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Abstract. The billiard motion inside an ellipsoid Q ⊂ Rn+1 is completely integrable. Its
phase space is a symplectic manifold of dimension 2n, which is mostly foliated with Liouville
tori of dimension n. The motion on each Liouville torus becomes just a parallel translation
with some frequency ω that varies with the torus. Besides, any billiard trajectory inside Q is
tangent to n caustics Qλ1 , . . . , Qλn , so the caustic parameters λ = (λ1, . . . , λn) are integrals
of the billiard map. The frequency map λ 7→ ω is a key tool to understand the structure of
periodic billiard trajectories. In principle, it is well-defined only for nonsingular values of the
caustic parameters.


We present four conjectures, fully supported by numerical experiments. The last one gives
rise to some lower bounds on the periods. These bounds only depend on the type of the
caustics. We describe the geometric meaning, domain, and range of ω. The map ω can
be continuously extended to singular values of the caustic parameters, although it becomes
“exponentially sharp” at some of them.


Finally, we study triaxial ellipsoids of R3. We compute numerically the bifurcation curves
in the parameter space on which the Liouville tori with a fixed frequency disappear. We
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1. Introduction


Birkhoff [7] introduced the problem of convex billiard tables more than 75 years ago as a way
to describe the motion of a free particle inside a closed convex curve such that it reflects at
the boundary according to the law “angle of incidence equals angle of reflection”. He also
realized that this billiard motion can be modeled by an area preserving map defined on an
annulus. There exists a tight relation between the invariant curves of this billiard map and
the caustics of the billiard trajectories. Caustics are curves with the property that a trajectory,
once tangent to it, stays tangent after every reflection. Good starting points in the literature of
the billiard problem are [27, 37, 25]. We also refer to [26] for some nice figures of caustics.
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When the billiard curve is an ellipse, the billiard map is integrable in the sense of
Liouville, so the annulus is foliated by invariant curves, which implies that any billiard
trajectory has a caustic. Indeed, the caustics of that problem are the conics confocal to the
original ellipse: confocal ellipses, confocal hyperbolas, and the foci. The foci are the singular
elements of the family of confocal conics. From a more dynamical point of view, the billiard
map becomes just a rigid rotation on its regular invariant curves, and the rotation number
varies analytically with the curve.


The billiard dynamics inside an ellipse is known. We stress just three key results related
with the search of periodic trajectories. First, Poncelet showed that if a billiard trajectory is
periodic, then all the trajectories sharing its caustic conic are also periodic. Second, Cayley
gave some algebraic conditions to determine the caustic conics whose trajectories are periodic.
Third, the rotation number can be expressed as a quotient of elliptic integrals [30, 38, 41]. We
note that the search of periodic trajectories inside an ellipse can be reduced to the search of
rational rotation numbers.


A rather natural generalization of this problem is to consider the motion of the particle
inside an ellipsoid of Rn+1. Then the phase space is no longer an annulus, but a symplectic
manifold of dimension 2n. Many of the previous results have been extended to ellipsoids,
although those extensions are far from being trivial. For instance, the billiard map is still
completely integrable in the sense of Liouville. Thus, the phase space is mostly foliated with
Liouville tori of dimension n. The motion on each Liouville torus becomes just a parallel
translation with some frequency that varies with the torus. In particular, any billiard trajectory
inside an ellipsoid has n caustics, which are quadrics confocal to the original ellipsoid. This
situation is fairly exceptional, since quadrics are the only smooth hypersurfaces of Rn+1,
n ≥ 2, that can have caustics [6]. Some extensions of the Poncelet theorem can be found
in [10, 11, 12, 33]. Several generalized Cayley-like conditions were stated in [14, 15, 16, 17].
Finally, the frequency map can be expressed in terms of hyperelliptic integrals, see [12, 32].
The setup of these last two works is R3, but their formulae are effortless extended to Rn+1.


From Jacobi and Darboux it is known that hyperelliptic functions play a role in the
description of the billiard motion inside ellipsoids and the geodesic flow on ellipsoids.
Nevertheless, we skip the algebro-geometric approach (the interested reader is referred
to [31, 28, 29, 2, 3]) along this paper, in order to emphasize the dynamical point of view. Here,
we just mention that the billiard dynamics inside an ellipsoid can be expressed in terms of
some Riemann theta-functions associated to a hyperelliptic curve, and so, one can write down
explicitely the parameterizations of the invariant tori that foliate the phase space; see [39, 21].


In order to get a flavour of the kind of results obtained and problems tackled along this
paper, let us consider the three-dimensional problem. Then the billiard trajectories are tangent
to two quadrics of the confocal family


Qλ =


{
(x, y, z) ∈ R3 :


x2


a− λ +
y2


b− λ +
z2


c− λ = 1


}
, a > b > c > 0.


These quadrics are ellipsoids, one-sheet hyperbolids, and two-sheet hyperboloids, although
not all the combinations can take place. For instance, both caustics can not be ellipsoids. It
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is known that there are just four possible combinations: E-H1, E-H2, H1-H1, and H1-H2 (the
notation is self-explanatory). We raise the following questions:


• Which is the minimal period among the trajectories with caustics of a fixed type? We
conjecture that the minimal period is four in the case H1-H1, five in the cases E-H1 and
E-H2, and six in the case H1-H2. This conjecture is supported by numerical experiments,
as well as by some theoretical arguments; see theorem 7. Samples of periodic trajectories
with minimal period are displayed in figure 11.


• Which are the ellipsoids with such minimal periodic trajectories? Which are the ones
with trajectories of some fixed frequency? Not all. They are the ones close to flat: c� b,
in the cases E-H1 and H1-H1; the ones far from oblate: b � a, in the case E-H2; and
ellipsoids with a more complicated description in the case H1-H2; see figure 10.


• Which is the asymptotic behaviour of the frequency map close to singular caustics? We
shall prove that the frequency map can be continuously extended to singular values of
the caustic parameters, although it becomes “exponentially sharp” at some of them; see
theorems 11 and 14. This explains an amazing phenomenon that we discovered after our
first numerical computations: we found that when one looks for trajectories satisfying
some given property that depends just on the caustics (for instance, seven-periodic
trajectories crossing exactly six times the plane z = 0, or quasiperiodic trajectories with
a fixed Diophantine frequency vector), many times some caustic (if not both) is very
close to a degenerate one. We explain the reason in remark 10.


Finally, we want to mention that there exist many remarkable results about periodic
trajectories in other billiard and geodesic problems. For instance, several nice algebraic
closed geodesics on a triaxial ellipsoid can be seen in [22], and a Cayley-like condition for
billiards on quadrics was established in [1]. Some results stray from any integrable setup.
For example, some general lower bounds on the number of periodic billiard trajectories inside
strictly convex smooth hypersurfaces can be found in [4, 19, 20]. The planar case was already
solved by Birkhoff [7]. Of course, these lower bounds are useless for integrable systems
where the periodic trajectories are organized in continuous families.


We complete this introduction with a note on the organization of the paper. In section 2
we review briefly some well-known results about billiards inside ellipsoids in order to fix
notations that will be used along the rest of the paper. Next, the frequency map is introduced
and interpreted in section 3. This section, concerning ellipsoids of Rn+1, also contains four
conjectures and the lower bounds on the periods. Billiards inside ellipses of R2 and inside
triaxial ellipsoids of R3 are thoroughly studied in sections 4 and 5, respectively. Billiards
inside nondegenerate ellipsoids of Rn+1 are revisited in section 6. Some technical lemmas
have been relegated to the appendices.


2. Preliminaries


In this section details are scarce and technicalities are avoided. Experts can simply browse
this section. We will list several basic references for the more novice readers.
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2.1. Confocal quadrics and elliptic billiards


The following results go back to Jacobi, Chasles, Poncelet, Darboux, and Cayley.
The starting point of our discussion is the n-dimensional nondegenerate ellipsoid


Q =


{
x = (x1, . . . , xn+1) ∈ Rn+1 :


n+1∑
i=1


x2
i


ai
= 1


}
, (1)


where a1, . . . , an+1 are some fixed real constants such that 0 < a1 < · · · < an+1. The
degenerate cases in which the ellipsoid has some symmetry of revolution are not considered
here. This ellipsoid is an element of the family of confocal quadrics given by


Qµ =


{
x = (x1, . . . , xn+1) ∈ Rn+1 :


n+1∑
i=1


x2
i


ai − µ = 1


}
, µ ∈ R.


The meaning of Qµ is unclear in the singular cases µ ∈ {a1, . . . , an+1}. In fact, there are two
natural choices for the singular confocal quadricQµ when µ = aj . The first choice is to define
it as the n-dimensional coordinate hyperplane


Hj =
{
x = (x1, . . . , xn+1) ∈ Rn+1 : xj = 0


}
,


but it also makes sense to define it as the (n− 1)-dimensional focal quadric


Fj =


{
x = (x1, . . . , xn+1) ∈ Rn+1 : xj = 0 and


∑
i 6=j


x2
i


ai − µ = 1


}
,


which is contained in the hyperplaneHj . Both choices fit in the framework of elliptic billiards,
but we shall use the notation Qaj


= Hj along this paper.


Theorem 1 ([31, 27, 2, 37]). Once fixed a nondegenerate ellipsoid Q, we know that:


(i) A generic point x ∈ Rn+1 belongs to exactly n+1 distinct nonsingular confocal quadrics
Qµ0 , . . . , Qµn such that µ0 < a1 < µ1 < a2 < · · · < an < µn < an+1.


(ii) A generic line ` ⊂ Rn+1 is tangent to exactly n distinct nonsingular confocal quadrics
Qλ1 , . . . , Qλn such that λ1 < λ2 < · · · < λn, λ1 ∈ (−∞, a1) ∪ (a1, a2), and
λi ∈ (ai−1, ai) ∪ (ai, ai+1), for i = 2, . . . , n.


Set a0 = 0. If a generic point x is in the interior of the ellipsoid Q, then µ0 > 0, so
a0 < µ0 < a1. In the same way, if a generic line ` has a transverse intersection with the
ellipsoid Q, then λ1 > 0, so λ1 ∈ (a0, a1) ∪ (a1, a2). The values µ0 = 0 and λ1 = 0 are
attained just when x ∈ Q and ` is tangent to Q, respectively.


We will say that µ = (µ0, . . . , µn) ∈ Rn+1 are the Jacobi elliptic coordinates of the point
x = (x1, . . . , xn+1). Cartesian and elliptic coordinates are linked by relations


x2
j =


∏n
i=0(aj − µi)∏
i 6=j(aj − ai)


, j = 1, . . . , n+ 1. (2)


Elliptic coordinates define a coordinate system on each one of the 2n+1 open orthants of the
space Rn+1, but they become singular at the n + 1 coordinate hyperplanes, because the map
x 7→ µ is not one-to-one in any neighborhood of these hyperplanes.
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A point is generic in the sense of the theorem if and only if it is outside all coordinate
hyperplanes. From the relation between Cartesian and elliptic coordinates, we deduce that
when the point x tends to the hyperplane Hj , some elliptic coordinate µi tends to aj . In fact,
i = j or i = j − 1, because of the inequalities ai < µi < ai+1.


A line is generic in the sense of the theorem if and only if it is neither tangent to a singular
confocal quadric‡ nor contained in a nonsingular confocal quadric.


If two lines obey the reflection law at a point x ∈ Q, then both lines are tangent to
the same confocal quadrics [37]. This shows a tight relation between elliptic billiards and
confocal quadrics: all lines of a billiard trajectory inside the ellipsoid Q are tangent to exactly
n confocal quadrics Qλ1 , . . . , Qλn , which are called caustics of the trajectory. We will say
that λ = (λ1, . . . , λn) ∈ Rn are the caustic parameters of the trajectory.


Definition 1. A billiard trajectory inside a nondegenerate ellipsoid of the Euclidean space
Rn+1 is nonsingular when it has n distinct nonsingular caustics; that is, when its caustic
parameter belongs to the nonsingular caustic space


Λ =


{
(λ1, . . . , λn) ∈ Rn :


0 < λ1 < λ2 < · · · < λn
λi ∈ (ai−1, ai) ∪ (ai, ai+1) for 1 ≤ i ≤ n


}
. (3)


We will only deal with nonsingular billiard trajectories along this paper. We denote the
2n open connected components of the nonsingular caustic space as follows:


Λσ =


{
(λ1, . . . , λn) ∈ Rn :


0 < λ1 < λ2 < · · · < λn
λi ∈ (ai+σi−1, ai+σi


) for 1 ≤ i ≤ n


}
,


for σ = (σ1, . . . , σn) ∈ {0, 1}n. For instance, the first caustic Qλ1 is an ellipsoid if and only if
λ1 ∈ (a0, a1); that is, if and only if λ ∈ Λσ with σ1 = 0. We will draw the space Λ for ellipses
and triaxial ellipsoids of R3 in sections 4 and 5, respectively.


Theorem 2 ([10, 11, 12, 14, 15, 33]). If a nonsingular billiard trajectory is closed after m0


bounces, all trajectories sharing the same caustics are also closed after m0 bounces. The
nonsingular billiard trajectories sharing the caustics Qλ1 , . . . , Qλn close after m bounces
—up to the group of symmetries G = (Z/2Z)n+1 of Q—, if and only if m ≥ n+ 1 and


rank


 hm+1 · · · hn+2


...
...


h2m−1 · · · hn+m


 < m− n, (4)


where
√


(a1 − s) · · · (an+1 − s)(λ1 − s) · · · (λn − s) = h0 + h1s+ h2s
2 + · · ·.


The groupG is formed by the 2n+1 reflections —involutive linear transformations— with
regard to coordinate subspaces. The phrase “a billiard trajectory closes after m bounces up to
the groupG” means that if (qk)k∈Z is the sequence of impact points of the trajectory, then there
exists a reflection g ∈ G such that qk+m = g(qk) for all k ∈ Z. Hence, billiard trajectories
that close after m bounces up to the group G, close exactly after m0 = 2m bounces, because
qk+m0 = qk+2m = g(qk+m) = g2(qk) = qk.


‡ By abuse of notation, it is said that a line is tangent to the singular confocal quadric Qaj
when it is contained


in the coordinate hyperplane Hj or when it passes through the focal quadric Fj .
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Poncelet (first part) and Cayley (second part, although slightly modified) proved this
theorem for ellipses. Darboux generalized Poncelet theorem to triaxial ellipsoids of R3. Later
on, both results were generalized to any dimension; the Poncelet theorem in [10, 11, 12, 33],
and the Cayley condition in [14, 15].


Remark 1. It can be read in the first papers on generalized Cayley-like conditions [14, 15],
that billiard trajectories close after m bounces if and only if condition (4) holds. Later on,
the same authors pointed out that the trajectories close “up to the central symmetry of the
ellipsoid” [16]. The correct statement is the one given here§. The four-periodic billiard
trajectory drawn with a continuous green line in figure 3 is a counterexample of the original
statements. It is two-periodic only up to the y-axial symmetry of the ellipse, but not up to
the central one. Furthermore, we shall prove in lemma 9 that it verifies the Cayley condition
h3 = 0, which corresponds to the values n = 1 and m = 2.


Although the Cayley-like condition (4) is purely algebraic and quite simple, it does not
seem suitable for the numerical computation of caustic parameters associated to periodic
trajectories with high periods, because the degree of the involved algebraic equations grows
much faster than the period. From a numerical point of view, there are better approaches: the
inversion of the frequency map is one of them.


2.2. Complete integrability of elliptic billiards


We recall some results obtained by Liouville, Arnold, Moser, and Knörrer.
A symplectic map f : M → M defined on a 2n-dimensional symplectic manifold is


completely integrable if there exist some smooth f -invariant functions I1, . . . , In : M → R
(the integrals) that are in involution —that is, whose pair-wise Poisson brackets vanish— and
that are functionally independent almost everywhere on the phase space M . In this context,
the map I = (I1, . . . , In) : M → Rn is called the momentum map. A point m ∈ M is a
regular point of the momentum map when the n-form dI1 ∧ . . . ∧ dIn does not vanish at m.
A vector λ ∈ Rn is a regular value of the momentum map when every point in the level set
I−1(λ) is regular, in which case the level set is a Lagrangian submanifold of M and we say
that I−1(λ) is a regular level set.


The following result is a discrete version of the Liouville-Arnold theorem.


Theorem 3 ([40]). Any compact connected component of a regular level set I−1(λ) is
diffeomorphic to Tn, where T = R/Z. In appropriate coordinates the restrictions of the
map to this torus becomes a parallel translation θ 7→ θ+ω. The map λ 7→ ω is smooth at the
regular values of the momentum map.


