi-index convention, ν(ε)α = ∏
∞
k=1 νk(ε)αk .


Proof. Consider for x ∈ [−c,c], c > 0, the quantity


Tr
[
ρε(1+ εx)


N
ε


]
=


∏
∞
i=1


1
1− νi(ε)


νi+ε
(1+εx)


∏
∞
i=1


νi(ε)+ε


ε


=
∞


∏
i=1


1
1−νi(ε)x


When Tr
[
ρε Nk


]
is uniformly bounded w.r.t ε ∈ (0, ε̄), for all k ∈ N it is a C ∞ function around x = 0 with


∂
k
x Tr
[
ρε(1+ εx)


N
ε


]∣∣
x=0 = Tr [ρε N(N− ε) . . .(N− (k−1)ε)]∼ Tr


[
ρε Nk


]
asε → 0 .


But the first derivative is nothing but


∂xTr
[
ρε(1+ εx)


N
ε


]∣∣
x=0 =


∞


∑
i=1


νi(ε) ,


which says that the uniform bound ∑
∞
i=1 νi(ε)≤C is a necessary condition.


Reciprocally when ∑
∞
i=1 νi(ε) ≤C, then the function ∏


∞
i=1(1−ν j(ε)x)−1 is analytic with respect to x in a


disc of radius RC and equals


∞


∏
i=1


(1−ν j(ε)x)−1 =
∞


∏
i=1


(
∞


∑
j=0


νi(ε) jx j) =
∞


∑
k=0


xk


[
∑
|α|=k


ν(ε)α


]
,


which yields the result. �
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A Gibbs state is a quasi-free state with σ(ε) = e−εL(ε) where L(ε) is a strictly positive operator assumed
here with a discrete spectrum:


L(ε) =
∞


∑
i=1


`i(ε)|ei〉〈ei| , `i(ε)≤ `i+1(ε) , (65)


where the basis (e j) j∈N∗ is assumed independent of ε ∈ (0, ε̄) for the sake of simplicity . There is a simple
traduction of the assumptions of Theorem 1.1, the non obvious one being the condition (PI) hidden in the
assumption (2).


Proposition 4.6 The Gibbs state ρε = 1
Tr[Γ(e−εL(ε))]Γ(e−εL(ε)) with L(ε) given in (65) satisfies the assump-


tions of Theorem 1.1 if and only if


• For all i ∈ N∗ the limit limε→0 `i(ε) = `i(0) exists in (0,+∞] .


• If J ∈ N∗∪{∞} denotes the largest element in N∗∪{∞} such that `i(0) < +∞ for all i ≤ J, the two
conditions are verified


J


∑
i=1


1
`i(0)


< +∞ , (66)


and lim
ε→0


∑
i>J


εe−ε`i(ε)


(1− e−ε`i(ε))
= 0 . (67)


Proof. First of all, writing σ(ε) = e−εL(ε) allows to apply Lemma 4.5 with νi(ε) = εe−ε`i(ε)


1−e−ε`i(ε) . From


e−ε`i(ε) ≥ 1− ε`i(ε) we deduce


νi(ε)≥ e−ε`i(ε)


`i(ε)
.


Hence the uniform boundedness of Tr
[
ρε Nk


]
for k ∈ N, which is equivalent to ∑


∞
i=1 νi(ε)≤C implies


inf
j∈N∗,ε∈(0,ε̄)


` j(ε) = κ > 0 . (68)


We now use the assumption that the family (ρε)ε∈(0,ε̄) admits a unique Wigner measure µ0 . As a quasi-free
state, ρε is given by its characteristic function (see for example [15] and [7] for the ε-dependent version)


Tr [ρεW ( f )] = e
− ε


4 〈 f , 1+e−εL(ε)


1−e−εL(ε) f 〉
.


But the Wigner measure is characterized by its characteristic function


G(ξ ) =
∫


Z
e−2iπS(z,ξ ) dµ0(z) = lim


ε→0
Tr
[
ρεW (


√
2πξ )


]
.


