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Abstract: The symbol U
r̂
 denotes the velocity or momentum (the mass multiplied by the 


velocity). Transform the Navier Stokes momentum and density equations into continuous 


families of ordinary differential and linear equations for the classical Fourier coefficients. Prove 


theorems on existence, uniqueness and smoothness of solutions of the Navier Stokes equations. 


Interpret these results for solutions of the Navier Stokes partial differential equations using the 


Fourier integral representation PPUU
ˆ̂


,
ˆ̂


==
rr
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1. Introduction 


 


The main result in this paper can be stated as follows. If the data is smooth, spatially Schwartz, 


and the body force and its higher order time derivatives satisfy generalized sector conditions, 


then the (space) average of the kinetic energy of 
)(kU


r
 is bounded for all forward time.  A unique 


physical solution ),( PU
r


exists which is smooth in 0≥t . The solution is the extension of the 


unique regular (jointly smooth) short time solution determined by the data. Solutions are unique, 


separately smooth and bounded in time and smooth in space for all forward time. 


 


In 1934 Leray (in [9]) formulated the regularity problem and related it to the smoothness 


problem. In the year 2000, Fefferman formulated the problem (in [5]). In that same year, Bardos 


wrote a monograph on the problem ([3]) which summarized the then literature. The author 


interprets the remarks in [3] Bardos to indicate that the problem of regularity/smoothness can be 


solved as formulated in (A) of  [5] Fefferman.   


 


 


What is new? 


 


As far as the author knows all frequency domain formulas but one which appear in this paper are 


new.  Cannone uses the Fourier transform to rewrite the variation of constants formula solving 


the Navier-Stokes evolution equations in the formula just prior to (27) on page 15 of  Harmonic 


Analysis Tools for Solving the Incompressible �avier-Stokes Equations.   


 


The vector form of the Navier-Stokes equations for spatially Schwartz data is 
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The author seeks a unique solution of (1-1) given the data FU
rr


,0  which is jointly smooth in 


space and time and bounded for all forward time.  


 


In (1-1) U
r
 is the velocity vector field and P∇  is the pressure gradient to be determined, U


r
⋅∇ is 


the divergence of the vector field and ∇⋅U
r


 is the tensor matrix UDx


r
r .  Equation (1-1) is 


equivalent to the formulation in [7] (7)-(11) Fefferman. 


 


The body force F
r
is smooth on 3),0[ R×∞  F


r
 and the initial function 0U


r
 are Schwartz (smooth) 


on 3R .    


 


Since tU
r
 is the acceleration, the momentum equation (first equation of (1-1)) can also be 


interpreted as Newton’s second law for incompressible fluids since the net force appears on the 


left hand side if both sides are multiplied by the mass m. In fact the momentum equation is 


Newton’s second law of motion for fluids combined with a dynamic version of Archimedes’ law 


of hydrostatics. If 0),(
rrr


=xtU , the equation reduces to Archimedes’ law ),(),( xtFxtP
rrr


=∇ . 


 


The second equation of (1-1) is called the equation of continuity. It is the reduction of the more 


general Navier-Stokes equation for the density which follows from the incompressibility of the 


fluid.  


 


In this paper the following equations for the Fourier transform of the velocity are equivalent to 


(1-1). 
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          (1-2)                          


 


In (1-2) the Fourier transforms of the velocity, the initial velocity, the pressure and the body 


force are denoted by .ˆ,
ˆ


,
ˆ


,
ˆ


0 PFUU
rrr


    Also 1−=i    and 3W   is the set of whole number triples.                                 


 


The law governing the average mechanical energy of an incompressible fluid 
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Theorem 2-4 establishes the existence of a unique smooth solution defined for all forward time. 