Thus the phase space M is almost foliated by Lagrangian invariant tori and the map on
each torus is simply a parallel translation. These tori are called Liouville tori, the shift ω is the
frequency of the torus, and the map λ 7→ ω is the frequency map. The dynamics on a Liouville
torus with frequency ω is m0-periodic if and only if m0ω ∈ Zn. Liouville tori become just


§ Because all the points related by reflections g ∈ G have the same elliptic coordinates; see (2).
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invariant curves when n = 1, in which case the shift is usually called the rotation number of
the invariant curve, and denoted by ρ, instead of ω.


Now, let Q be a (strictly) convex smooth surface of Rn+1 diffeomorphic to the sphere
Sn, not necessarily an ellipsoid. The billiard motion inside Q can be modelled by means of a
symplectic diffeomorphism defined on the 2n-dimensional phase space


M = {(q, p) ∈ Q× Sn : p is directed outward Q at q} . (5)


We define the billiard map f : M → M , f(q, p) = (q′, p′), as follows. The new velocity
p′ is the reflection of the old velocity p with respect to the tangent plane TqQ. That is, if we
decompose the old velocity as the sum of its tangent and normal components at the surface:
p = pt + pn with pt ∈ TqQ and pn ∈ NqQ, then p′ = pt − pn = p − 2pn. The new impact
point q′ is the intersection of the ray {q + µp′ : µ > 0} with the surface Q. This intersection
is unique and transverse by convexity.


Elliptic billiards fit in the frame of the Liouville-Arnold theorem.


Theorem 4 ([31, 29, 39, 2]). The billiard map associated to the nondegenerate ellipsoid (1)
is completely integrable and the caustic parameters λ1, . . . , λn are the integrals. The set of
regular values of the corresponding momentum map is given by (3).


3. The frequency map


3.1. Definition and interpretation


The rotation number for the billiard inside an ellipse is a quotient of elliptic integrals;
see [30, 10]. Explicit formulae for the frequency map of the billiard inside a triaxial ellipsoid
of R3 can be found in [12, §III.C]. An equivalent formula is given in [32, §5]. Both formulae
contain hyperelliptic integrals and they can be effortless generalized to any dimension. Since
we want to avoid as many technicalities as possible, we will not talk about Riemann surfaces,
basis of holomorphic differential forms, basis of homology groups, period matrices, or other
objects that arise in the theory of algebraic curves. We just explain briefly why those objects
appear in a natural way when dealing with elliptic billiards and we list some references.


It was clear from the original works of Jacobi and Darboux that hyperelliptic integrals
play a key role in the description of geodesic flows on (and so, billiards inside) ellipsoids. For
instance, the set of lines in RPn+1 that are tangent to n distinct nonsingular confocal quadrics
is isomorphic to the set of real points in the Jacobian of a nonsingular hyperelliptic curve of
genus n; see [31, 28, 2]. The billiard dynamics becomes linearized on this Jacobian and it is
possible to obtain explicit formulae for the impact points of billiard trajectories, by solving
the Abel-Jacobi inversion problem in terms of the Riemann theta-functions associated to the
hyperelliptic curve. The nonsingular case λ ∈ Λ was solved by Veselov [39]. Some singular
cases were solved by Fedorov [21].


The following notations are required to define the frequency map. Once fixed the
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parameters a1, . . . , an+1 of the ellipsoid, and the caustic parameters λ1, . . . , λn, we set


T (s) =
2n+1∏
i=1


(ci − s), {c1, . . . , c2n+1} = {a1, . . . , an+1} ∪ {λ1, . . . , λn}.


If λ ∈ Λ, then c1, . . . , c2n+1 are pair-wise distinct and positive, so we can assume that


c0 := 0 < c1 < · · · < c2n+1. (6)


Hence, T (s) is positive in the n+ 1 open intervals (c2j, c2j+1), and the improper integrals


Kij =


∫ c2j+1


c2j


sids√
T (s)


, i = 0, . . . , n− 1, j = 0, . . . , n (7)


are absolutely convergent, real, and positive. We also consider the n+ 1 column vectors


Kj = (K0j, . . . , Kn−1,j)
t ∈ Rn.


It is known that vectors K1, . . . , Kn are linearly independent; see [24, §III.3].


Definition 2. The frequency map ω : Λ → Rn of the billiard inside the nondegenerate
ellipsoid Q is the unique solution of the system of n linear equations


K0 + 2
n∑
j=1


(−1)jωjKj = 0. (8)


Remark 2. Sometimes it is useful to think that the frequency ω depends on the parameter
c = (c1, . . . , c2n+1) ∈ R2n+1


+ , and not only on the caustic parameter λ = (λ1, . . . , λn) ∈ Λ. In
such situations, we will write ω = $(c). This map c 7→ $(c) is homogeneous of degree zero
and analytic in the domain defined by inequalities (6). Homogeneity is deduced by performing
a change of scale in the integrals (7). Hence, we can assume without loss of generality that
c2n+1 = an+1 = 1. Analyticity follows from the fact that the integrands in (7) are analytic
with respect to the variable of integration in all the intervals of integration and with respect to
c, as long as condition (6) takes place.


This definition coincides with the formulae contained in [12, 32] for n = 2. It
is motivated by the characterization of periodic billiard trajectories contained in the next
theorem. The factor 2 has been added to simplify the interpretation of the components of
the frequency map, which are all positive, due to the factors (−1)j .


Theorem 5 ([16, 17]). The nonsingular billiard trajectories inside the nondegenerate
ellipsoid Q are periodic with exactly mj points at Qc2j


and mj points at Qc2j+1
if and only if


m0K0 +
∑n


j=1(−1)jmjKj = 0.


The numbers m0,m1, . . . ,mn that appear in theorem 5 are called winding numbers. The
nonsingular billiard trajectories with caustic parameter λ are periodic with winding numbers
m0,m1, . . . ,mn if and only if


ωj(λ) =
mj


2m0


∈ Q+, j = 1, . . . , n. (9)


We note that m0 is the number of bounces in the ellipsoid Q = Qc0 , so it is the period.
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Remark 3. The sequence of winding numbers of a nonsingular periodic billiard trajectory
contains information about how the trajectory folds in the space Rn+1. The following
properties can be deduced from results contained in [16, §4.1]. Here, “number of ” means
“number of times that any periodic billiard trajectory with those caustic parameters do along
one period”. The intervals (c2j, c2j+1) with j 6= 0 can adopt exactly four different forms, each
one giving rise to its own geometric picture.


(i) If (c2j, c2j+1) = (aj, λj+1), then mj is the number of crossings with Hj , so it is even and
mj/2 is the number of oscillations around the hyperplane Hj;


(ii) If (c2j, c2j+1) = (λj, aj+1), then mj is the number of crossings with Hj+1, so it is even
and mj/2 is the number of oscillations around the hyperplane Hj+1;


(iii) If (c2j, c2j+1) = (aj, aj+1), then mj is the number of (alternate) crossings with Hj and
Hj+1, so it is even and mj/2 is the number of rotations that the trajectory performs when
projected onto the (xj, xj+1)-coordinate plane πj; and


(iv) If (c2j, c2j+1) = (λj, λj+1), then mj is the number of (alternate) tangential touches with
Qλj


and Qλj+1
, so it can be even or odd, and it is the number of oscillations between both


caustics.


These four properties suggest us the following definitions, which establish the geometric
meaning of the components of the frequency map. They change with the open connected
components of the nonsingular caustic space.


Definition 3. Let ω = (ω1, . . . , ωn) : Λ→ Rn be the frequency map.


(i) If (c2j, c2j+1) = (aj, λj+1), then ωj = mj/2m0 is the Hj-oscillation number;


(ii) If (c2j, c2j+1) = (λj, aj+1), then ωj = mj/2m0 is the Hj+1-oscillation number;


(iii) If (c2j, c2j+1) = (aj, aj+1), then ωj = mj/2m0 is the πj-rotation number; and


(iv) If (c2j, c2j+1) = (λj, λj+1), 2ωj = mj/m0 is the (Qλj
, Qλj+1


)-oscillation number.


Remark 4. It is important to notice that (only) when a m0-periodic billiard trajectory has two
caustics of the same type —that is, when some interval (c2j, c2j+1) falls into the fourth case—,
it is possible that m0ω /∈ Zn, although then 2m0ω ∈ Zn. This is due to the factor 2 that we
have added in the definition of the frequency map.


Finally, if Qλ1 is not an ellipsoid —that is, if λ1 > a1—, then c1 = a1, and m0 is the
number of crossings with H1, so it is even. Therefore, the following corollary holds.


Corollary 6. Among all the nonsingular billiard trajectories inside a nondegenerate ellipsoid,
only those with an ellipsoid as caustic can have odd period.


3.2. Four conjectures


We state four conjectures, all of them supported by numerical experiments, which, if proved,
would have important consequences.
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Conjecture 1. The frequency map is a local diffeomorphism; i.e., it is nondegenerate:


det


(
∂ωj
∂λi


(λ)


)
1≤i,j≤n


6= 0, ∀λ ∈ Λ.


Popov and Topalov [32] (following a methodology developed by Knörrer [29]) have
shown that the frequency map is almost everywhere nondegenerate when Q is a triaxial
ellipsoid of R3, although their proof deals with just two of the four connected components
of Λ; namely, the components Λσ with σ1 = 0.


A stronger version of the previous conjecture is the following one.


Conjecture 2. The restriction of the frequency map to any open connected component of the
nonsingular caustic space is a global diffeomorphism onto its image.


We present numerical evidence for both (local and global) conjectures in the section
about triaxial ellipsoids of R3.


The nondegeneracy of the frequency map is important because it is an essential
hypothesis —although we acknowledge that it can be replaced by some weaker Rüssmann-
like nondegeneracy conditions [36, §2]— in most KAM-like theorems, which are the standard
tool to prove the persistence of Liouville tori under small smooth perturbations of completely
integrable maps. Therefore, if conjecture 1 holds, we can conclude that most of the Liouville
tori of the billiard phase space persist under small smooth perturbations of the ellipsoid.


Conjecture 3. The components of the frequency map are ordered in a strict decreasing order
and lie in the range (0, 1/2). That is,


0 < ωn(λ) < · · · < ω1(λ) < 1/2, ∀λ ∈ Λ.


This conjecture is supported by the numerical computation of the frequency map for
thousands of random choices of a1, . . . , an+1, λ1, . . . , λn in “dimensions” n ≤ 5. The details
of the experiments for n = 2 are presented in section 5.


Conjecture 4. Winding numbers of nonsingular periodic billiard trajectories are ordered in
a strict decreasing order. More concretely,


2 ≤ mn < · · · < m1 < m0 = period.


Inequality mn ≥ 2 is immediate, because c2n+1 = an+1, so mn is even. Inequalities
mj ≤ m0 for j ≥ 1 are also immediate, because the number of crossings with any fixed
hyperplane or the number of tangential touches with any fixed caustic can not exceed the
number of segments of the periodic billiard trajectory. The strict inequalities mj < m0 could
be also established (using the symmetries of the ellipsoid), but we skip the details, since such
a small improvement is not worth the effort.


These conjectures are interrelated. First, conjecture 2 trivially implies conjecture 1.
Second, conjecture 3 implies conjecture 4; see relation (9). Third, conjecture 1 jointly with
conjecture 4 imply conjecture 3. To prove this, we note that conjecture 1 implies that ω(Λ)


is open in Rn and ω−1(Qn) is dense in Λ, whereas conjecture 4 and relation (9) imply that
the strict inequalities 0 < ω1 < · · · < ωn < 1/2 hold for rational frequencies. Therefore,
0 ≤ ω1(λ) ≤ · · · ≤ ωn(λ) ≤ 1/2 for any λ ∈ Λ, but these inequalities must be strict because
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ω(Λ) is open. Finally, we will prove in proposition 13 that when the ellipsoid is in R3,
conjecture 1 implies conjecture 2. Probably the proof could be generalized to any dimension,
but it would be rather cumbersome. It is based on a topological argument whose key point is
that the sets ω(Λσ) are simply connected.


3.3. Lower bounds on the periods


We know from theorem 2 that the period m0 of any nonsingular periodic billiard trajectory
inside a nondegenerate ellipsoid Q ⊂ Rn+1 verifies that m0 ≥ n + 1. This result can be
improved in several ways using the ordering of the winding numbers stated in conjecture 4.
For instance, the global lower bound m0 ≥ n + 2 follows directly. We present below more
refined semi-global lower bounds, holding each one on a different open connected component
of the nonsingular caustic space. They are obtained by realizing that some winding numbers
must be even in agreement with the first items in remark 3. The lower bound associated to
some connected component reaches the value 2n+ 2, which doubles the original lower bound
given in theorem 2.


Theorem 7. Given any σ = (σ1, . . . , σn) ∈ {0, 1}n, let Eσ be the subset of {0, 1, . . . , n} such
that: 1) 0 ∈ Eσ ⇔ σ1 = 1; 2) j ∈ Eσ ⇔ (σj, σj+1) 6= (1, 0); and 3) n ∈ Eσ.


(i) If m0, . . . ,mn are the winding numbers of a periodic trajectory with caustic parameter
in Λσ, then mj is even for all j ∈ Eσ.


(ii) If conjecture 4 holds, then the period of any periodic billiard trajectory inside a
nondegenerate ellipsoid with caustic parameter in Λσ can not be smaller than


κ(σ) := min


{
m0 :


∃ 2 ≤ mn < · · · < m0 sequence of integers
such that mj is even for any j ∈ Eσ


}
.


(iii) Let 1 = (1, . . . , 1) ∈ {0, 1}n, ς = (. . . , 0, 1, 0, 1, 0) ∈ {0, 1}n, and σ ∈ {0, 1}n. Then


n+ 2 = κ(ς) < κ(σ) < κ(1) = 2n+ 2, ∀ σ 6= 1, ς.


Proof. (i) We recall that mj must be even in the three first cases listed in remark 3. This is
the key property. For instance, mn is always even because c2n+1 = an+1. If σ1 = 1, then
λ1 ∈ (a1, a2) and c1 = a1, so m0 is even. If mj is odd, then (c2j, c2j+1) = (λj, λj+1) and
λj, λj+1 ∈ (aj, aj+1), so (σj, σj+1) = (1, 0). Hence, we have seen that (σj, σj+1) 6= (1, 0)⇒
mj is even.


(ii) This follows directly from the previous item and the definition of κ(σ).
(iii) First, we note that E1 = {0, . . . , n} and Eς = {. . . , n − 4, n − 2, n}. Therefore,


κ(1) = min {m0 : ∃ 2 ≤ mn < · · · < m0 sequence of even numbers} = 2n+ 2, and


κ(ς) = min


{
m0 :


∃ 2 ≤ mn < · · · < m0 sequence of
integers s.t. mn,mn−2, . . . are even


}
= n+ 2.


The minimum value of m0 among all integer sequences such that 2 ≤ mn < · · · < m0 is
attained at the sequence mj = n+ 2− j, 0 ≤ j ≤ n. Thus, κ(σ) ≥ n+ 2 for all σ ∈ {0, 1}n,
and κ(σ) = n+ 2⇒ Eσ = Eς ⇒ σ = ς .
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On the other hand, Eσ ⊂ Eσ′ ⇒ κ(σ) ≤ κ(σ′). Hence, κ(σ) ≤ κ(1) = 2n + 2 for all
σ ∈ {0, 1}n. Finally, κ(σ) = 2n+ 2⇒ Eσ = {0, . . . , n} ⇒ σj 6= 0 ∀j ⇒ σ = 1.


Remark 5. The lower bound κ(σ) can also be explicitely computed when σ 6= 1, ς . For
instance, let 0 = (0, . . . , 0) and ς̄ = (. . . , 1, 0, 1, 0, 1). Then E0 = {1, . . . , n} and
Eς̄ = {. . . , n− 5, n− 3, n− 1, n}, so κ(0) = 2n+ 1 and κ(ς̄) = n+ 3.


Remark 6. The function κ : {0, 1}n → {n+ 2, . . . , 2n+ 2} is surjective and has average


κ̄ := 2−n
∑


σ∈{0,1}n
κ(σ) = 3n/2 + 2.


We skip the details, the proof is by induction over n. Thus, these semi-global lower bounds
improve the global lower bound n+ 2 by, in average, 50%.


Now, a natural question arises. Are these semi-global lower bounds optimal? Optimal
does not mean that there exists a κ(σ)-periodic billiard trajectory with caustic parameter in
Λσ inside all nondegenerate ellipsoids, but just inside some of them. And we put another
question. Which are the ellipsoids with such “minimal” periodic billiard trajectories? Both
questions become almost trivial for ellipses; see subsection 4.6. The case of triaxial ellipsoids
of R3 is answered in subsection 5.5. The general case remains open, but we conjecture that
all these semi-global lower bounds are optimal.


4. Billiard inside an ellipse


In this section we describe the main analytic and geometric properties of the frequency map
when n = 1, in which case it is called rotation number and denoted by ρ. Many of these
properties are old, but the observation that the the rotation number is exponentially sharp
at the singular caustic parameter seems to be new. The known results can be found in the
monographes [27, 37] and the papers [30, 10, 38, 41].