By taking ξ = ei, i ∈ N∗, this implies that the limit


lim
ε→0


e
− επ2


2
1+e−ε`i(ε)


1−e−ε`i(ε)


exists in R . With the constraint (68) there are two possibilities: either limε→0 `i(ε) = `i(0) ∈ [κ,+∞) and


G(ei) = e
− π2


`i(0) or limε→0 `i(ε) = +∞ and G(ei) = 1 . After recalling that the `i(ε) are ordered and by
introducing the index J like in our statement, we get for ξ = ∑


∞
i=1 ξiei ∈Z


G(ξ ) = e
−π2


∑
J
i=1


|ξ |2
`i(0) .


The measure µ0 has to be the gaussian measure


µ0 =
J
×


i=1


[
`i(0)


π
e−`i(0)|zi|2 L(dzi)


]
, z =


∞


∑
i=1


ziei .
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Our assumptions imply that the integral
∫
Z |z|2 dµ0(z) equals


J


∑
i=1


1
`i(0)


=
∫


Z
|z|2 dµ0(z) = lim


ε→0
Tr [ρε N] .


After Lemma 4.5 we know that


J


∑
i=1


1
`i(0)


= lim
ε→0


∞


∑
i=1


νi(ε) = lim
ε→0


∞


∑
i=1


εe−ε`i(ε)


1− ε`i(ε)
,


which enforces the two conditions (66) and (67) .
Conversely assume that all the conditions are satisfied. Reconsidering the final argument in the proof of
Lemma 4.5 says that the function


∞


∏
i=J+1


(1−νi(ε)x)−1


converges to 1 in a given neighborhood of x = 0 . Hence


lim
ε→0


Tr
[
ρε Nk


]
= lim


ε→0
k! ∑


|α|=k ,


αi=0 for i>J


(
εe−ε`i(ε)


1− e−ε`i(ε)


)α


= k! ∑
|α|=k ,


αi=0 for i>J


`(0)−α ,


which is easily checked to be equal to
∫
Z |z|2k dµ0(z) . �


In the Bose-Einstein condensation of the free Bose gas in dimension 3, considered in [7], the first
eigenvalue is tuned so that `1(0) ∈ (0,+∞) and all the other eigenvalues are such that `i(0) = +∞ . The
condition which fails and gives rise to a physical example of dimensional defect of compactness is (67) .


4.5 The Hartree-von Neumann limit
Let ρ0 be a non-negative trace class operator on L2(Rd) satisfying Tr[ρ0] = 1 and let


ρ
⊗N = ρ⊗·· ·⊗ρ.


Consider the time-dependent von Neumann equation for a system of N particles{
i∂tρN(t) = [HN ,ρN(t)]


ρN(0) = ρ
⊗N
0 ,


(69)


with ρN(t) is a trace class operator on L2(Rd)⊗N ∼ L2(RdN). Here HN is the Hamiltonian of the N particles
system


HN =
N


∑
i=1


1⊗·· ·⊗A⊗·· ·⊗1+
1
N ∑


i< j
V (xi− x j) ,


with A is a self-adjoint operator and V ∈ L∞(Rd) real-valued satisfying V (x) = V (−x). As will appear in
the proof, more general interactions could be considered in the spirit of Theorem 1.1, but we prefer to stick
to the usual presentation for an example.
The next result concerns the limit of the von Neumann dynamics (69) in the mean field regime N → ∞


already studied in [10][9]. We shall see that although the particles are not assumed to be bosons, our
bosonic mean field result apply to this case due to the symmetry of the tensorized initial state ρ


⊗N
0 .


Proposition 4.7 Let (ρN(t)) denote the solution to (69), and consider the trace class operator σ
(k)
N (t) ∈


L 1(L2(Rkd)) defined by relation


∀B ∈L (L2(Rkd)) , Tr
[
σ


(k)
N (t)B


]
= Tr


[
ρN(t)(B⊗ IL2(Rd(N−k)))


]
.