The following formulas provide a smooth generalization of Leray’s mechanical energy law ([12] 


section 17 formula 3.4) for the Navier-Stokes equation with non zero body force. 
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Equations (1-3) state that the difference of the space average of the kinetic energy (at time 0>t ) 


minus that at time 
+= 0t  is equal to the viscosity times the potential energy minus the average 


work done by the body force acting on the incompressible fluid where 


),,(,|| 2 wvuUwwvvuuU t =∇⋅∇+∇⋅∇+∇⋅∇=∇
rr


. The energy formulas (1-3) are equivalent to 


the formulas  
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 established in theorem 2-2. 


 


By Parseval’s theorem, the quantities on the left side of (1-3) and (1-4) are both equal to the 


average kinetic energy of )(kU
r


.   


                     


The problem of finite time blow up 


 


In theorem 2-3 the author shows that finite time blow up of solutions of (1-1) is impossible given 


the conditions on the data, the equation of continuity, and the following conditions on the forcing 


function 
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In the frequency domain, inequalities (1-5) take the form 
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These conditions extend Leray’s result of 1934 in [9] that a solution continuous in the time 


variable and weakly differentiable in the space variables exists for all forward time when 0
rr


=F .   


Under the conditions (1-3) on F
r
the solutions of (1-1) are bounded. Absolute 


stability/boundedness extends the concept of Lyapunov stability/boundedness from 


homogeneous nonlinear systems to nonlinear systems with a forcing function. 


 


2.  Existence and Extension 


The notation 33 ),( ∞−∞=Ω  denotes the set of all continuous frequency triples; W denotes the set 


of whole numbers.   


Let )( 3RS
r


 denote the space of spatially Schwartz functions.  Here the initial function is in 


)( 3RS
r


 i.e. 
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The notation 


}0),({}]),,0([{
ˆ 33 ≥∩∈∈ ∞ tRSRxTCU


rrrr
 


 denotes the space of functions which are separately smooth in time and space and  Schwartz 


over space. Thus U
r
is separately smooth on 3],0[),( RTxt ×∈


r
  if it is smooth as a function of t 


for each fixed 3Rx ∈
r


 and smooth as a function of x
r
 for each fixed ],0[ Tt ∈ . 


The notation  


}0),(
ˆ


{}]),,0([{
ˆ 33 ≥Ω∩Ω∈∈ ∞ tSTCU


rrrr
ω  


used for functions of time and frequency in the Fourier transform domain is analogous. 


Lemma 2-1. The Navier-Stokes ordinary differential equations for the Fourier transform of the 


solution of the spatially Schwartz problem (1-1b) are 
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where the Fourier transform is defined by 
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and similarly for ),(ˆ),,(
ˆ ωω


rrr
tPtF .  


 


PROOF 


 


Note that the triple integral over 3R  in the definition of the Fourier transform (2-2) is well 


defined for all forward time since, by the Schwartz property in x
r
, 0,UF


rr
 are continuous (in fact 


smooth) and integrable over 3Rx ∈
r


and continuous and bounded on ),0[ ∞∈t . Lemma 2-3 


shows that the Fourier transform of the pressure, calculated below, is likewise well defined. 


The terms FP
dt


Ud ˆ
,ˆ,


ˆ rr
r


⋅ω  follow directly by the application of the Fourier transform to the terms 


of (1-1) and the differentiation property of Fourier transforms applied to the first partials in the 


case of the pressure gradient term. 


 


The transform of the Laplacian term can be calculated integrating by parts twice.  Since the three 


calculations are identical, it suffices to calculate the transform of the second partial derivative 


with respect to the first component of the vector of space variables x   
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It follows that 


 


UU
ˆ


||}{ 2
rrv


ωηη −=∆ℑ .                                                                                                              (2-4) 


 


The Fourier transform of the Euler term is  
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The transform of the pressure gradient term is 
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The transform of the equation of continuity is 
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Divide both sides of (2-7) by i to obtain the third line of (2-1). 