4.1. Confocal caustics


To simplify the exposition, we write the ellipse as


Q =


{
(x, y) ∈ R2 :


x2


a
+
y2


b
= 1


}
, a > b > 0,


where we could assume, without loss of generality, that a = 1; see remark 2. Then any
nonsingular billiard trajectory inside Q is tangent to one confocal caustic of the form


Qλ =


{
(x, y) ∈ R2 :


x2


a− λ +
y2


b− λ = 1


}
,


where the caustic parameter λ belongs to the nonsingular caustic space‖
Λ = E ∪H, E = (0, b), H = (b, a).


‖ When λ→ b− (resp., λ→ b+) the causticQλ flattens into the region of the x-axis enclosed by (resp., outside)
the foci of the ellipse Q. When λ→ a−, the caustic flattens into the whole y-axis.
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Comparing these notations with the ones used in section 2, we get that a1 = b, a2 = a,
Λ0 = E, and Λ1 = H . We have chosen those names for the connected components of Λ


because then Qλ is an ellipse for λ ∈ E, and a hyperbola for λ ∈ H .


4.2. Phase portrait


We describe now the billiard dynamics inside an ellipse. This description goes back to
Birkhoff [7, §VIII.12], so it is rather old and we just list the results. Concretely, we want
to know how the phase space is foliated by Liouville tori (invariant curves on which the
motion becomes a rigid rotation) and separatrices (invariant curves on which the motion tends
to some hyperbolic periodic trajectories).


Let us put some global coordinates (ϕ, r) over the billiard phase space M defined
in (5), just for visualization purposes. First, following Birkhoff, we parameterize the impact
points on the ellipse by means of an angular coordinate ϕ ∈ T. We take, for instance,
q = γ(ϕ) = (a1/2 cosϕ, b1/2 sinϕ). Second, given an outward unitary velocity p ∈ S, we
set r = 〈γ′(ϕ), p〉, and so |r| < |γ′(ϕ)| = (a sin2 ϕ + b cos2 ϕ)1/2. Then the correspondence
(q, p) 7→ (ϕ, r) allows us to identify the phase space M with the annulus


A =
{


(ϕ, r) ∈ T× R : r2 < a sin2 ϕ+ b cos2 ϕ
}
. (10)


In these coordinates, the caustic parameter becomes λ(ϕ, r) = (a − b) sin2 ϕ + b − r2. The
partition of the annulus into invariant level curves of λ is shown in figure 1.


Each regular level set contains two Liouville curves and represents the family of tangent
lines to a fixed nonsingular caustic Qλ. If Qλ is an ellipse, each Liouville curve has a one-
to-one projection onto the ϕ coordinate and corresponds to rotations around Qλ in opposite
directions, so they are invariant under f . If Qλ is a hyperbola, then each Liouville curve
corresponds to the impacts on one of the two pieces of the ellipse between the branches of
Qλ, so they are exchanged under f and invariant under f 2.


The singular level set {(ϕ, r) ∈ A : λ(ϕ, r) = b} gives rise to the∞-shaped curve


λ−1(b) =
{


(ϕ, r) ∈ A : r = ±(a− b)1/2 sinϕ
}
,


which corresponds to the family of lines through the foci. This singular level set has rotation
number 1/2; see [25, page 428]. The cross points on this singular level represent the two-
periodic trajectory along the major axis of the ellipse, and the eigenvalues of the differential
of the billiard map at them are positive but different from one: e±h with cosh2 h/2 = a/b


and h > 0. On the contrary, the two-periodic trajectory along the minor axis correspond to
the centers of the regions inside the ∞-shaped curve, and the eigenvalues in that case are
conjugate complex of modulus one: e±2πθi with cos2 πθ = b/a and 0 < θ < 1/2. Therefore,
the major axis is a hyperbolic (unstable) two-periodic trajectory and the minor axis is an
elliptic (stable) one. These are the only two-periodic motions. The basic results about the
stability of two-periodic billiard trajectories can be found in [27, 37].
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Figure 1. Phase portrait of the billiard map in (ϕ, r) coordinates for a = 1 and b = 4/9.
The dashed black lines enclose the phase space (10). The black points are the hyperbolic two-
periodic points corresponding to the oscillation along the major axis of the ellipse. The black
curves are the separatrices of these hyperbolic points. The magenta points denote the elliptic
two-periodic points corresponding to the oscillation along the minor axis of the ellipse. The
magenta curves are the invariant curves whose rotation number coincides with the frequency
of these elliptic points. The invariant curves with rotation numbers 1/6, 1/4 and 1/3 are
depicted in blue, green and red, respectively. The red points label a three-periodic trajectory
whose caustic is an ellipse. The green points label a four-periodic trajectory whose caustic is
a hyperbola.


4.3. Analytical properties of the rotation number


Let ρ(λ) be the rotation number of the billiard trajectories inside the ellipse Q sharing the
nonsingular caustic Qλ. From definition 2 we get that the function ρ : E ∪ H → R is given
by the quotients of elliptic integrals


ρ(λ) = ρ(λ; b, a) =


∫ min(b,λ)


0
ds√


(λ−s)(b−s)(a−s)


2
∫ a


max(b,λ)
ds√


(λ−s)(b−s)(a−s)


=


∫ µ
χ


dt√
t(t−1)(t−χ)


2
∫ 1


0
dt√


t(t−1)(t−χ)


, (11)


where the parameters 1 < χ < µ are given by χ = (a −m)/(a −m) and µ = a/(a −m),
with m = min(b, λ) and m = max(b, λ). The second equality follows from the change of
variables t = (a− s)/(a−m). The second quotient already appears in [12]. Other equivalent
quotients of elliptic integrals were given in [30, 41]. We have drawn the rotation function ρ(λ)


in figure 2, compare with [41, figure 2].


Proposition 8. The function ρ : E ∪H → R given in (11) has the following properties.


(i) It is analytic in Λ = E ∪H and increasing in E.
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Figure 2. The rotation function ρ(λ) of the ellipse for a = 1 and b = 4/9. Colours are taken
from figure 1. The parameters λ0


± fast approach b as ρ0 tends to 1/2.


(ii) It can be continuously extended to the closed interval Λ̄ = Λ ∪ ∂Λ = [0, a] with


ρ(0) = 0, ρ(b) = 1/2, ρ(a) = ρ̃,


where the limit value 0 < ρ̃ < 1/2 is defined by sin2 πρ̃ = b/a.


(iii) Let κG and κS be the positive constants given by


κG =


(√
ab


∫ a


b


ds√
s(s− b)(a− s)


)−1


, cosh2 κS = a/b.


The asymptotic behaviour of ρ(λ) at the singular parameters λ ∈ ∂Λ = {0, b, a} is:


(a) ρ(λ) = κGλ1/2 + O(λ3/2), as λ→ 0+;
(b) ρ(λ) = 1/2 + κS/ log |b− λ|+ O


(
1/ log2 |b− λ|), as λ→ b; and


(c) ρ(λ) = ρ̃+ O(a− λ), as λ→ a−.


(iv) Given any ρ0 ∈ (ρ̃, 1/2), let λ0
− be the unique parameter in E such that ρ(λ0


−) = ρ0, and
let λ0


+ be the smallest parameter in H such that ρ(λ0
+) = ρ0. Both parameters become


exponentially close to the singular caustic parameter b when ρ0 tends to 1/2. In fact,


λ0
± = b± 16(a− b)e−κS/(1/2−ρ0) + O


(
e−2κS/(1/2−ρ0)


)
, ρ0 → (1/2)−.


Remark 7. We have numerically observed that the rotation function ρ is always decreasing in
H , so the parameter λ0


+ is also unique, but we have not a proof.


Proof. The analyticity follows from remark 2. The monotonicity follows from a geometric
argument contained in the next subsection.
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Let us write the rotation number as the quotient ρ(λ) = ∆(λ)/2K(λ), where


∆(λ) =


∫ min(b,λ)


0


ds√
T (s)


, K(λ) =


∫ a


max(b,λ)


ds√
T (s)


,


and T (s) = (λ− s)(b− s)(a− s).
The study of the limit λ → 0+ is easy. From lemma 17, we get the estimate ∆(λ) =


2(ab)−1/2λ1/2 + O(λ3/2), as λ→ 0+, whereas from lemma 15 we get that


K(λ) =


∫ a


b


ds√
s(s− b)(a− s) + O(λ), λ→ 0+.


By combining both estimates we get that ρ(λ) = κGλ1/2 + O(λ3/2), so limλ→0+ ρ(λ) = 0.
Next, we consider the limit λ → b−. After some computations based on lemma 18, we


get the estimates


K(b− ε) = − c−1/2 log ε+ η + O(ε log ε), ε→ 0+,


∆(b− ε) = − c−1/2 log ε+ µ+ O(ε log ε), ε→ 0+,


where c = a− b, η = η̂ + η̃, µ = µ̂+ µ̃, with η̂ = c−1/2 log 4c, µ̂ = c−1/2 log 4b, and


η̃ =


∫ a


b


(
1√
a− s −


1√
a− b


)
ds


s− b =
2√
c


∫ √c
0


dx


x+
√
c


=
log 4√
c
,


µ̃ =


∫ b


0


(
1√
a− s −


1√
a− b


)
ds


b− s = − 2√
c


∫ √a
√
c


dx


x+
√
c


=
1√
c


log
4c


(
√
a+
√
c)2


.


We have used the change x2 = a − s in both integrals. Let η∗ = c1/2η = log 16c and
µ∗ = c1/2µ = log 16bc(a1/2 + c1/2)−2. Then we have the estimate


2ρ(b− ε) =
∆(b− ε)
K(b− ε) =


1− c1/2µ log−1 ε+ O(ε)


1− c1/2η log−1 ε+ O(ε)
=


1− µ∗ log−1 ε


1− η∗ log−1 ε
+ O(ε), (12)


as ε → 0+. Thus, κS = (η∗ − µ∗)/2 = log
(
(a/b)1/2 + (c/b)1/2


)
= log


(
d+ (d2 − 1)1/2


)
=


acosh d, where d = (a/b)1/2. This implies that cosh2 κS = a/b. Besides, estimate (12) is the
key to prove that the caustic parameter λ0


− is exponentially close to b. Once fixed ρ0 . 1/2,
let λ0


− ∈ E be the unique caustic parameter such that ρ(λ0
−) = ρ0, 0 < ε = b− λ0


− � 1, and
δ = log−1 ε. By finding δ−1 = log ε in estimate (12), we get


log ε = 1/δ = η∗ +
µ∗ − η∗
1− 2ρ0


+ O(ε).


Using that κS = (η∗ − µ∗)/2 and η∗ = log 16c, we check that λ0
− = b− ε, with


ε = e1/δ = eη∗−2κS/(1−2ρ0)+O(ε) = 16ce−κ
S/(1/2−ρ0) + O


(
e−2κS/(1/2−ρ0)


)
,


as ρ0 → (1/2)−. The limit λ→ b+ is completely analogous. We omit the computations.
With respect to the limit λ → a−, we note that T (s) = (b − s)(a − s)2 + O(a − λ)


uniformly in the interval [0, b]. Hence,


∆(λ) =


∫ b


0


ds


(a− s)√b− s + O(a− λ) =
2√
a− b atan


√
b


a− b + O(a− λ), λ→ a−.
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Besides, from lemma 16 we get the estimate K(λ) = π(a − b)−1/2 + O(a − λ), as λ → a−.
Therefore, ρ(λ) = ρ̃+ O(a− λ), as λ→ a−, where the limit value ρ̃ ∈ (0, 1/2) is defined by
tan2 πρ̃ = b/(a− b). That is, sin2 πρ̃ = b/a.


Remark 8. The limit rotation number ρ̃ is related to the conjugate complex eigenvalues e±2πθi


of the elliptic two-periodic orbit. Concretely, θ + ρ̃ = 1/2. Besides, ρ̃ = ρ̃(b/a) is an
increasing function that tends to zero when the ellipse flattens and tends to one half when the
ellipse becomes circular. That is, limb/a→0+ ρ̃ = 0, and limb/a→1− ρ̃ = 1/2.


Definition 4. The continuous extension ρ : [0, a] → R is called the (extended) rotation
function of the ellipse Q.


4.4. Geometric properties of the rotation number


Let us assume that the billiard trajectories sharing some nonsingular caustic Qλ are m0-
periodic, so they describe polygons with m0 sides inscribed in the ellipse Q. Then, according
to theorem 5, equation (9), and corollary 6, it turns out that ρ(λ) = m1/2m0 for some integers
2 ≤ m1 < m0 such thatm1 is always even whereasm0 can be odd only whenQλ is an ellipse.
Besides, from the geometric interpretation of the frequency map presented in section 3, we
know that: 1) If Qλ is an ellipse, the polygons are enclosed between Q and Qλ, and make
m1/2 turns around the origin; and 2) If Qλ is a hyperbola, the polygons are contained in
the region delimited by Q and the branches of Qλ, and cross m1 times the minor axis of the
ellipse.


These interpretations can be extended to nonperiodic trajectories. Concretely,


ρ(λ) =


 lim
k→+∞


nk/k if λ ∈ E,


1
2


lim
k→+∞


lk/k if λ ∈ H ,


where nk (respectively, lk) is the number of turns around the origin (respectively, crossings of
the minor axis) of the first k segments of a given billiard trajectory with caustic Qλ.


Finally, we study the monotonocity of the extended rotation function ρ : [0, a]→ R. We
would like to check that ρ is increasing in E = (0, b) and decreasing in H = (b, a).


We proceed by using a reductio ad absurdum argument. Let us assume that ρ is not
increasing in E. Then there exist a couple of caustic parameters in E with the same rotation
number. We know that ρ(λ) is analytic in E and ρ(0) 6= ρ(b), so it can not be constant on
any subinterval of E. Hence, we can assume without loss of generality that there exist two
different caustic parameters λ1, λ2 ∈ E with the same rational rotation number. That is, there
exist two different confocal ellipses Qλ1 and Qλ2 whose billiard trayectories have the same
period and make the same number of turns around the origin per period. This is imposible
because the billiard trajectories with the small ellipse as caustic rotate faster than the ones with
the big ellipse. We have reduced the original question to a question about periodic trajectories
to keep all arguments finite, but it was not necessary. For instance, the monotonocity of the
rotation number in E could also be obtained from less geometric arguments, by applying
some standard results on circle homeomorphisms and twist maps —see, for instance, [25,
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Figure 3. Examples of symmetric nonsingular billiard trajectories with minimal periods for
a = 1 and b = 4/9. Left: Period three and the caustic is an ellipse. Right: Period four and the
caustic is a hyperbola. The continuous lines are reserved for the trajectories that correspond to
the periodic orbits depicted in figure 1.


Proposition 11.1.8]. Since the underlying idea is the same, we have preferred our geometric
finite argument.


Unfortunately, neither the geometric argument nor the dynamical approach based on
twist maps have a clear correspondence when the caustics are hyperbolas. The main problem
is that when λ ∈ H the invariant curves in the phase space (10) are not projected one-to-one
onto the configuration space T ∼= Q. On the other hand, the obvious computational approach
—to check that the derivative of the quotient of elliptic integrals (11) is negative for λ ∈ H—
becomes too cumbersome. Thus, although we have no doubt that the rotation number is
decreasing in H , we have failed to prove it or to find a proof in the literature.


4.5. Bifurcations in parameter space


We want to determine the ellipses that have billiard trajectories with a prescribed rotation
number and with a prescribed type of caustics (ellipses or hyperbolae). We recall that the
rotation function ρ(λ) maps E onto (0, 1/2), and H onto (ρ̃, 1/2). Therefore, once prescribed
any rotation number ρ0 ∈ (0, 1/2), we can always find an ellipse as caustic with that number,
whereas a such hyperbola only exists when ρ0 > ρ̃; that is, when b < a sin2 πρ0. This shows
that flat ellipses have more periodic trajectories than rounded ones. There exists similar results
for triaxial ellipsids of R3; see section 5.4.


4.6. Examples of periodic trajectories with minimal periods


If n = 1, the function κ : {0, 1}n → {n+ 2, . . . , 2n+ 2} defined in theorem 7 reduces to


κ(0) = 3, κ(1) = 4.


We also recall that the two connected components of Λ are Λ0 = E and Λ1 = H . Therefore,
the lower bounds established in theorem 7 imply that the periodic trajectories with an ellipse
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as caustic have period at least three, whereas the ones with a hyperbola as caustic have period
at least four. In fact, those lower bounds were deduced assuming that conjecture 4 holds, but
in the case n = 1 they can be rigorously established. It suffices to realize that the billiard
map associated to an ellipse has no fixed points, its only two-periodic points correspond to the
oscillations along the major or minor axis, and only the trajectories with an ellipse as caustic
can have odd period.