Then the convergence
lim


N→∞
σ


(k)
N = ρ(t)⊗k (70)
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holds in L 1(L2(Rdk)) for all t ∈ R and when ρ(t) solves the Hartree-von Neumann equation{
i∂tρ(t) = [A+(V ∗nρ(t)),ρ(t)]
ρ(0) = ρ0 ,


(71)


with nρ(x, t) := ρ(x;x, t) .


Proof. The proof will be done in three steps: Bosonisation, Liouvillian and mean field limit.
Bosonization: The phase space that we will consider is not the one particle space L2(Rd) but


Z = L 2(L2(Rd)) ,


the space of Hilbert-Schmidt operators on L2(Rd) . It is endowed with the inner product


〈ω1,ω2〉Z = TrL2 [ω∗1 ω2]


where TrL2 [.] here denotes the trace on L2(Rd) and ω∗1 is the adjoint of ω1 .
The cyclicity of the trace leads to


Tr(L2)⊗N


[
ρN(t)(B⊗ IL2(Rd(N−k)))


]
= 〈ΨN(t) , (B⊗ IL2(Rd(N−k)))ΨN(t)〉Z ⊗N (72)


with ΨN(t) = e−itHN
√


ρ0
⊗NeitHN .


The important point is that at time t = 0, ΨN(0) =
√


ρ0
⊗N , is a Hermite state in


∨N Z and that the evolution
preserves this symmetry so that


∀t ∈ R , ΨN(t) ∈
∨


NZ , ΨN(0) =
√


ρ0
⊗N .


With any bounded operator B : L2(Rdk)→ L2(Rdk), the action by left (resp. right) multiplication is defined
by


LB (resp. RB) :
∨


kZ →
∨


kZ


ω
⊗k 7→ Sk(Bω


⊗k) , (resp. Sk(ω⊗kB)) ,


where Sk is the orthogonal projection from ⊗kZ onto
∨k Z . Since (ω⊗k)ω∈Z is a total family in


∨k Z
this defines a bounded operator LB ∈L (


∨k Z ) (resp. RB ∈L (
∨k Z )) such that L∗B = LB∗ (resp. R∗B = RB∗ ) .


When B(x1, . . . ,xk,y1, . . . ,yk) is the Schwartz kernel of B ∈L (L2(Rdk)) , LB (resp. RB) is the left (resp.
right) multiplication by the operator with kernel


1
k! ∑


σ∈Sk


B(xσ(1), . . . ,xσ(k),yσ(1), . . . ,yσ(k)) .


Hence the trace (72) equals


Tr(L2)⊗N


[
ρN(t)(B⊗ IL2(Rd(N−k)))


]
= 〈ΨN(t) ,L[B⊗I⊗(N−k)]ΨN(t)〉∨N Z .


With an operator B ∈L (L2(Rdk)), we can now associate a symbol


bB(ω) = 〈ω⊗k,LBω
⊗k〉∨k Z = Tr(L2)⊗k


[
(ω∗)⊗kBω


⊗k
]
∈Pk,k(Z ).


Since L[B⊗I⊗(N−k)] is nothing but LB
∨


I∨N−k Z we get


Tr(L2)⊗N


[
ρN(t)(B⊗ IL2(Rd(N−k)))


]
=


(N− k)!
N!εk 〈ΨN(t) ,bWick


B ΨN(t)〉∨N Z , ε =
1
N


.


Liouvillian: Let us now determine the appropriate Hamiltonian Hε of this problem which is actually a
Liouvillian. The map


R 3 t 7→ e−itA
ωeitA
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defines a continuous unitary group on Z with a self-adjoint generator


LA : Z → Z


ω 7→ [A,ω] .


The interaction is a bounded self-adjoint operator Q̃ :
∨ 2Z →


∨ 2Z given by Q̃ = 1
2 (LV−RV )∈L (


∨2 Z )
and we associate the symbol Q(ω) = 〈ω⊗2 , Q̃ω⊗2〉 . For any ω ∈Z the kernel of Q̃ω⊗2 ∈


∨2 Z is given
by


(Q̃ω
⊗2)(x1,y1;x2,y2) =


1
2


V (x1− x2)ω(x1,y1)ω(x2,y2)−
1
2


V (y1− y2)ω(x1,y1)ω(x2,y2) .