                      


                    


Since ∞=Ω∈⇒Ω∈ ,...,3,2,1),(
ˆˆ


)(
ˆˆ 33 pLUSU p


rrrr
 the Schwartz conditions of (2-1a) permit the 


Fourier integrals of FPU
rr


,,  and the terms in (2-1) involving them to be well defined. 


 


END PROOF 


 


Remark 2-1.   Equations (2-1) specify an infinite family of ordinary differential equations with a 


continuous vector parameter whose solutions are the time dependent Fourier transforms of 


),(),(),,(),,( 0 xtPxUxtFxtU
rrrrrrr
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Definition 2-1. 0,),,(
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rrrrrv
r                                                          (2-8)            


 


Remark 2-2.  For any ω
r


, ),0[),0[: ∞→∞ ∞∞ CCL
r


r
ω . The linear operator ω


rL  is a map from 


vectors of infinitely continuous differentiable functions on ),0[ ∞ to a scalar continuous function 


on ),0[ ∞ . 


Proposition 2-1. Any derivative of finite order of the velocity ,...2,1,0,


ˆ


=k
dt


Ud
k


k
r


 is in )( ωη rL . 


 


PROOF 


 


By (2-1) the assertion holds for the Fourier transform of the equation of continuity 0=k .  Take 


the derivatives of order ,...3,2,1=k  with respect to t of both sides of 
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to complete the proof. 


 


END PROOF 


 


Since differentiation of a function with respect to the space variables corresponds to frequency 


multiplication of its transform, the following Banach space is the most economical one needed to 


establish that solutions of the Navier-Stokes equations are smooth in 3),0[),( Rxt ×∞∈
r


. 


 


Definition 2-2. The Schwartz space S
r̂
is the set of all three component vectors of functions 


which are Schwartz in the frequency variable on 3Ω∈ω
r


.  The solution space for the Navier- 


Stokes equations consists of functions which are smooth and bounded for all forward time, 
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uniformly in 3Ω∈ω
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 and Schwartz in the frequency for all .0≥t   Any finite order mixed partial 


derivative with respect to frequency is bounded in the pL  norm for any ∞= ,...,2,1p  with 


respect to monomial frequency weights of any finite order on the space )(
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The following lemma shows that the family of differential equations simplifies to a linear 


ordinary vector differential equation at 0
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=ω  . 


 


Lemma 2-2. If 0
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=ω  the Navier-Stokes ordinary equations for the Fourier transform of the 


velocity reduce to  
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PROOF 


 


Formula (2-10) follows immediately from equation (2-1). 


 


END PROOF 


 


The Fourier transform function is an auxiliary function for a family of equations which involves 


it provided it does not appear in an equivalent form. The following lemma establishes that the 


Fourier transform of the pressure function is an auxiliary function for the family of (ordinary 


differential) equations (2-1). A closed formula for the Fourier transform of the pressure is 


supplied.  


 


Lemma 2-3.  Equations (2-1) can be placed into the following equivalent form 
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The pressure coefficients satisfy the following equations 
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Apply the linear operator ω
rL  of definition 2-1 to each side of equation (2-1) – where, by 2-5, 
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Solve (2-14) for ),(ˆ ω
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tP to obtain the first line of the pressure coefficient formulas.   Insert the 


first line of the pressure formula into (2-1) to obtain the first line of the velocity coefficient 


formulas.  The second line of the pressure transform formulas are obtained from the first line 


from the initial transform ),(
ˆ ω
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END PROOF 


 


Remark 2-3. From higher order derivatives of (2-1) and the projection of the k
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The equation that results from calculating any higher order derivative of  (2-13a) is 
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Remark 2-4. For coefficients in discrete Schwartz spaces the integer weights are unrestricted. 