These lower bounds are optimal; see figure 3. To be more precise, we set


λ∗E =
3ab


a+ b+ 2
√
a2 − ba+ b2


∈ E, λ∗H =
ab


a− b ∈ H,


provided b < a/2. Then the trajectories with caustic Qλ∗E
are three-periodic, whereas the


ones with caustic Qλ∗H
are four-periodic. The proof is an elementary exercise in Euclidean


geometry. We leave it to the reader.
We deduce from the geometric interpretation of the rotation number given before that


ρ∗E = ρ(λ∗E) = 1/3 and ρ∗H = ρ(λ∗H) = 1/4, which explains the restriction b < a/2; see the
previous subsection. This solves the questions raised at the end of section 3.


Finally, we prove the following lemma to close the argument given in remark 1 about the
problems in the original statements about generalized Cayley-like conditions.


Lemma 9. Let h(s) =
√


(a− s)(b− s)(λ− s) = h0 + h1s + h2s
2 + · · · for some


0 < b < λ < a, b < a/2. The Cayley condition h3 = 0 holds if and only if λ = λ∗H.


Proof. Let σ = a+ b, p = ab, σ1 = λ+ σ, σ2 = σλ+ p, and σ3 = pλ > 0. Then


(h(s))2 = (a− s)(b− s)(λ− s) = −s3 + σ1s
2 − σ2s+ σ3.


If we evaluate at s = 0 the first derivatives of this equality, we get that


h(0) =
√
σ3, h′(0) = − σ2


2
√
σ3


, h′′(0) =
4σ1σ3 − σ2


2


4σ3
√
σ3


,


and 2h(0)h′′′(0) + 6h′(0)h′′(0) = −6. Therefore,


h3 = 0⇔ h′′′(0) = 0⇔ h′(0)h′′(0) = −1⇔ 8σ2
3 = σ2(4σ1σ3 − σ2


2)


⇔ (4p− σ2)σλ3 − (4p− σ2)pλ2 + σp2λ− p3 = 0


⇔ (σλ− p) ((σ2 − 4p)λ2 − p2
)


= 0


⇔ λ = p/σ,±λ∗H,
because σ2 − 4p = (a− b)2. These roots verify that −λ∗H < 0 < p/σ < b < λ∗H < a.


5. Billiard inside a triaxial ellipsoid of R3


5.1. Confocal caustics


The caustics of a billiard inside a triaxial ellipsoid are described in several places. The
representation of the caustic space shown in figure 5 can also be found in [29, 42, 18].
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Figure 4. The triangular parameter space P .


We follow the notation for ellipses, and we write the triaxial ellipsoid as


Q =


{
(x, y, z) ∈ R3 :


x2


a
+
y2


b
+
z2


c
= 1


}
, a > b > c > 0.


We can assume again, without loss of generality, that a = 1. Then the parameter space of
triaxial ellipsoids in R3 can be represented as the triangle


P =
{


(b, c) ∈ R2 : 0 < c < b < 1
}
, (13)


whose edges represent ellipsoids with a symmetry of revolution (oblate and prolate ones) or
flat ellipsoids, as illustrated in figure 4.


From theorem 1, we know that any nonsingular billiard trajectory inside the ellipsoid Q
is tangent to two distinct nonsingular caustics of the confocal family


Qλ =


{
(x, y, z) ∈ R3 :


x2


a− λ +
y2


b− λ +
z2


c− λ = 1


}
.


The caustic Qλ is an ellipsoid for λ ∈ E, a one-sheet hyperboloid when λ ∈ H1, and a
two-sheet hyperboloid if λ ∈ H2, where


E = (0, c), H1 = (c, b), H2 = (b, a).


In order to have a clearer picture of how these caustics change, let us explain the situation
when λ approaches the singular values c, b, or a. First, when λ→ c− (respectively, λ→ c+),
the caustic Qλ flattens into the region of the coordinate plane πz = {z = 0} enclosed by
(respectively, outside) the focal ellipse


Qz
c =


{
(x, y, 0) ∈ R3 :


x2


a− c +
y2


b− c = 1


}
.
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Figure 5. The nonsingular caustic space Λ = (E×H1)∪ (E×H2)∪ (H1⊗H1)∪ (H1×H2)
with its border ∂Λ = G ∪R ∪ S ∪ Λ0 (left) and the frequency space Ω (right).


Second, when λ→ b− (resp., λ→ b+), the causticQλ flattens into the region of the coordinate
plane πy = {y = 0} between (resp., outside) the branches of the focal hyperbola


Qy
b =


{
(x, 0, z) ∈ R3 :


x2


a− b −
z2


b− c = 1


}
.


Third, the caustic flattens into the whole coordinate plane πx = {x = 0} when λ→ a−.
The caustic parameter λ = (λ1, λ2) belongs to the nonsingular caustic space


Λ = (E ×H1) ∪ (E ×H2) ∪ (H1 ⊗H1) ∪ (H1 ×H2),


where H1 ⊗ H1 = {λ ∈ H1 × H1 : λ1 < λ2}. Comparing these notations with the ones
used in section 2, we get that a1 = c, a2 = b, a3 = a, Λ(0,0) = E × H1, Λ(0,1) = E × H2,
Λ(1,0) = H1 ⊗ H1, and Λ(1,1) = H1 × H2. These new notations are easier to interpret. For
instance, λ ∈ E × H1 if and only if the first caustic is an ellipsoid and the second one is a
one-sheet hyperboloid.


5.2. Analytical properties of the frequency map


The first analytical challenge is to determine the range of the frequency map ω : Λ → R2,
which can be solved by studying the limits limλ→λ∗ ω(λ) for λ∗ ∈ ∂Λ. Nevertheless, these
limits depend strongly on the “piece” of ∂Λ under consideration. Hence, we need some
notations for such “pieces”.


The set Λ is the union of three open rectangles and one open isosceles rectangular
triangle. In total Λ has eleven edges and eight vertexes. We consider the partitions


∂Λ = Λ0 ∪ Λ1, Λ1 = G ∪R ∪ S,
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where Λ1 is the set of edges, Λ0 is the set of vertexes, and S, G and R are the sets formed by
the four inner edges, the two left edges, and the remaining five edges, respectively. See the left
picture of figure 5. We shall see that the frequency map is quite singular (in fact, exponentially
sharp) at the four edges in S, quite regular at the five edges in R, and it is somehow related to
the dynamics of the geodesic flow on the ellipsoid Q at the two edges in G. That motivates
the notation.


On the other hand, if the components of the frequency map are ordered as stated in
conjecture 3, the range of the frequency map must be a subset of the frequency space


Ω =
{
ω = (ω1, ω2) ∈ R2 : 0 < ω2 < ω1 < 1/2


}
,


which is represented in the right picture of figure 5. Our main goal in this subsection is to
elucidate how the the caustic space is mapped onto the frequency space. Let us summarize
the final result. The frequency map folds in four the caustic space around the inner singular
point (c, b) ∈ Λ, which is mapped onto the frequency (1/2, 1/2). The vertical and horizontal
“singular edges” are mapped onto the vertical and diagonal edge of the frequency space,
respectively. The “geodesic edges” are mapped onto the origin.


The rest of the subsection is devoted to prove and to extend these results. First, we shall
check that the frequency map of the triaxial ellipsoid Q can be continuously extended to the
border of the caustic space in such a way that its values on the edges and vertexes can be
expressed in terms of exactly six functions of one variable that “glue” well. Three of them
are the extended rotation functions associated to the three ellipses obtained by sectioning Q
with the coordinate planes πx, πy, and πz. That is, they are the functions ρx : [0, b] → R,
ρy : [0, a]→ R, and ρz : [0, a]→ R defined as


ρx(λ) = ρ(λ; c, b), ρy(λ) = ρ(λ; c, a), ρz(λ) = ρ(λ; b, a),


using the notation in (11). The other three functions are defined in terms of the former ones
as follows. Let m = min(λ, c) and m = max(λ, c). Let Tx(s) = (λ − s)(c − s)(b − s),
Ty(s) = (c − s)(λ − s)(a − s), and Tz(s) = (m − s)(b − s)(a − s). Then we consider the
functions νx : [0, b]→ R, νy : [b, a]→ R, and νz : [0, b]→ R defined by the identities∫ m


0


ds


(a− s)√Tx(s)
− 2ρx(λ)


∫ b


m


ds


(a− s)√Tx(s)
+


2πνx(λ)√−Tx(a)
= 0,∫ c


0


ds


(b− s)√Ty(s)
+ 2ρy(λ)


∫ a


λ


ds


(s− b)√Ty(s)
− 2πνy(λ)√−Ty(b)


= 0,∫ m


0


ds


(m− s)√Tz(s)
+ 2ρz(m)


∫ a


b


ds


(s−m)
√
Tz(s)


− 2πνz(λ)√−Tz(m)
= 0.


Lemma 10. The functions νx, νy, and νz have the following properties.


(i) They are analytic in E ∪H1, H2, and E ∪H1, respectively.


(ii) They can be continuously extended to [0, b], [b, a], and [0, b], respectively.


(iii) Their asymptotic behaviour at the endpoints λ ∈ ∂E ∪ ∂H1 ∪ ∂H2 = {0, c, b, a} are:


(a) νx(λ) = O(λ1/2), as λ→ 0+;
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(b) νz(λ) = O(λ1/2), as λ→ 0+;
(c) νx(λ) = ρz(a) + O (1/ log |c− λ|), as λ→ c;
(d) νz(λ) = 1/2 + O


(|λ− c|1/2), as λ→ c;
(e) νx(λ) = ρy(a) + O(b− λ), as λ→ b−;
(f) νz(λ) = ρz(c) + O


(
(b− λ)1/2


)
, as λ→ b−;


(g) νy(λ) = ρz(c) + O
(
(λ− b)1/2


)
, as λ→ b+; and


(h) νy(λ) = ρx(b) + O(a− λ), as λ→ a−.


Proof. We know that the function ρx(λ) = ρ(λ; c, b) is analytic in λ, c, and b, as long as
0 < c < b and λ ∈ E ∪ H1. Besides, the integrand (a − s)−1(Tx(s))−1/2 is analytic with
respect to the variable of integration s in the intervals of integration (0,m) and (m, b), and
with respect to the parameters λ, c, b, and a, as long as 0 < c < b < a and λ ∈ E∪H1. Hence,
the function νx(λ) = νx(λ; c, b, a) is analytic in its four variables, as long as 0 < c < b < a


and λ ∈ E ∪H1. The analyticity of νy and νz follows from similar arguments.
The study of the asymptotic behaviour of the functions νx, νy, and νz has been deferred


to Appendix A.8, Appendix A.9, and Appendix A.10, respectively.


Remark 9. We have numerically observed that νx and νz are increasing in E and decreasing
in H1, whereas νy is increasing in H2, but we have not been able to prove it.


Theorem 11. The frequency map ω : Λ→ R2 has the following properties.


(i) It is analytic in Λ.


(ii) It can be continuously extended to the border ∂Λ, and the extension has the form


ω(0, λ2) = (0, 0) for c ≤ λ2 ≤ b,


ω(λ1, b) = (ρy(λ1), ρy(λ1)) for 0 ≤ λ1 ≤ b,


ω(c, λ2) = (1/2, ρz(λ2)) for c ≤ λ2 ≤ a,


ω(λ1, a) = (ρx(λ1), νx(λ1)) for 0 ≤ λ1 ≤ b,


ω(b, λ2) = (νy(λ2), ρy(λ2)) for b ≤ λ2 ≤ a,


ω(λ1, c) = (νz(λ1), ρz(λ1)) for 0 ≤ λ1 ≤ c,


ω(λ1, λ1) = (νz(λ1), ρz(c)) for c ≤ λ1 ≤ b.


(iii) Its asymptotic behaviour at the eleven edges in Λ1 = G ∪ S ∪R is:


(a) ω(λ1, λ2) = κG(λ2)λ
1/2
1 + O(λ


3/2
1 ), as λ1 → 0+;


(b) ω(λ1, λ2)− ω(c, λ2) � κS(c, λ2)/ log |c− λ1|, as λ1 → c;
(c) ω(λ1, λ2)− ω(λ1, b) � κS(λ1, b)/ log |b− λ2|, as λ2 → b; and
(d) ω(λ)− ω(λR) = O(λ− λR), as λ→ λR ∈ R;


for some analytic functions κG : H1 ∪H2 → R2
+ and κS : S → R2.


(iv) Its asymptotic behaviour at the eigth vertexes in Λ0 is:


(a) ω(λ1, λ2) = O(λ
1/2
1 ), as (λ1, λ2)→ (0+, c+);


(b) ω(λ1, λ2) = O(λ
1/2
1 ), as (λ1, λ2)→ (0+, b);


(c) ω(λ1, λ2) = O(λ
1/2
1 ), as (λ1, λ2)→ (0+, a−);


(d) ω(λ1, λ2) = (1/2, ρz(c)) + O(1/ log |c− λ1|, λ2 − c), as (λ1, λ2)→ (c, c+);
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Figure 6. The four posible configurations of the ordered sequence 0 < c1 < · · · < c5. Thick
lines denote intervals of integration. Each one of the displayed configurations illustrates some
collapse: geodesic flow limit (E × H1), simple regular collapse (H1 ⊗ H1), double singular
collapse (E ×H2), and double regular collapse (H1 ×H2).


(e) ω(λ1, λ2) = (1/2, 1/2) + O(1/ log |c− λ1|, 1/ log |b− λ2|), as (λ1, λ2)→ (c, b);
(f) ω(λ1, λ2) = (1/2, ρz(a)) + O(1/ log |c− λ1|, a− λ2), as (λ1, λ2)→ (c, a−);
(g) ω(λ1, λ2) = (ρy(b), ρy(b)) + O(b− λ1, 1/ log |b− λ2|), as (λ1, λ2)→ (b−, b); and
(h) ω(λ1, λ2) = (ρx(b), ρy(a)) + O(b− λ1, a− λ2), as (λ1, λ2)→ (b−, a−).


Proof. Once fixed the parameters a > b > c > 0 of the ellipsoid and the couple of caustic
parameters λ1 and λ2, we set


{c1, . . . , c5} = {a, b, c} ∪ {λ1, λ2}, c0 := 0 < c1 < · · · < c5.


Four configurations are possible; see figure 6. We said in remark 2 that the frequency is
analytic in c1, . . . , c5 provided that 0 < c1 < · · · < c5. In particular, this implies that the
frequency is analytic in the caustic parameter provided it belongs to Λ.


The frequency map is expressed in terms of six hyperelliptic integrals over the intervals
(0, c1), (c2, c3), and (c4, c5) —represented in thick lines in figure 6. See definition 2. We
face its asymptotic behaviour at the border ∂Λ = Λ0 ∪ Λ1, which requires the study of the
asymptotic behaviour of the six hyperelliptic integrals when some interval defined by the
ordered sequence 0 < c1 < · · · < c5 collapses to a point. Therefore, there are exactly five
simple collapses. The collapse of the first interval is called geodesic flow limit: c1 → 0+, the
collapse of the second or fourth intervals is called singular: c2−c1 → 0+ or c4−c3 → 0+, and
the collapse of the third or fifth intervals is called regular: c3−c2 → 0+ or c5−c4 → 0+. Thus,
regular collapses imply that the interval of integration of a couple of hyperelliptic integrals
collapses to a point; whereas singular collapses imply the connection of two consecutive
intervals of integration. See figure 6. It is immediate to see that this terminology agrees with
the partition Λ1 = G ∪ R ∪ S, whereas double collapses —that is, two simultaneous simple
collapses— correspond to the eight vertexes in Λ0.


The asymptotic behaviour of the frequency map at the eleven edges in Λ1 = G∪R∪S is
deduced from several results disseminated through Appendix A. In short, some technical
lemmas are listed in Appendix A.1, some notations are introduced in Appendix A.2, the
geodesic flow limit is studied in Appendix A.3, simple regular collapses are analyzed
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in Appendix A.4, and simple singular collapses are computed in Appendix A.5. For instance,
one can trace the definition of the functions νx, νy, and νz to equation (A.3). The reader
is encouraged to consult the appendix. Here, we just note that the appendix deals with the
general high-dimensional setup, since the computations do not become substantially more
involved when the dimension is increased.


The computations regarding the eight vertexes in Λ0 have also been relegated
to Appendix A, although it is appropiate to make a puntualization. For the sake of brevity,
we have written out only the computations for two vertexes. Vertex λ = (c, b) in Appendix
A.7 —which corresponds to the unique double singular collapse—, and vertex λ = (b, a)


in Appendix A.6 —which correspond to the unique double regular collapse. The study of
the remaining six vertexes does not require additional ideas. For instance, the three vertexes
related to the geodesic flow limit can be simultaneously dealt with simply by using lemma 17,
which ensures that the hyperelliptic integrals over (c0, c1) = (0, λ1) are O(λ


1/2
1 ) as λ1 → 0+.