After introducing the Hamiltonian
Hε = dΓ(LA)+QWick ,


acting as a self-adjoint operator on Γs(Z ), we get for Θ ∈
∨ NZ ∩D(dΓ(LA)) ,


ε
−1Hε Θ = [HN ,Θ] with ε = 1/N.


This implies
ΨN(t) = e−itHN (


√
ρ0)⊗NeitHN = e−i t


ε
Hε (
√


ρ0)⊗N ∈
∨


NZ .


Mean field limit: The initial data ρε(0) = |√ρ0
⊗N〉〈√ρ0


⊗N | is a Hermite state which fulfills the assump-
tions of Theorem 1.1 with


µ0 = δ
S1√


ρ0
.


The classical energy associated with the Hamiltonian Hε is


h(ω) = 〈ω , LAω〉Z +
1
2
〈ω⊗2 , (LV −RV )ω⊗2〉Z


and the mean field flow Ft is nothing but the one given by


i∂tω = ∂ω̄ h(ω) = [A,ω]+ (V ∗n1
ω) ω−ω (V ∗n2


ω) ,


where V ∗ ni
ω are multiplication operators and n1


ω(x) =
∫
Rd |ω(x,y)|2dy, n1


ω(y) =
∫
Rd |ω(x,y)|2dx when


ω(x,y) denotes the kernel of ω . Beside the invariance |Ft(ω)|Z = |ω|Z and Ft(e−iθ ω) = e−iθ Ft(ω) ,
the flow Ft also satisfies


Ft(ω∗) = Ft(ω)∗ . (73)


Thus previous equation becomes equivalent to the Hartree-von Neumann equation (71) with ρ(t) = ω(t)2


when ω(0) =
√


ρ0 . The Theorem 1.1 says


∀b ∈Pk,k(Z ) , lim
N→∞


Tr∨N Z


[
|ΨN(t)〉〈ΨN(t)|bWick


]
=
∫


Z
b(ωt) δ


S1√
ρ0


= b(
√


ρ(t)) .


In particular when B ∈L (L2(Rdk)), this implies


lim
N→∞


Tr
[
ρN(t)(B⊗ IL2(Rd(N−k)))


]
= TrL2(Rdk)


[
ρ(t)⊗kB


]
.


This proves the weak convergence in (70), but since it is concerned with non negative trace class operator
and Tr


[
σ


(k)
N (t)


]
= 1 = Tr


[
ρ(t)⊗k


]
the convergence holds in the L 1-norm. �


We end with three remarks:


• When ρ is a pure state, the result of Proposition 4.7 is the same as (56).


• When ρ is not a pure state the Subsection 4.3 has already shown that one has to be very care-
ful with tensor products. Actually ρ⊗N ∈ L 1(⊗N Z ) commutes with the symmetrization projec-
tion SN (or the antisymmetrization AN for fermions) but the corresponding states in L 1(


∨N Z )
(resp. L 1(


∧N Z )) are
SNρ


⊗NSN (resp. ANρ
⊗NAN) .


But as shows the formula Tr [Γs(ρ)] = ∏λ∈σ(ρ)
1


1−λ
(resp. Tr [Γa(ρ)] = ∏λ∈σ(ρ)


1
1+λ


), the trace
of SNρ⊗NSN (resp. ANρ⊗NAN) converges to 0 as N → ∞ . We leave for subsequent works, the
question whether normalizing these states would lead to the same asymptotics as in Proposition 4.7.
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• We recall that a tensorization based on the tensor decomposition of Fock spaces in Subsection 4.3 led
to the evolution of Wigner measures which cannot be translated in terms of Hartree-von Neumann
equations.


Acknowledgements: This work was finished while the second author had a CNRS-sabbatical semester in
Ecole Polytechnique.
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