Hence any sum of squares can be exceeded by a product which is a single square. The result is 


that the Schwartz norm has two equivalent formulations 
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The first theorem establishes the existence of unique solutions for sufficiently short forward time 


starting at time +=0t . The following upper bound on the matrix operator of (2-19)  is useful in 


the proof of the first theorem 
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Theorem 2-1. Suppose 
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c. The continuity of )(ˆ kU
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Use the variation of constants formula to solve for the general Fourier transform of the 


momentum 
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Form the difference to establish continuity of the U
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in time
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Simplify the expression on the right side of (2-26) 
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                                (2-27) 


 


Examine continuity near time 0 by setting 0, 12 == ttt  in (2-27) 
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By (2-20) 


 







12 


 


0,
2


||


1
||)


ˆˆ
(|supsup2


|||)
ˆ


)
ˆ


((|supsup2


|)
ˆ


)
ˆ


((||


100


010


001


||
|


1


2


2


0


0


)(||


0


0


2


)(||


3


2


3


2


≥≤∗


=∗


≤∗










































−


≥Ω∈


−−
≥Ω∈


−−


∫


∫


t
M


UU


dseUU


dsUUe


s


t


stt


s


t


t
t


st


ηωη
ω


ωω


ω
ω
ωω


ω


ωη
ω


ωη


r
rrr


rrrr


rrr


r


rr


r


r


r


r


                                                            (2-29) 


Also 


 


.0,2|
ˆ


|supsup
1


||


1
|||


ˆ
|supsup2


|||||
ˆ


|supsup|||
ˆ


|supsup2


|
ˆ


||


100


010


001


||
|sup


2
02


2


0


0


)(||2


0


2


0


0


)(||


0


2


)(||


33


2


3


2


3


2


3


≥<≤=


≤












































−


≥Ω∈≥Ω∈


−−
≥Ω∈≥


−−
Ω∈


−−
Ω∈


∫∫


∫


t
M


FF


dseFdsFe


dsFe


ss


t


st


s


t


s


st


t t
st


ηηωη
ω


ωω


ω
ωω


ωω


ωη
ω


ωη
ω


ωη
ω


r


r
rr


rrrr


r


r


rr


rr


r


r


r


r


r


r


                  (2-30) 


 


It follows that  
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For derivatives of the momentum coefficients of any finite order ,...3,2,1=k the variation of 
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Form the difference to prove continuity of the k
th
 derivative of the momentum coefficient in 


time,  
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Simplify the difference of differentiated Fourier transforms at two distinct times 
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To investigate continuity of ),(
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tU k near time 0, evaluate (2-34) at ttt == 21 ,0   
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The upper bound on the momentum transform  is 
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The upper bound of (2-36) can be simplified as follows. 
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By the hypothesis on the transforms of the data functions  
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Since the variation of constants operator is defined on the smooth/ Schwartz transforms, 
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  is Schwartz and the convolution of Schwartz functions is a Schwartz function with 


no effect on the smoothness in time,  
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By (2-20), 
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It follows that  
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Not only  are the  |),(
ˆ
| )( ω


rr
tU k  bounded for sufficiently short time but for all finite forward time. 


Since )()( ˆ
,


ˆ kk FU
rr


 are Schwartz, )(ˆ kP  is Schwartz in 3Ω  for all forward time follow automatically 


from the given conditions on the boundary data. 


 


END PROOF 


 


 


The following proposition is used as a lemma for the next theorem. 


 


Proposition 2-2.  The inner product of  ),(
ˆ )( ω


rr
tU k  with the transformed Euler (convolution) term  


satisfies 
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The Fourier transform of the equation of continuity is 
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By the Liebnitz rule, the k
th
 order Euler term can be written 
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The previous quantity is bounded above by 
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The first equality follows by the Liebnitz rule and the fact that the time derivative distributes 


over the convolution, the second by the definition of the convolution. The third line follows by 


matrix vector multiplication, the fourth by the Schwartz inequality applied continuously to the 


both families of vector dot products in 3R  parameterized by 3Ω∈ω
r


 , the fifth by the definition 


of the inner product of a vector with itself 2|| xxx
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=⋅ . The final inequality follows by applying 
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Hence 
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END PROOF 