Finally, we realize that the extended frequency map ω : Λ̄ → R2 is continuous because
the extensions “glue” well at the eight vertexes; see lemma 10. For instance, let us consider
the vertex (b, b). We obtain from the three statements of the theorem regarding this vertex that


ω(b, b) = (ρy(b), ρy(b)) = (νy(b), ρy(b)) = (νz(b), ρz(c)),


which is consistent: νy(b) = νz(b) = ρz(c) = ρ(c; b, a) = ρ(b; c, a) = ρy(b).


Definition 5. The continuous extension ω : Λ̄→ Ω̄ is called the (extended) frequency map of
the ellipsoid Q.


We are going to explain the origin of the terminology “geodesic flow limit”. The phase
space of the geodesic flow on an triaxial ellipsoid Q ⊂ R3 was completely described by
Knörrer [28]. Any nonsingular geodesic on Q oscillates between two symmetric curvature
lines obtained by intersecting Q with some hyperboloid Qλ, λ ∈ H1 ∪ H2. The rotation
number of those oscillations is the quotient


ρG(λ) =


∫ min(b,λ)


c
sds√
TG(s)∫ a


max(b,λ)
sds√
TG(s)


, TG(s) = −s(λ− s)(c− s)(b− s)(a− s),


see [18, §4.1]. This rotation number ρG(λ) can be continuously extended to the closed interval
[c, a] with ρG(b) = 1. On the other hand, the geodesic flow on the ellipsoid Q with caustic
linesQ∩Qλ2 can be obtained as a limit of the billiard dynamics insideQ when its first caustic
Qλ1 approaches Q; that is, when λ1 → 0+, so that (λ1, λ2) → G. Therefore, it is natural to
look for a relation between the function κG = (κG1 , κ


G
2 ) : H1 ∪ H2 → R2


+ and the rotation
number ρG : H1 ∪H2 → R+.


Lemma 12. ρG = κG2 /κ
G
1 . Thus, ω2(λ1, λ2)/ω1(λ1, λ2) = ρG(λ2) + O(λ1), as λ1 → 0+.


Proof. In Appendix A.3 we will check that κG is the unique solution of the linear system


2


(
KG


01 −KG
02


KG
11 −KG


12


)(
κG1
κG2


)
=


(
KG


00


0


)
,
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Figure 7. The extended frequency map ω : Λ̄ → Ω̄ for a = 1, b = 0.58, and c = 0.46. Up:
On the edges of the caustic space. Down: Close to the edges of the caustic space.


where KG
ij =


∫ c2j+1


c2j
(TG(s))−1/2sids, KG


00 = 2(abcλ)−1/2, and {c2, c3, c4, c5} = {a, b, c, λ}
with c2 < c3 < c4 < c5. Therefore, since λ ∈ H1∪H2, it turns out that c2 = c, c3 = min(b, λ),
c4 = max(b, λ), and c5 = a. Finally, κG2 /κ


G
1 = KG


11/K
G
12 = ρG.


Next, we illustrate the results concerning the range of the frequency map and its
asymptotic behaviour at the edges of the caustic space using several quantitave pictures. All
the depicted curves have been numerically computed from exact formulae.


To begin with, let us consider the pictures shown in figure 7. In the upper picture we have
represented the caustic space Λ at the left side, and the frequency space Ω at the right side.
Each coloured segment in the caustic space is mapped onto the curve of the same colour in the
frequency space. The black segment —which represents the geodesic flow limit— is mapped
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onto the origin. The extended frequency map is one-to-one on each one of the red, yellow,
green, brown, and cyan edges —that is, on the five regular edges. On the contrary, the magenta
and blue segments are folded at their cross point (c, b). For instance, the segment joining
(0, b) and (c, b) is mapped onto the one joining (0, 0) and (1/2, 1/2), whereas the segment
joining (c, b) and (b, b) is mapped onto the one joining (1/2, 1/2) and (ρz(c), ρz(c)). The point
(ρz(c), ρz(c)) is the intersection of the green, yellow and magenta curves in the frequency
space. The triangle H1 ⊗H1 ⊂ Λ is mapped onto the triangle ω(H1 ⊗H1) ⊂ Ω whose edges
are yellow, blue and magenta. The rectangles E×H1 and E×H2 are mapped onto regions of
the frequency space with one curved and two straight borders. Finally, ω(H1 ×H2) has two
curved and two straight borders.


In the lower picture, we have keept the upper edges and borders (drawn in light colours
with thick lines), but we have added new segments and curves (drawn in heavy colours with
thin lines). In the caustic space, these new segments are close to the original edges —the
distance between them and the edges is equal to c/100 = 4.6 · 10−3. Nevertheless, we see
that the images of the black, magenta, and blue ones are far from their corresponding borders
in the frequency space. This has to do with the fact that the frequency map has an “inverse
logarithm” singularity at the inner (singular) edges of the caustic space, and a “squared root”
singularity at the left (geodesic) edges. This means that to reach a frequency close to the blue
and magenta segments (respectively, close to the origin) one must be exponentially close to
the inner edges (respectively, quadratically close to the left edges) in the caustic space.


Remark 10. This singular behaviour of the frequency map has an amazing consequence. If
we look for billiard trajectories with some random frequency, it is highly probable to get
some almost singular caustic. We describe a quantitative sample based on the lower picture
of figure 7. If T is the triangle delimited by the yellow, blue and magenta thin segments
that are close to the edges of H1 ⊗ H1, the area of ω(H1 ⊗ H1) is approximately 16 times
the area of ω(T ). Hence, if we look for a billiard trajectory whose caustics are one-sheet
hyperboloids with a random frequency in ω(H1 ⊗ H1), the caustic parameter λ = (λ1, λ2)


verifies min(|λ1 − c|, |λ2 − b|) < 4.6 · 10−3 with probability 94%.


From these pictures and a topological argument whose proof has been deferred
to Appendix B, we deduce that the local and global conjectures 1 and 2 are equivalent.


Proposition 13. Conjecture 1 implies conjecture 2 and ω(H1 ⊗H1) ⊂ ω(E ×H1).


Proof. Given any open connected component U of the caustic space, let X = ∂U and
Y = ω(X). For instance, if U = H1 ⊗ H1, then X is the triangle with vertexes (c, c),
(c, b), (b, b), whereas Y is the triangle with vertexes (1/2, ρz(c)), (1/2, 1/2), (ρz(c), ρz(c)).


The borders X and Y are Jordan curves, so the frequency map ω : U → R2 verifies the
hypotheses of lemma 22. Therefore, ω : U → ω(U) is a global diffeomorphism, being ω(U)


the region enclosed inside Y .
Next, in order to prove the inclusion ω(H1 ⊗ H1) ⊂ ω(E × H1), it suffices to see that


the red curve in the right upper picture of figure 7 is below the yellow segment. And this is
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Key map
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Figure 8. Ranges of the frequency map for eight different ellipsoids.


equivalent to prove the inequality


ρz(λ1) ≤ ρz(c), ∀λ1 ∈ [0, c],


due to the formulae for the extended frequency map contained in theorem 11. But this
inequality is a direct consequence of the monotone behaviour of the rotation number
established in proposition 8.


The ranges of the frequency map for eight different ellipsoids are shown in figure 8.
In the upper left conner, we have displayed the parameter space P introduced in (13), and
sketched in figure 4. We study the eight ellipsoids that correspond to the eight points in P
labelled from 1) to 8). In particular, we have chosen at least one sample of each “kind” of
ellipsoid: 1) standard, 2) almost spheric, 3) standard, 4) almost prolate, 5) almost oblate, 6)
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close to a segment, 7) close to a flat solid ellipse, and 8) close to a flat circle. The image
sets ω(E × H1), ω(H1 ⊗ H1), ω(E × H2), and ω(H1 × H2) are depicted in yellow, green,
magenta, and blue, respectively. The transparency allows to visualize simultaneously all four
sets. Dark blue dots correspond to rational frequencies with small common denominators.
We can extract several important conclusions from these eight pictures. First, the shape of
the ellipsoid has strong consequences on the range of the frequency map, which becomes
extremely narrow for almost spheric ellipsoids. For instance, we see that the ellipsoids 1), 2),
4), and 5) have no periodic trajectory with frequency ω = (2/5, 1/5), which is the rational
point in the frequency space Ω with the smallest common denominator. Besides, we observe
that the inclusions ω(H1 ⊗ H1) ⊂ ω(E × H1) and ω(H1 × H2) ⊂ ω(E × H2) take place
in all the computed cases. The first inclusion has already been commented in proposition 13.
The second one was unexpected. To prove it, we should check that the cyan curve in the right
upper picture of figure 7 is below the brown and green curves, but this requires to establish
some monotonocity results about the function νx(λ), like the one mentioned in remark 9.


We end the subsection explaining the numerical experiments about conjecture 1. We
have computed the Jacobian


J : Λ→ R, J(λ) := det


(
∂ωj
∂λi


(λ)


)
i,j=1,2


of the frequency map for eight ellipsoids, in order to check that it never vanishes. The
numerical computation —and the visualization, too— has a technical difficulty, since ω is
exponentially sharp at the inner edges. To understand this fact, one can look at figure 2, where
it is shown that the rotation number is exponentially sharp at λ = b. Thus, the derivative of
the rotation number is exponentially big close to that point, which would make difficult its
visual representation. The problem is worse in the spatial case, because the frequency map
has the same kind of “inverse logarithm” singularity at the four inner edges instead of at a
single point.


We overcome the visualization problem by representing the normalized Jacobian


J∗ : Λ→ [0, 1], J∗(λ) = (1− exp(−|J(λ)|))1/4.


The exponential function is intended to cancel the exponentially sharp behaviour of the
Jacobian at the inner edges. The exponent 1/4 has been chosen by trial and error to obtain
more informative plots. The normalized Jacobian ranges over the interval [0, 1]. We note that
J∗ = 0 ⇔ J = 0 and J∗ = 1 ⇔ |J | = ∞. The results are displayed in figure 9. The
colour palette is a classical one: cold colours represent low values, hot colours represent high
values. The neigbourhood of the inner edges is always a “hot” region; that is, the Jacobian is
always (exponentially) big on that region. On the contrary, the Jacobian tends to zero close
to the hypotenuse of the H1 ⊗ H1 region. This can be seen from a symmetry reasoning.
Furthermore, the Jacobian never vanishes, not even in the cases 7) and 8), which correspond
to almost flat ellipsoids. In the left upper picture, we have again marked the ellipsoids as
points in the parameter space.







The frequency map for billiards inside ellipsoids 30


Figure 9. The normalized Jacobian J∗ : Λ → [0, 1] of the frequency map for eight different
ellipsoids.


5.3. Geometric properties of the frequency map


Let us assume that we have a periodic billiard trajectory inside the ellipsoid Q whose caustics
are an ellipsoid and a one-sheet hyperboloid. Let m0,m1,m2 be its winding numbers, so m0


is its period. We deduce from remark 3 that m1 and m2/2 are the number of times along
one period that the trajectory crosses the coordinate plane πz = {z = 0} and the number
of times along one period that it rotates around the coordinate axis az = {x = y = 0},
respectively. Therefore, the components of the frequency map have the following geometric
interpretation: ω1 = m1/2m0 is the number of oscillations around πz per period, whereas
ω2 = m2/2m0 is the number of rotations around az per period. Thus, it is quite natural to call
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Type m1 m2 ω1 ω2


E ×H1 Crossings of πz Half-turns around az z-oscillation z-rotation
E ×H2 Half-turns around ax Crossings of πx x-rotation x-oscillation
H1 ⊗H1 Touches of Qλj


Half-turns around az (H1-oscillation)/2 z-rotation
H1 ×H2 Crossings of πy Crossings of πx y-oscillation x-oscillation


Table 1. Geometric interpretation of the frequency map when Q ⊂ R3; see text.


ω1 the z-oscillation number and ω2 the z-rotation number of the trajectory.
As in the planar case, these interpretations are extended to nonperiodic trajectories. For


instance, if λ = (λ1, λ2) ∈ E ×H1, Qλ1 is an ellipsoid, Qλ2 is a one-sheet hyperboloid, and


ω(λ) = lim
k→+∞


(nk, lk)/k,


where nk (respectively, lk) is the number of oscillations around πz (respectively, number of
rotations around az) of the first k segments of any given trajectory with caustics Qλ1 and Qλ2 .


These arguments can be adapted to the other three open connected components of the
caustic parameter: E ×H2, H1 ⊗H1, and H1 ×H2. The results are listed in table 1. We skip
the details, but a subtle point already commented in remark 4.


If the trajectory is of “type” H1 ⊗ H1 —that is, if both caustics are one-sheet
hyperboloids—, then the winding number m1 is the number of (alternate) tangential touches
with the caustics, so ω1 = m1/2m0 is half the number of oscillations between the one-sheet
hyperboloids per period. We call 2ω1 the H1-oscillation number of the trajectory. In particular,
it can happen that m0ω 6∈ Z2. For instance, if the winding numbers are m0 = 4, m1 = 3, and
m2 = 2, the period is four, but ω = (3/8, 1/4).


5.4. Bifurcations in parameter space


We now extend some ideas obtained from figure 8, about the relation between the shape of
the ellipsoid and the range of the frequency map. Normalizing the semimajor axis: a = 1,
we can represent the ellipsoids by points in the parameter space P . Once fixed an open
connected component Λσ of the caustic space and a frequency ω0 = (ω0


1, ω
0
2) ∈ Ω, we want to


determine the ellipsoids possesing a caustic parameter λ0 ∈ Λσ such that ω(λ0) = ω0. Here,
Λ0 = E×H1, Λς̄ = E×H2, Λς = H1⊗H1, and Λ1 = H1×H2, where 0 = (0, 0), ς̄ = (0, 1),
ς = (1, 0), and 1 = (1, 1). The bifurcation curves


Pσ(ω0) =
{


(b, c) ∈ P : ω0 ∈ ∂ω(Λσ)
}


play a key role in this study. Some of them are presented in figure 10. On top of this figure
we consider the eight rational frequencies with the smallest denominators. On the bottom, we
depict the bifurcation curves associated to the rational frequencies marked with dark blue dots
in figure 8. Next, let us describe the main properties of these curves and their endpoints. We
note that although many of these properties can be analytically established, others have just
been inferred from numerical evidences.
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Figure 10. Some bifurcation curves Pσ(ω0) in the parameter space P .


Component Λ0 = E ×H1. The unique moving boundary of ω(Λ0) is the red curve shown
in figure 7 which is parameterized by ω(λ1, c) = (νz(λ1), ρz(λ1)), λ1 ∈ (0, c), as stated
in theorem 11. Once fixed any b ∈ (0, a) = (0, 1), we want to find λ1 and c such that
ω(λ1, c) = ω0. This looks like a root-finding problem in dimension two, but it can be
written as two sequential one-dimensional root-finding problems:


(i) Find λ1 ∈ (0, b) such that ρz(λ1) = ρ(λ1; b, a) = ω0
2; and


(ii) Find c = c0(b;ω0) ∈ (λ1, b) such that νz(λ1; c, b, a) = ω0
1 .


Then, P0(ω0) = {(b, c) ∈ P : c = c0(b;ω0)}. Some of these curves are depicted in the
left-hand side of figure 10 with continuous lines. Each of them determine two regions
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in the parameter space P ; the lower one precisely describes the ellipsoids for which
ω0 ∈ ω(E ×H1). The function c0(b) = c0(b;ω0) is increasing in b ∈ (0, a), c0(0) = 0,
and c0(a) = as0


2/s
0
1, where s0


j = sin2 πω0
j . (We recall that a = 1.)


Component Λς = H1 ⊗H1. This is the simplest case, because the moving boundary of
ω(Λς) is the yellow horizontal segment shown in figure 7, which is parametrized by
ω(λ1, λ1) = (νz(λ1), ρz(c)), λ1 ∈ (c, b). Thus, in order to analyze that boundary, we
just have to solve the one-dimensional equation ρz(c) = ω0


2 for any fixed b ∈ (0, a). It
has a unique solution c = cς(b;ω


0) ∈ (0, b), since ρz(c) = ρ(c; b, a) is increasing in the
interval (0, b), and ρz(0) = 0 < ω0


2 < 1/2 = ρz(b).
Then, Pς(ω0) = {(b, c) ∈ P : c = cς(b;ω


0)} does not depend on ω0
1 . This situation is


observed on top left in figure 10: the two dashed curves with ω0
2 = 1/8 coincide, as


well as the two ones with ω0
2 = 1/7. As in the previous case, the regions below these


bifurcation curves are the ones for which ω0 ∈ ω(H1 ⊗H1). We observe that all dashed
curves are below their corresponding continuous curves, which is in agreement with the
inclusion ω(H1 ⊗H1) ⊂ ω(E ×H1), see proposition 13. The function cς(b) = cς(b;ω


0)


is increasing in b ∈ (0, a), cς(0) = 0, and cς(a) = as0
2.