 


The next theorem extends the domain of definition of solutions of (2-11) by showing that 


solutions are bounded for all forward time. A frequency domain formula for the total mechanical 


energy of the average velocity and any time derivative of it also appears. This is the frequency 


domain analog of the extension of Leray’s energy law. It is equivalent to formula (1-4).   
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a. Then the following formulas are well defined 
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b. The solution of (2-12) and every finite time derivative ,..2,1,0),,(
ˆ )( =ktU k ω
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 of it has a unique 


extension (with respect to time) which is bounded and continuous  in t for all forward time,  


continuous (and asymptotically vanishing in 3Ω ) and jointly continuous and bounded almost 
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By Plancherel’s theorem  
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Next construct the formulas for the average energy of ,...2,1,0,
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 Then eliminate the 


modified Euler terms to simplify these formulas. Form the dot (Hermitian) product of each 
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equation (2-19) with the complex vector ,...2,1,0),,(
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integrate from 0 to t to obtain 
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Prior to integration from 0 to t, the transformed Euler term which would appear in (2-48) is   
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The higher order time derivatives of the transformed Euler term 
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vanish by proposition 2-2.  


 


 


 It follows immediately by (2-47), that 
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In particular 
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By (2-56) and the strict inequality of (2-47) , it follows that the time average of the potential 


energy is bounded for all forward time. Thus all terms appearing in formulas (2-48) are well 


defined for all forward time. 
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is bounded in t for all forward time 


uniformly bounded with respect to 3Ω∈ω
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. By the fundamental (extension) theory of ordinary 
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differential equations ,...2,1,0),,(
ˆ )( =ktU k ω


rr
is continuous for all forward time uniformly with 


respect to 3Ω∈ω
r


. 


 


By the corresponding inequalities (1-5) it follows that  ,...2,1,0),,()( =kxtU k rr
is in ))(( 321 RLL ∩  


for all forward time,  hence 0,...,2,1,0),,(
ˆ )( ≥= tktU k ω


rr
 is continuous and asymptotically 


vanishing as a function of ω
r
. Thus )(


ˆ 3


0


)( Ω∈CU k
rr


.  By the inequalities (2-47), 


.0,...,2,1,0),)((
ˆ 321)( ≥=Ω∩ tkLLU k


rrr
. 


 


END PROOF 


 


 


Lemma 2-4.  If 0,...,2,1,0),()(
ˆ


, 323)()()( ≥=⊂∈∇⋅ tkRLRSUFU kkk
rrrr


 such that  
)(kU


r
 satisfies 


the Navier-Stokes partial differential equation (1-1) and its finite time derivatives satisfy 


 


,...2,1,0,0,|),(|),( 2


0


)(


0


)()(


33


=≥∇<⋅ ∫ ∫∫ ∫ ktdsxdxsUdsxdxsFU


t


R


k


t


R


kk rrrrrrr
η                            (2-57a)                                                       


 


for all forward time if and only if 0,...2,1,0),(
ˆ


||,
ˆˆ 32)(2)()( ≥=Ω∈⋅ tkLUFU kkk


rrrr
ω and the 


solutions of the Navier-Stokes ordinary differential equations (2-1) and its finite time derivatives 


(2-20) satisfy 


 


,...2,1,0,0,|),(
ˆ


|||),(
ˆ


),(
ˆ


0


2)(2


0


)()(


33


=≥<⋅ ∫ ∫∫ ∫
ΩΩ


ktdssUdsdsFsU


t


k


t


kk ωωηωωω
rrrrrrrr


                  (2-57b)                                


 


for all forward time. 