Component Λς̄ = E ×H2. The moving boundary of ω(Λς̄) is the cyan curve shown in
figure 7, parameterized by ω(λ1, a) = (ρx(λ1), νx(λ1)), λ1 ∈ (0, c). Thus, the bifurcation
curve Pς̄(ω0) can be computed following the ideas used in the first case. Some of these
curves are depicted in the right-hand side of figure 10 with continuous lines. Regions
at the left side of Pς̄(ω0) are the ones for which ω0 ∈ ω(E × H2). These bifurcation
curves connect the prolate ellipsoid (b∗, b∗) to the flat one (b0, 0), with b∗ = as0


2/s
0
1


and b0 = a sin2(πω0
2/2ω


0
1). To be more precise, we have numerically checked that


Pς̄(ω
0) = {(b, c) ∈ P : b∗ < b < b0, c = cς̄(b;ω


0)} for some function cς̄(b) = cς̄(b;ω
0)


decreasing in b ∈ (b∗, b0) such that cς̄(b∗) = b∗ and cς̄(b0) = 0. Hence, the flat ellipsoid
(b0, 0) is shared by all curves having the same ratio ω0


2/ω
0
1 . This has to do with the


bifurcations that take place inside an ellipse explained in subsection 4.5 through the
relation ρ0 = ω0


2/2ω
0
1 .


Component Λ1 = H1 ×H2. This is the hardest case, because ω(Λ1) has two moving
boundaries: the brown and green curves shown in figure 7. Some of the bifurcation
curves P1(ω0) are depicted on top right in figure 10 with dashed lines. Each curve is
composed by two arcs that glue at an interior point of P in a not differentiable way.
Regions below these bifurcation curves are the ones for which ω0 ∈ ω(H1 × H2). All
dashed curves are below their corresponding continuous curves, which is in agreement
with the inclusion ω(H1 ×H2) ⊂ ω(E ×H2) discussed after proposition 13.
In order to compute P1(ω0), we proceed by solving separately the equations ω(b, λ2) =


ω0 for λ2 ∈ (b, a), and ω(λ1, a) = ω0 for λ1 ∈ (c, b). Each equation corresponds
to a moving boundary and provides an arc of P1(ω0). The two arcs join at the point
(b∗, c∗) ∈ P where both equations hold simultaneously: b∗ = as0


2/s
0
1 and c∗ = as0


2,
because ω(b, a) = (ρx(b), ρy(a)), sin2 πρx(b) = c/b, and sin2 πρy(a) = c/a. More
precisely, P1(ω0) = {(b, c) ∈ P : 0 < b < b0, c = c1(b;ω0)} for some function c1(b) =
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c1(b;ω0) increasing in (0, b∗) and decreasing in (b∗, b0) such that c1(0) = 0, c1(b∗) = c∗,
and c1(b0) = 0. Thus, P1(ω0) begins at the degenerate ellipsoid (0, 0), passes through
the triaxial ellipsoid (b∗, c∗), and ends at the flat ellipsoid (b0, 0). The flat ellipsoid is
again shared by all bifurcation curves having the same ratio ω0


2/ω
0
1 , see figure 10.


These properties of the bifurcation curves Pσ(ω0) allow us to determine the shape of the
ellipsoids with prescribed frequency ω0 and prescribed caustic type σ. These shapes were
described in the introduction.


The asymptotic properties of the functions cσ(b) can be rigurously established by passing
to the limits the implicit equations that determine them. As a sample, the proof for the function
c0(b) can be found in Appendix A.11, the other three cases are similar. On the contrary, we do
not know how to establish analytically their monotone character. Such monotone characters
have always been hard challenges along this paper.


Remark 11. We have needed a multiple precision aritmethic to compute the birfucation curves
close to some of their endpoints, since the involved root-finding problems become quite
singular at them. The programs have been written using the PARI system [5].


5.5. Examples of periodic trajectories with minimal periods


In the case n = 2, the function κ : {0, 1}n → {n + 2, . . . , 2n + 2} defined in theorem 7 can
be computed quite easily. In fact,


4 = κ(ς) < κ(0) = 5 = κ(ς̄) < κ(1) = 6


where ς = (1, 0), 0 = (0, 0), ς̄ = (0, 1), and 1 = (1, 1). Therefore, the lower
bounds established in theorem 7 imply that the periodic trajectories with an ellipsoid and
a hyperboloid as caustics have period at least five, the ones with two different one-sheet
hyperboloids as caustics have period at least four, and the ones with two hyperboloids of
different type as caustics have period at least six. We have numerically computed some
symmetric periodic trajectories to check that these lower bounds are optimal; see figure 11.
We shall classify all the symmetric periodic billiard trajectories inside a triaxial ellipsoid and
explain how to compute them in a future paper [9].


Considering the values given in figure 11, and bearing in mind table 1, we have
(m1,m2) = (4, 2) for the E × H2 trajectory, so it performs two turns around the coordinate
axis ax and crosses twice the coordinate plane πx. As well, (m1,m2) = (4, 2) for the E ×H1


trajectory, meaning four crossings with πz and just one turn around az. Again, forH1×H2 we
have (m1,m2) = (4, 2), meaning four crossings with πy and two crossings with πx. Finally,
(m1,m2) = (3, 2) for H1 ⊗ H1, which corresponds to three tangential touches with each of
the caustics and a single turn around az. Each of those geometric interpretations has been
verified on the corresponding trajectory.
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(a, b, c) = (1, 0.4, 0.2), m0 = 5
(λ1, λ2) = (0.1995, 0.7630), (ω1, ω2) = (2/5, 1/5)


E ×H2


(a, b, c) = (1, 0.4, 0.2), m0 = 6
(λ1, λ2) = (0.2191, 0.9234), (ω1, ω2) = (1/3, 1/6)


H1 ×H2


(a, b, c) = (1, 0.49, 0.25), m0 = 5
(λ1, λ2) = (0.2316, 0.2603), (ω1, ω2) = (2/5, 1/5)


E ×H1


(a, b, c) = (1, 0.81, 0.36), m0 = 4
(λ1, λ2) = (0.3696, 0.6087), (ω1, ω2) = (3/8, 1/4)


H1 ⊗H1


Figure 11. Examples of symmetric nonsingular billiard trajectories with minimal periods m0.
Lines in red represent the particle’s trajectory. Lines in green correspond to Q ∩H1, and the
ones in yellow to Q ∩H2. In the cases E ×H∗, the caustic elipsoid is also depicted.


6. Billiard inside a nondegenerate ellipsoid of Rn+1


We describe briefly the high-dimensional version of some of the analytical results already
shown in the spatial case. We denote again the nondegenerate ellipsoid as in (1) and the
nonsingular caustic space as in (3).


By analogy with the spatial case, we consider three disjoint partitions:


∂Λ = ∪n−1
k=0Λk, Λn−1 = G ∪R ∪ S, S = ∪nj=1Sj.


With regard to the first one, Λk is the k-dimensional border of Λ. That is, Λ0 is the set of
vertexes, Λ1 is the set of edges, Λ2 is the set of faces, and so on. The second one mimics
the distinction among geodesic flow limits, simple regular collapses, and simple singular
collapses already seen in the previous section. For instance, G = {λ ∈ Λn−1 : λ1 = 0}. The
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asymptotic behaviour of the frequency map in each one of these three situations is expected
to be dramatically different; see the theorem below. The last partition labels the component of
the caustic parameter that becomes singular: Sj = {λ ∈ Λn−1 : λj = aj}. Besides, given any
caustic parameter λ ∈ Λ we shall denote by λSj ∈ Sj the caustic parameter obtained from λ


by substituying its j-th component with aj . Finally, we introduce the (n− 1)-dimensional set


G∗ = {(λ2, . . . , λn) ∈ Rn−1 : (0, λ2, . . . , λn) ∈ G},
which turns out to be the nonsingular caustic space for the geodesic flow on the ellipsoid. We
note that S1 = {c}× (H1 ∪H2), S2 = (E ∪H1)×{b}, and G∗ = H1 ∪H2 with the notations
used in the previous section for triaxial ellipsoids of R3.


Theorem 14. The frequency map ω : Λ→ Rn has the following properties.


(i) It is analytic in Λ.


(ii) It can be continuously extended to the border ∂Λ, the extended map being as follows:


(a) It vanishes at Ḡ;
(b) One of its components can be explicitely written as a function of the rest at R̄;
(c) Its first component is equal to 1/2 at S̄1;
(d) Its l-th component is equal to the (l − 1)-th component at S̄l for 2 ≤ l ≤ n; and
(e) Its “free” components are an (n − 1)-dimensional frequency of the billiard inside


the section of the original ellipsoid by a suitable coordinate hyperplane at R̄ ∪ S̄.


Besides, the restriction of the continuous extended map to any of the k-dimensional
connected components of Λk, 1 ≤ k ≤ n− 1, is analytic.


(iii) Its asymptotic behaviour at Λn−1 = G ∪ S ∪R is:


(a) ω(λ) = κG(λ2, . . . , λn)λ
1/2
1 + O(λ


3/2
1 ), as λ1 → 0+;


(b) ω(λ)− ω(λSj ) � κS(λSj )/ log |aj − λj|, as λj → aj;
(c) ω(λ)− ω(λR) = O(λ− λR), as λ→ λR ∈ R;


for some analytic functions κG : G∗ → Rn
+ and κS : S → Rn.


Proof. It follows from the same arguments and computations that in the spatial case. The
arguments are not repeated. The computations with hyperelliptic integrals have been relegated
to Appendix A.


We recall that, once fixed the parameters a1, . . . , an+1 of the ellipsoid and the caustic
parameters λ1, . . . , λn, we write the 2n+ 1 positive numbers


{c1, . . . , c2n+1} = {a1, . . . , an+1} ∪ {λ1, . . . , λn}
in an ordered way: c0 := 0 < c1 < · · · < c2n+1. Then the frequency ω(λ) is defined in terms
of some hyperelliptic integrals over the intervals (c2j, c2j+1). If two consecutive elements of
{c0, . . . , c2n+1} collide, then ω(λ) is, a priori, not well-defined. Thus, it is natural to ask: How
does ω(λ) behave at these collisions?


In the previous theorem we have solved this question at the set Λn−1 = G∪R∪S, which
covers just the geodesic flow limit: c1 → 0+, the n simple regular collapses: c2l+1, c2l → c∗


for some l, and the n simple singular collapses: c2l−1, c2l → c∗ for some l. But there are many
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more (multiple) collapses, from double ones to total ones. Double collapses correspond to the
set Λn−2. Total collapses have multiplicity n, so they correspond to set of vertexes Λ0.


We believe that it does not make sense to describe the asymptotic behaviour of the
frequency map at all of them, since the behaviour in each case must be the expected one.
In order to convince the reader of the validity of this claim, we end the paper with a couple of
extreme cases.


As a first example, let us consider the vertex λ̂ = (a1, . . . , an) ∈ Λ0. It represents
the unique total singular collapse, because it is the unique common vertex of the 2n open
connected components of the caustic space:⋂


σ∈{0,1}n
Λ̄σ = {λ̂} =


n⋂
j=1


S̄j.


Using that the point λ̂ belongs to all the closures S̄j , from theorem 14 we get that ω(λ̂) =


(1/2, . . . , 1/2). Which is the asymptotic behaviour of ω at this vertex? In Appendix A.7 it is
proved that


ω(λ) = ω(λ̂) + O(1/ log |a1 − λ1|, . . . , 1/ log |an − λn|), λ→ λ̂.


This behaviour is singular in the n caustic coordinates, as expected.
On the contrary, the vertex λ̃ = (a2, . . . , an+1) ∈ Λ0 represents the unique total regular


collapse, so we predict a regular behaviour in the n caustic coordinates. In Appendix A.6 we
show that ω(λ̃) = (ω̃1, . . . , ω̃n), where the limit frequencies 0 < ω̃j < 1/2 are defined as
sin2 πω̃j = a1/aj+1, and the asymptotic behaviour is


ω(λ) = ω(λ̃) + O(λ̃− λ), λ→ λ̃−.


Once more, the frequency map has the expected behaviour.


7. Conclusion and further questions


We studied periodic trajectories of billiards inside nondegenerate ellipsoids of Rn+1. First,
we trivially extended the definition of the frequency map ω to any dimension, we presented
four conjectures about ω based on numerical computations, and we deduced from the last one
some lower bounds on the periods. Next, we proved that ω can be continuously extended to
any singular value of the caustic parameters, although it is exponentially sharp at the “inner”
singular caustic parameters. Finally, we focused on ellipses and triaxial ellipsoids, where we
found examples of trajectories whose periods coincide with the previous lower bounds. We
also computed several bifurcation curves. Despite these results, many unsolved questions
remain. We indicate just four.


The most obvious challenge is to tackle any of the conjectures, although it does not look
easy. We have already devoted some efforts without success. We believe that the proof of
any of these conjectures requires either a deep use of algebraic geometry or to rewrite the
frequency map as the gradient of a “Hamiltonian”; see [43, §4].
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Another interesting question is to describe completely the phase space of billiards inside
ellipsoids in Rn+1 for n ≥ 2. A rich hierarchy of invariant objects appears in these billiards:
Liouville maximal tori, low dimensional tori, normally hyperbolic manifolds whose stable
and unstable manifolds are doubled, et cetera. For instance, the stable and unstable invariant
manifolds of the two-periodic hyperbolic trajectory corresponding to an oscillation along the
major axis of the ellipsoid were fully described in [13].


Third, we plan to give a complete classification of the symmetric periodic trajectories
inside generic ellipsoids [9]. To present the problem, let us consider the symmetric periodic
trajectories inside an ellipse displayed in figure 3. On the one hand, the three-periodic
trajectory drawn in a continuous red line has an impact point on (and is symmetric with respect
to) the x-axis. On the other hand, the four-periodic trajectory drawn in a dashed green line
has a couple of segments passing through (and is symmetric with respect to) the origin. It is
immediate to realize that there do not exist neither a trajectory with a hyperbola as caustic like
the first one, neither a trajectory with an ellipse as caustic like the second one. The problem
consists of describing all possible kinds of symmetric periodic trajectories once fixed the type
of the n caustics for ellipsoids in Rn+1. Once these trajectories were well understood, we
could study their persistence under small symmetric perturbations of the ellipsoid, and the
break-up of the Liouville tori on which they live. Similar results have already been found
in other billiard frameworks: homoclinic trajectories inside ellipsoids of Rn+1 with a unique
major axis [8], and periodic trajectories inside circumferences of the plane [34].


Finally, we look for simple formulae to express the caustic parameters λ1, . . . , λn that
give rise to periodic trajectories of small periods in terms of the parameters a1, . . . , an+1 of
the ellipsoid. As a by-product of the those formulae, one can find algebraic expressions for
some of the bifurcation curves displayed in subsection 5.4. This is a work in progress [35].
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Appendix A. Computations with hyperelliptic integrals


Appendix A.1. Technical lemmas


Lemma 15. Let fε ∈ C0([α, β]) be a family of functions such that fε = f0 + O(ε) in the
C0-topology. Then


Iε =


∫ β


α


fε(s)ds√
(s− α)(β − s) =


∫ β


α


f0(s)ds√
(s− α)(β − s) + O(ε).


Proof. |Iε−I0| ≤ |fε−f0|C0([α,β])


∫ β
α


((s−α)(β−s))−1/2ds = π|fε−f0|C0([α,β]) = O(ε).
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Lemma 16. Let f ∈ C1([m,M ]) with m < α < β < M and ε = β − α. Then∫ β


α


f(s)ds√
(s− α)(β − s) = πf(α) + O(ε) = πf(β) + O(ε), ε→ 0+.


Proof. Using the Mean Value Theorem for integrals, we get that there exists some s0 ∈ [α, β]


such that the integral is equal to f(s0)
∫ β
α


((s− α)(β − s))−1/2ds = πf(s0).


Lemma 17. Let f ∈ C1([0,M ]) with 0 < ε < M . Then


Iε =


∫ ε


0


f(s)ds√
ε− s = 2f(0)ε1/2 + O(ε3/2), ε→ 0+.


Proof. Iε =
[−2(ε− s)1/2f(s)


]s=ε
s=0


+ 2
∫ ε


0
(ε− s)1/2f ′(s)ds = 2f(0)ε1/2 + O(ε3/2).


Lemma 18. Let f ∈ C1([α, β]). Set η = f(α) log(4β − 4α) +
∫ β
α


(s−α)−1(f(s)− f(α))ds,
ξ =


∫ β
α


(s−α)−3/2(f(s)− f(α))ds, µ = f(β) log(4β− 4α) +
∫ β
α


(β− s)−1(f(s)− f(β))ds,
and ψ =


∫ β
α


(β − s)−3/2(f(s)− f(β))ds. Then∫ β


α


f(s)ds√
(s+ ε− α)(s− α)


= −f(α) log ε+ η + O(ε log ε), ε→ 0+,∫ β


α


f(s)ds


(s+ ε− α)
√
s− α = πf(α)ε−1/2 + ξ + O(ε1/2), ε→ 0+,∫ β


α


f(s)ds√
(β + ε− s)(β − s) = −f(β) log ε+ µ+ O(ε log ε), ε→ 0+,∫ β


α


f(s)ds


(β + ε− s)√β − s = πf(β)ε−1/2 + ψ + O(ε1/2), ε→ 0+.


The first (respectively, last) two estimates also hold when f has a singularity at s = β


(respectively, at s = α), provided f ∈ L1([α, β]).


Proof. We split the first integral as Iε = η̃+ Îε− Ĩε, where η̃ =
∫ β
α


(s−α)−1(f(s)− f(α))ds


is a constant, and


Îε =


∫ β


α


f(α)ds√
(s+ ε− α)(s− α)


, Ĩε =


∫ β


α


f(s)− f(α)


s− α
(


1−
√


s− α
s+ ε− α


)
ds.


By performing the change x2 = s− α in the integral Îε, we get that


Îε = 2


∫ √β−α
0


f(α)dx√
x2 + ε


= 2f(α)
[
log
(
x+
√
x2 + ε


)]x=
√
β−α


x=0
= −f(α) log ε+ η̂ + O(ε),


where η̂ = f(α) log(4β− 4α) is another constant. Thus, to get the first formula with constant
η = η̂ + η̃ it suffices to see that Ĩε = O(ε log ε).


Once fixed some γ ∈ (α, β), we decompose the integral Ĩε as the sum J̃ε + K̃ε, where
J̃ε =


∫ γ
α
f̃(s)rε(s)ds, K̃ε =


∫ β
γ
f̃(s)rε(s)ds, and


f̃(s) =
f(s)− f(α)


s− α , rε(s) = 1−
√


s− α
s+ ε− α.
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First, we consider the interval [α, γ]. Then |f̃ |∞ = max{|f̃(s)| : α ≤ s ≤ γ} <∞ and rε(s)
is positive in [α, γ]. Set δ = γ − α. Using again the change x2 = s− α, we see that


|f̃ |−1
∞ |J̃ε| ≤


∫ γ


α


rε(s)ds = δ −
∫ γ


α


√
s− α


s+ ε− αds = δ − 2


∫ √δ
0


x2dx√
x2 + ε


= δ −
[
x
√
x2 + ε+ ε log


(
x+
√
x2 + ε


)]x=
√
δ


x=0
= − ε


2
log ε+ O(ε) = O(ε log ε).


Concerning the other interval, we note that rε(s) is positive and decreasing in [γ, β]. Hence,
max{|rε(s)| : γ ≤ s ≤ β} = rε(γ), and so |K̃ε| ≤ rε(γ)


∫ β
γ
|f̃(s)|ds = O(ε). This ends the


proof of the first formula.
We split the second integral as Lε = ξ + L̂ε − L̃ε, where ξ is the constant given in the


statement of the lemma, and


L̂ε =


∫ β


α


f(α)ds


(s+ ε− α)
√
s− α, L̃ε =


∫ β


α


f(s)− f(α)


(s− α)3/2


(
1− s− α


s+ ε− α
)


ds.


By performing the change x = s− α in the integral L̂ε, we get that


L̂ε =


∫ β−α


0


f(α)dx


(x+ ε)
√
x


= 2f(α)ε−1/2
[
atan


(
ε−1/2x1/2


)]x=β−α
x=0


= πf(α)ε−1/2 + O(ε1/2).


Thus, to get the second formula it suffices to see that L̃ε = O(ε1/2), which follows from
similar computations than the ones above.


The last formulae are obtained by performing the change of variables s − α = β − t in
the former ones.


Corollary 19. Let f ∈ C1([m,M ]) with m < α− < α+ < β− < β+ < M , and


I = I(α−, α+, β−, β+) =


∫ β−


α+


f(s)ds√
(s− α−)(s− α+)(β− − s)(β+ − s)


.


Let α∗ and β∗ be two reals such that m < α∗ < β∗ < M . Let ε = (ε1, ε2) ∈ R2
+ with


ε1 = α+ − α− and ε2 = β+ − β−. Then there exists a constant ζ ∈ R such that


I = −f(α∗)(1 + O(ε2)) log ε1 + f(β∗)(1 + O(ε1)) log ε2
β∗ − α∗ + ζ + O(ε1 log ε1, ε2 log ε2),


as α± → α∗ and β± → β∗, so that ε = (ε1, ε2)→ (0+, 0+).


Proof. It follows by applying the first and third estimates of the previous lemma to the
integrals


∫ γ
α+


and
∫ β−
γ


for some point γ ∈ (α+, β−), although before we must fix the lower
limit of the first integral with the change x− α∗ = s− α+, and the upper limit of the second
integral with the change x− β∗ = s− β−.


Lemma 20. Let Kεωε = τε be a family of square linear systems defined for ε > 0.


(i) If the limits K = limε→0+ Kε and τ = limε→0+ τε exist, and K is nonsingular, then


ωε = ω + O(|Kε −K|, |τε − τ |), ε→ 0+,


where ω = K−1τ is the unique solution of the nonsingular limit system Kω = τ .
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(ii) If, in addition, the matrix Kε and the vector τε are differentiable at ε = 0, then the
solution ωε also is differentiable at ε = 0. To be more precise, if


Kε = K + εL + o(ε), τε = τ + εζ + o(ε), ε→ 0+,


for some square matrix L and some vector ζ , then


ωε = ω + εκ+ o(ε), ε→ 0+,


where ω = K−1τ and κ = K−1(ζ − Lω).


Proof. Both results follow directly from classical error bounds in numerical linear algebra.
See, for instance, [23, §2.7].


Appendix A.2. Another characterization of the frequency


We associate a “frequency” ω = $(c) ∈ Rn to any vector c = (c1, . . . , c2n+1) ∈ R2n+1 such
that c0 := 0 < c1 < · · · < c2n+1 in the following way. First, we consider:


• The polynomial T (s) =
∏2n+1


i=1 (ci−s) ∈ R2n+1[s], which is positive in the n+1 intervals
of the form (c2j, c2j+1);


• The n+ 1 linear functionals P (s) 7→ Kj[P (s)] =
∫ c2j+1


c2j
(T (s))−1/2P (s)ds;


• The n+ 1 column vectors Kj = (Kj[1],Kj[s], . . . ,Kj[sn−1])t ∈ Rn;


• The n× n nonsingular matrix K = (−K1, . . . , (−1)nKn); and


• The linear functionals K[P (s);ω] = K0[P (s)] + 2
∑n


j=1(−1)jωjKj[P (s)], for ω ∈ Rn.


The hypothesis c1 > 0 is not essential to get a nonsingular matrix K, but it suffices to assume
the strict inequalities c1 < · · · < c2n+1; see [24, §III.3].


Lemma 21. There exists an unique ω ∈ Rn such that


K[P (s);ω] = 0, ∀P (s) ∈ Rn−1[s], (A.1)


or equivalently, such that K0 + 2Kω = 0, which is the matricial form of the linear system
given in (8).


Proof. By taking the basis {1, s, . . . , sn−1} of Rn−1[s], we see that condition (A.1) is
equivalent to the linear system K0 + 2Kω = 0.


Therefore, condition (A.1) is an equivalent characterization of the frequency. From now
on, ω = $(c) stands for the frequency computed through the previous steps.


Appendix A.3. Geodesic flow limit: c1 → 0+


Let KG
00 = 2(


∏n
i=2 ci)


−1/2, KG
0 = (KG


00, 0, . . . , 0) ∈ Rn, and TG(s) = −s∏2n+1
i=2 (ci − s).


Let KG be the n× n nonsingular matrix associated to the vector cG = (0, c2, . . . , c2n+1). Let
κG ∈ Rn be the unique solution of the linear system KG


0 + 2KGκG = 0. Then


ω = κGc
1/2
1 + O(c


3/2
1 ), c1 → 0+. (A.2)
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The proof is short. First, we note that T = TG + O(c1) uniformly in [0, c2n+1]. Thus,
using lemma 15, we get that K = KG + O(c1) as c1 → 0+. And using lemma 17 we see that
K0 = KG


0 c
1/2
1 + O(c


3/2
1 ) as c1 → 0+. Therefore, the linear systems KG


0 + 2KGκG = 0 and
c
−1/2
1 K0 + 2K(c


−1/2
1 ω) = 0 are O(c1)-close, being KG nonsingular, so (A.2) follows from


the first item in lemma 20.


Appendix A.4. Simple regular collapse: c2l+1, c2l → c∗ for some l = 1, . . . , n


Set cR = (c1, . . . , c2l−1, c2l+2, . . . , c2n+1) ∈ R2n−1. Let TR(s) =
∏


i 6=2l,2l+1(ci − s) be
the polynomial associated to cR. Let KRj and KR be the functionals associated to cR. Let
ωR = (ωR1 , . . . , ω


R
n ) ∈ Rn, where ωR6=l := (ωR1 , . . . , ω


R
l−1, ω


R
l+1, . . . , ω


R
n ) = $(cR) ∈ Rn−1 is


the frequency associated to cR, and ωRl ∈ R is determined by∫ c1


0


ds


|c∗ − s|√TR(s)
+ 2


∑
j 6=l


∫ c2j+1


c2j


(−1)jωRj ds


|c∗ − s|√TR(s)
+


(−1)l2πωRl√−TR(c∗)
= 0. (A.3)


Let ε = c2l+1 − c2l. Then


ω = ωR + O(ε), c2l+1, c2l → c∗. (A.4)


In order to prove this claim, we first observe that characterization (A.1) is equivalent to
the system of n linear equations{


K[(c∗ − s)si;ω] = 0 for i = 0, . . . , n− 2


K[1;ω] = 0
, (A.5)


because {1, c∗− s, . . . , (c∗− s)sn−2} is a basis of Rn−1[s]. Now, using lemmas 15 and 16, we
deduce the estimates


Kj[(c∗ − s)si] =
∫ c2j+1


c2j


(c∗−s)sids


|c∗−s|
√
TS(s)+O(ε)


=



KRj [si] + O(ε) if j < l,


O(ε) if j = l,


−KRj−1[si] + O(ε) if j > l;


and


Kj[1] =



π
(−TR(c∗)


)−1/2
+ O(ε) if j = l,∫ c2j+1


c2j


ds


|c∗ − s|√TR(s)
+ O(ε) otherwise.


Therefore, the linear system (A.5) is O(ε)-close to the nonsingular linear system{
KR[si;ωR6=l] = 0 for i = 0, . . . , n− 2


condition (A.3)
,


and the asymptotic formula (A.4) follows from the first item in lemma 20.
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Appendix A.5. Simple singular collapse: c2l−1, c2l → c∗ for some l = 1, . . . , n


Set cS = (c1, . . . , c2l−2, c2l+1, . . . , c2n+1) ∈ R2n−1. Let T S(s) =
∏


i 6=2l−1,2l(ci − s) be
the polynomial associated to cS . Let KSj and KS be the functionals associated to cS . Let
ωS = (ωS1 , . . . , ω


S
n ) ∈ Rn, where ωS6=l := (ωS1 , . . . , ω


S
l−1, ω


S
l+1, . . . , ω


S
n ) = $(cS) ∈ Rn−1 and


ωSl =


{
1/2 if l = 1


ωSl−1 otherwise
.


Let ε = c2l − c2l−1 > 0 and δ = | log ε|−1 > 0. Then there exists κS ∈ Rn such that


ω = ωS + δκS + o(δ), c2l−1, c2l → c∗. (A.6)


To prove this claim, we set d =
√
T S(c∗) > 0. We know that characterization (A.1) is


equivalent to the system of n linear equations{
K[δd;ω] = 0


K[(c∗ − s)si;ω] = 0 for i = 0, . . . , n− 2
, (A.7)


because {δd, c∗ − s, . . . , (c∗ − s)sn−2} is a basis of Rn−1[s]. Now, using lemmas 15 and 18,
we deduce the following asymptotic estimates. On the one hand, there exist some constants
ζ0, ζ1, . . . , ζn ∈ R such that


Kj[δd] = δdKj[1] =


{
1 + ζjδ + O(ε) if j = l − 1, l,


ζjδ + O(εδ) otherwise.


On the other hand,


Kj[(c∗ − s)si] =
∫ c2j+1


c2j


(c∗−s)sids


|c∗−s|
√
TS(s)+O(ε)


=





KSj [si] + O(ε) if j < l − 1,∫ c∗
c2l−2


sids√
TS(s)


+ O(ε) if j = l − 1,


−∫ c2l+1


c∗
sids√
TS(s)


+ O(ε) if j = l,


−KSj−1[si] + O(ε) if j > l.


In particular, Kl−1[(c∗ − s)si]−Kl[(c∗ − s)si] =
∫ c2l+1


c2l−2


sids√
TS(s)


+ O(ε) = KSl−1[si] + O(ε).


We assume now that l 6= 1. The case l = 1 is studied later on. Since ε � δ, the linear
system (A.7) is O(δ)-close to the nonsingular linear system{


2(−1)l−1(ωSl−1 − ωSl ) = 0


KS[si;ωS6=l] = 2(−1)l(ωSl − ωSl−1)
∫ c2l+1


c∗
sids√
TS(s)


for i = 0, . . . , n− 2 ,


which in its turn is equivalent to the linear system{
ωSl = ωSl−1


KS[si;ωS6=l] = 0 for i = 0, . . . , n− 2
(A.8)


whose unique solution is ωS6=l = $(cS) and ωSl = ωSl−1.
Thus, the asymptotic formula ω = ωS + O(δ) follows from the first item in lemma 20.


In fact, this result can be improved using the second item in lemma 20. It suffices to note that
the linear system (A.7) is not only O(δ)-equivalent to (A.8), but it is differentiable at δ = 0.
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Hence, (A.6) holds for some vector κS that could be explicitely computed in terms of the limit
system and the constants ζ0, . . . , ζn.


If l = 1, the linear system (A.7) is O(δ)-equivalent to the nonsingular linear system{
ωS1 = 1/2


KS[si;ωS6=1] = 0 for i = 0, . . . , n− 2
,


and the proof ends with just the same arguments that for l 6= 1. We omit the details.


Appendix A.6. Total regular collapse: c2l+1, c2l → c∗l for all l = 1, . . . , n


Let us study the case of n simultaneous collapses, all of them regular. That is, once fixed a
vector c∗ = (c∗1, . . . , c


∗
n) ∈ Rn such that 0 < c1 < c∗1 < · · · < c∗n, we study the asymptotic


behaviour of the frequency ω = $(c) when c2l+1, c2l → c∗l for all l = 1, . . . , n. Let
ω̃ = (ω̃1, . . . , ω̃n) ∈ Rn be the vector whose components verify that 0 < ω̃l < 1/2 and
sin2 πω̃l = c1/c


∗
l . Let ε = (ε1, . . . , εn) ∈ Rn


+ with εl = c2l+1 − c2l. Then


ω = ω̃ + O(ε), ε→ (0+, . . . , 0+). (A.9)


Let Ql =
√
c∗l − c1


∏
i 6=l |c∗i − c∗l | > 0. Let {P1(s), . . . , Pn(s)} be the basis of Rn−1[s]


univocally determined by the interpolating conditions


Pl(c
∗
j) =


{
Ql if j = l,


0 otherwise.


That is, Pl(s) = (−1)l−1
√
c∗l − c1


∏
i 6=l(c


∗
i − s). Using lemma 16, we get the estimates


K0[Pl(s)] =


∫ c1


0


(
(−1)l−1


√
c∗l − c1


(c∗l − s)
√
c1 − s + O(ε)


)
ds = 2(−1)l−1 atan


√
c1


c∗l − c1


+ O(ε),


Kl[Pl(s)] = π + O(ε), and Kj[Pl(s)] = O(ε) for j 6= 0, l. Thus, the n× n linear system


K[Pl(s);ω] = 0 for l = 1, . . . , n


is O(ε)-close to the nonsingular decoupled linear system


2(−1)l−1


(
atan


√
c1


c∗l − c1


− πω̃l
)


= 0 for l = 1, . . . , n,


whose unique solution is given by tan2 πω̃l = c1/(c
∗
l − c1), and so, by sin2 πω̃l = c1/c


∗
l .


Hence, the asymptotic formula (A.9) follows from the first item in lemma 20.


Appendix A.7. Total singular collapse: c2l−1, c2l → c∗l for all l = 1, . . . , n


Let ω̂ = (1/2, . . . , 1/2) ∈ Rn, ε = (ε1, . . . , εn) ∈ Rn
+, and δ = (δ1, . . . , δn) ∈ Rn


+, where
εl = c2l − c2l−1 and δl = | log εl|−1. Then


ω = ω̂ + O(δ), ε→ (0+, . . . , 0+). (A.10)
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Remark 12. By applying repeatedly the result on simple singular collapses, we see that


lim
εn→0+


(
· · · lim


ε2→0+


(
lim
ε1→0+


ω
))


= ω̂.


In fact, these repeated limits can be taken in any order. Nevertheless, this result is weaker than
estimate (A.10), so we need a formal proof of the estimate.


We consider the constants Ql =
√
c2n+1 − c∗l


∏
i 6=l |c∗i − c∗l |. Let {P1(s), . . . , Pn(s)} be


the basis of Rn−1[s] univocally determined by


Pl(c
∗
j) =


{
Ql if j = l,


0 otherwise.


Now, using corollary 19, we get that there exists some constants ζjl ∈ R such that


Kj[δlPl(s)] = δlKj[Pl(s)] =


{
1 + ζllδl + o(δ) if j = l,


ζjlδl + o(δ) otherwise,


where 0 ≤ j ≤ n and 1 ≤ l ≤ n. Therefore, the n× n linear system


δlK[Pl(s);ω] = 0 for l = 1, . . . , n


is O(δ)-close to the nonsingular linear system{
1− 2ω̂1 = 0


2(−1)l−1(ω̂l−1 − ω̂l) = 0 for l = 2, . . . , n


whose unique solution is ω̂ = (1/2, . . . , 1/2). Thus, the asymptotic formula (A.10) follows
from the first item in lemma 20.


Remark 13. The vectorial estimate (A.10) can be refined in several ways. For instance, one
can get the componentwise estimates ω1 = 1/2 + O(δ1) and ωl = ωl−1 + O(δl) for l > 1. In
particular, ωl = 1/2+O(δ1, . . . , δl). Even more, there exists a n×n constant lower triangular
matrix L such that


ω = ω̂ + Lδ + o(δ), ε→ (0+, . . . , 0+).


We omit the proof, since we do not need this result and the computations are cumbersome.


Appendix A.8. Asymptotic behaviour of the function νx


The function νx : (0, c)∪ (c, b)→ R verifies that I(λ) + J(λ)ρx(λ) +K(λ)νx(λ) = 0, where
the coefficients I, J,K : (0, c) ∪ (c, b)→ R were given by


I(λ) =


∫ m


0


ds


(a− s)√Tx(s)
, J(λ) = −2


∫ b


m


ds


(a− s)√Tx(s)
, K(λ) =


2π√−Tx(a)
,


with Tx(s) = (λ − s)(c − s)(b − s), m = min(λ, c), and m = max(λ, c). Here,
ρx(λ) = ρ(λ; c, b) is the rotation function of the ellipse obtained by sectioning the ellipsoid
Q with the coordinate plane {x = 0}. The asymptotic properties of rotation functions of
billiards inside ellipses were established in proposition 8.


First, let us consider the case ε := λ→ 0+. Using lemmas 15 and 17 we get:
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• I(ε) = I0ε
1/2 + O(ε3/2), where I0 = 2a−1(bc)−1/2;


• J(ε) = J0 + O(ε), where J0 = −2
∫ b
c
(a− s)−1(s(s− c)(b− s))−1/2ds;


• K(ε) = K0 + O(ε), where K0 = 2π(a(a− c)(a− b))−1/2;


• ρx(ε) = κGε1/2 + O(ε3/2), where κG = κG(b, c) can be found in proposition 8; and


• νx(ε) = −(I0 + J0κ
G)K−1


0 ε1/2 + O(ε3/2) = O(ε1/2). It is possible to check that
(I0 + J0κ


G)K−1
0 < 0, but we do not need it.


Next, let us consider the case ε := b− λ→ 0+. We begin by computing the integral


r(β, α) :=


∫ β


0


ds


(α− s)√β − s =
2√
α− β atan


√
β/(α− β),


for any 0 < β < α. Then it is immediate to check that∫ β


0


ds


(α+ − s)(α− − s)
√
β − s =


r(β, α−)− r(β, α+)


α+ − α− ,


for any 0 < β < α− < α+. We also need the formula r(β, α) = 2π(α − β)−1/2ρ̃(β, α),
where ρ̃(β, α) := limγ→α− ρ(γ; β, α) is one of the limits of the rotation number described in
proposition 8. Using these formulae, jointly with lemmas 15 and 16, we see that:


• I(b− ε) = I∗+ O(ε), where I∗ = 2π(a− b)−1
(
(b− c)−1/2ρ̃(c, b)− (a− c)−1/2ρ̃(c, a)


)
;


• J(b− ε) = J∗ + O(ε), where J∗ = −2π(a− b)−1(b− c)−1/2;


• K(b− ε) = K∗ + O(ε), where K∗ = 2π(a− b)−1(a− c)−1/2;


• ρx(b− ε) = ρx(b) + O(ε) = ρ(b; c, b) + O(ε) = ρ̃(c, b) + O(ε); and


• νx(b− ε) = ρ̃(c, a) + O(ε) = ρ(a; c, a) + O(ε) = ρy(a) + O(ε).


The estimates in the limit ε := m−m→ 0+, which equivals to λ→ c, are:


• I(c± ε) = −(a− c)−1(b− c)−1/2 log ε + µ + O(ε log ε), where µ is a constant that can
be exactly computed from lemma 18;


• J(c± ε) = −(a− c)−1(b− c)−1/2 log ε + η + O(ε log ε), where η is a constant that can
be exactly computed from lemma 18;


• K(c± ε) = 2π(a− c)−1(a− b)−1/2 + O(ε);


• ρx(c ± ε) = 1/2 + κS log−1 ε + O(log−2 ε), where κS = κS(c, b) = acosh(b/c)1/2


according to proposition 8; and


• νx(c± ε) = (a− b)1/2
(
(a− c)(η − µ)− 2(b− c)−1/2κS


)
/2π+ O(log−1 ε). After some


tedious, but simple, computations, one gets that νx(c) = ρ̃(b, a) = ρ(a; b, a) = ρz(a).


Appendix A.9. Asymptotic behaviour of the function νy


The function νy : (b, a) → R verifies that I(λ) + J(λ)ρy(λ) + K(λ)νy(λ) = 0, where the
coefficients I, J,K : (b, a)→ R were given by


I(λ) =


∫ c


0


ds


(b− s)√Ty(s)
, J(λ) = 2


∫ a


λ


ds


(s− b)√Ty(s)
, K(λ) = − 2π√−Ty(b)


,
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with Ty(s) = (c − s)(λ − s)(a − s). Here, ρy(λ) = ρ(λ; c, a) is the rotation function of the
ellipse obtained by sectioning the ellipsoid Q with the coordinate plane {y = 0}.


We begin with the limit ε := λ− b→ 0+. Using lemmas 15 and 18 we see that:


• I(b+ ε) = I0 + O(ε), where I0 =
∫ c


0
(b− s)−3/2(c− s)−1/2(a− s)−1/2ds;


• J(b+ ε) = 2π(a− b)−1/2(b− c)−1/2ε−1/2 + O(1);


• K(b+ ε) = −2π(a− b)−1/2(b− c)−1/2ε−1/2;


• ρy(b+ ε) = ρy(b) + O(ε); and


• νy(b+ ε) = ρz(c) + O(ε1/2), since ρy(b) = ρ(b; c, a) = ρ(c; b, a) = ρz(c).


Next, let us consider the case ε := a − λ → 0+, which is similar to the limit
limε→0+ νx(b − ε) studied in the previous subsection, so we need the same simple integrals.
Using them, jointly with lemmas 15 and 16, we get:


• I(a− ε) = I∗+ O(ε), where I∗ = 2π(a− b)−1
(
(b− c)−1/2ρ̃(c, b)− (a− c)−1/2ρ̃(c, a)


)
;


• J(a− ε) = J∗ + O(ε), where J∗ = 2π(a− b)−1(a− c)−1/2;


• K(a− ε) = K∗ + O(ε), where K∗ = −2π(a− b)−1(b− c)−1/2;


• ρy(a− ε) = ρ̃(c, a) + O(ε); and


• νy(a− ε) = ρ̃(c, b) + O(ε) = ρ(b; c, b) + O(ε) = ρx(b) + O(ε).


Appendix A.10. Asymptotic behaviour of the function νz


The function νz : (0, c) ∪ (c, b)→ R verifies that


I(λ) + J(λ)ρz(m) +K(λ)νz(λ) = 0, (A.11)


where the coefficients I, J,K : (0, c) ∪ (c, b)→ R were given by


I(λ) =


∫ m


0


ds


(m− s)√Tz(s)
, J(λ) = 2


∫ a


b


ds


(s−m)
√
Tz(s)


, K(λ) = − 2π√−Tz(m)
,


with Tz(s) = (m − s)(b − s)(a − s), m = min(λ, c), and m = max(λ, c). Here,
ρz(λ) = ρ(λ; b, a) is the rotation function of the ellipse obtained by sectioning the ellipsoid Q
with the coordinate plane {z = 0}.


First, let us consider the case ε := λ→ 0+. Using lemmas 15 and 17 we see that:


• I(ε) = I0ε
1/2 + O(ε3/2), where I0 = 2c−1(ab)−1/2;


• J(ε) = J0 + O(ε), where J0 = 2
∫ a
b


(s− c)−1(s(s− b)(a− s))−1/2ds;


• K(ε) = K0 + O(ε), where K0 = −2π(c(b− c)(a− c))−1/2;


• ρz(m) = ρz(min(ε, c)) = ρz(ε) = κGε1/2 + O(ε3/2), where the constant κG = κG(b, a)


can be found in proposition 8; and


• νz(ε) = −(I0 + J0κ
G)K−1


0 ε1/2 + O(ε3/2) = O(ε1/2), with (I0 + J0κ
G)K−1


0 < 0.


The estimates in the limit ε := m−m→ 0+, which equivals to λ→ c, are:


• I(c± ε) = π(a− c)−1/2(b− c)−1/2ε−1/2 + O(1); see lemma 18;


• J(c± ε) = O(1);
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• K(c± ε) = −2π(a− c)−1/2(b− c)−1/2ε−1/2 + O(ε1/2);


• ρz(m) = ρz(min(c± ε, c)) = ρz(c) + O(ε), since ρz(λ) is analytic at λ = c; and


• νz(c± ε) = 1/2 + O(ε1/2).


Next, we consider the case ε := b− λ→ 0+. Using lemmas 15 and 16 we get:


• I(b− ε) = O(1);


• J(b− ε) = J∗ε
−1/2 + O(1), where J∗ = 2π(a− b)−1/2(b− c)−1/2;


• K(b− ε) = K∗ε
−1/2 + O(ε1/2), where K∗ = −2π(a− b)−1/2(b− c)−1/2;


• ρz(m) = ρz(min(b− ε, c)) = ρz(c); and


• νz(b− ε) = ρz(c) + O(ε1/2).


Appendix A.11. Asymptotic behaviour of the function c0


Let ω0 = (ω0
1, ω


0
2) ∈ Ω. We recall that the functions λ = λ0(b) and c = c0(b) are defined


through the implicit equations


νz(λ) = νz(λ; c, b, a) = ω0
1, ρz(λ) = ρ(λ; b, a) = ω0


2. (A.12)


We want to prove that limb→0+ c0(b) = 0, limb→0+ λ0(b) = 0, λ∗ := limb→a− λ0(b) = as0
2,


and c∗ := limb→a− c0(b) = as0
2/s


0
1, where s0


j = sin2 πω0
j . The first two limits are trivial,


because 0 < λ < c < b. Let us consider the last two limits.
The limit ρ̃(β, α) = limγ→α− ρ(γ; β, α) = limγ→α− ρ(β; γ, α) verifies the equalities


tan2 πρ̃(β, α) = β/(α − β) and sin2 πρ̃(β, α) = β/α, see Appendix A.8. Hence, passing to
the limit the second implicit equation in (A.12) we get that ρ̃(λ∗, a) = ω0


2 , so λ∗ = as0
2. Next,


by combining the two implicit equations in (A.12) with equality (A.11), we get


I(λ) + J(λ)ω0
2 +K(λ)ω0


1 = 0, (A.13)


where I(λ) = I(λ; c, b, a), J(λ) = J(λ; c, b, a), and K(λ) = K(λ; c, b, a) are quantities
defined in Appendix A.10.


Using lemma 16 and some integrals computed in Appendix A.8, we have:


• limb→a I(λ; c, b, a) = 2π(a− c)−1
(
(c− λ)−1/2ρ̃(λ, c)− (a− λ)−1/2ρ̃(λ, a)


)
;


• limb→a J(λ; c, b, a) = 2π(a− c)−1(a− λ)−1/2; and


• limb→aK(λ; c, b, a) = −2π(a− c)−1(c− λ)−1/2.


Therefore, passing to the limit the identity (A.13) we get that


(c∗ − λ∗)−1/2
(
ρ̃(λ∗, c∗)− ω0


1


)
= (a− λ∗)−1/2


(
ρ̃(λ∗, a)− ω0


2


)
= 0.


Thus ρ(λ∗, c∗) = ω0
1 , which is equivalent to λ∗/c∗ = s0


1, so c∗ = λ∗/s
0
1 = as0


2/s
0
1.
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Appendix B. A topological lemma


We recall that the complement of any Jordan curve X in the plane R2 has two distinct
connected components. One of them is bounded and simply connected (the interior, denoted
by BX) and the other is unbounded (the exterior, denoted by UX).


Lemma 22. Let X and Y be two Jordan curves of R2. If f : BX → R2 is a local
homeomorphism whose image is bounded and that has a continuous extension to the boundary
X such that f(X) ⊂ Y , then f : BX → BY is a global homeomorphism.


Proof. We note that W = f(BX) is a non-empty open bounded subset of R2 such that


∂W = ∂f(BX) ⊂ f(∂BX) = f(X) ⊂ Y.


Next, we are going to prove that W = BY . Using that ∂W ⊂ Y , we deduce that the
intersection W ∩BY (respectively, W ∩UY ) is open and closed in BY (respectively, in UY ), so
it is either the empty set or the whole interior (respectively, exterior). Therefore, we deduce
that: 1) W ∩ UY = ∅, because W is bounded; 2) W ∩ Y = ∅, because W is open; and 3)
W ∩ BY = BY , because W is open and non-empty. That is, f(BX) = W = BY .


Once we know that f : BX → BY is a surjective local homeomorphism, we deduce
from covering space theory that it is a global homeomorphism. It suffices to realize that BX
is connected and open, and BY is simply connected.


In particular, if f : BX → R2 is smooth or analytic, then its inverse is also smooth or
analytic. This means that if f is a local diffeomorphism whose image is bounded and that
has a continuous extension to the boundary X such that f(X) ⊂ Y , then f : BX → BY is a
global diffeomorphism.
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[3] M. Audin, Topologie des systèmes de Moser en dimension quatre, The Floer Memorial Volume, Progr.
Math. vol. 133, 109–122 (1995).


[4] I. Babenko, Periodic trajectories in three-dimensional Birkhoff billiards, Math. USSR-Sb., 71:1–13 (1992).
[5] C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, Users Guide to PARI/GP (freely available


from http://www.parigp-home.de/).
[6] M. Berger, Seules les quadriques admettent des caustiques, Bull. Soc. Math. France, 123:107–116 (1995).
[7] G. D. Birkhoff, Dynamical Systems, Am. Math. Soc. Coll. Pub., vol. 9, 1927.
[8] S. Bolotin, A. Delshams and R. Ramı́rez-Ros, Persitence of homoclinic orbits for billiards and twist maps,


Nonlinearity, 17:1153–1177 (2004).
[9] P. S. Casas and R. Ramı́rez-Ros, Classification of symmetric periodic billiard trajectories inside ellipsoids,


In preparation.
[10] S.-J. Chang and R. Friedberg, Elliptical billiards and Poncelet’s theorem, J. Math. Phys., 29:1537–1550


(1988).
[11] S.-J- Chang, B. Crespi and K.-J. Shi, Elliptical billiard systems and the full Poncelet’s theorem in n


dimensions, J. Math. Phys., 34:2242–2256 (1993).







The frequency map for billiards inside ellipsoids 50


[12] B. Crespi, S.-J- Chang and K.-J. Shi, Elliptical billiards and hyperelliptic functions, J. Math. Phys.,
34:2257–2289 (1993).


[13] A. Delshams, Yu. Fedorov and R. Ramı́rez-Ros, Homoclinic billiard orbits inside symmetrically perturbed
ellipsoids, Nonlinearity, 14:1141–1195 (2001).
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