 


PROOF 


 


By the strict inequality, the integral on the left of (2-57a) over 3R must be finite.  In order for the 


Fourier transforms which appear in (2-57b) to be well defined


0,...,2,1,0),(, 32)()()( ≥=∈∇⋅ tkRLUUF kkk
rrr


 if and only if 


0,...,2,1,0),(
ˆ


||,
ˆˆ 32)(2)()( ≥=Ω∈⋅ tkLUFU kkk


rrrr
ω  


Note that, since ,...2,1,0,)( =kF k
r


is Schwartz in 3Rx ∈
r


, 
)()( kk FU


rr
⋅ is integrable by  slderoH '&&  


inequality if only )( 31)( RLU k
rr


∈  without assuming (2-57a). 


 


Now suppose 
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,...2,1,0,0,|),(
ˆ


|||),(
ˆ


),(
ˆ


0


2)(2


0


)()(


33


=≥<⋅ ∫ ∫∫ ∫
ΩΩ


ktdsdsUdsdsFsU


t


k


t


kk ωωωηωωω
rrrrrrrrr


                  (2-58)               


 


By the definition of the Fourier transform, the previous inequalities hold if and only if  


 


.0,...,2,1,0


,|||),(|||),(),(
0


22)(


0


2)()(


3 33 3


≥=


∇<⋅ ∫ ∫ ∫∫ ∫ ∫
Ω


⋅−


Ω


⋅−


tk


dsdxdexsUdsdxdexsFxsU


t


R


xik


t


R


xikk ωηω ωω rrrrrrrrrr rrrr


             (2-59) 


 


But these inequalities hold if and only if 


 


,...2,1,0,0,|),(|),(),(
0


2)(


0


)()(


33


=≥∇<⋅ ∫ ∫∫ ∫ ktdsxdxsUdsxdxsFxsU


t


R


k


t


R


kk rrrrrrrr
η                            (2-60)                            


 


because 332 ,,1|| Rxe xi ∈Ω∈=⋅− rrrr


ωω . 


 


END PROOF 


 


Theorem 2-3. If ),(
ˆ ω


rr
tF , and all time derivatives are  Schwartz in 3Ω∈ω


r
 for all forward time 


and )(
ˆ
0 ω


rr
U  is Schwartz in 3Ω∈ω


r
 then any finite time derivative of ),(


ˆ ω
rr


tU  ( the solution of the 


equation of lemma 2-2) is Schwartz in 3Ω∈ω
r


. 


 


PROOF 


 


a. For any fixed kt,  the k
th
  derivative is Schwartz in 3Ω∈ω


r
 


 


.,|
ˆ


|||sup )(
3 WpU kp ∈∀∞<


Ω∈


rr
r ω
ω


                                                                                             (2-61) 


 


b.  The weighted upper bound is uniform in k 


 


.,|
ˆ


|||supsup )(
3 WpU kp


Wk ∈∀∞<
Ω∈∈


rr
r ω
ω


                                                                                (2-62)
 


 


c. The weighted upper bound is uniform for all 0≥t . 


 


.,|
ˆ


|||supsupsup )(


0 3 WpU kp


Wkt ∈∀∞<
Ω∈∈≥


rr
r ω
ω


                                                                      (2-63) 
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By the variation of constants formula, it suffices to show that the convolution integral is discrete 


Schwartz since 0


|| ˆ
),(


ˆ 2


Uet t
rrr r


ωηω −=Φ  are Schwartz in 
3Ω∈ω


r
 by inspection given the hypotheses 


on the initial and boundary conditions. 


    


Multiply the time convolution by any monomial formed by the product of any finite powers of 


the frequency components 


 


,3,2,1,0,,0
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ˆ


)
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)
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|||sup


|||
ˆ


|sup|
ˆ


|||sup


3


0


2


)(||)3(


3


)2(


2


)1(


1


)3(


3


)2(


2


)1(


10


||)3(


3


)2(


2


)1(


1


2


3


2


33


=≥∈>


−∗












































−


+≤


∫ −−
Ω∈
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Ω∈Ω∈
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t
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ppptppp
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rrrr


r


rr


rr


r


r


r


rr


η


ω
ω
ωω


ωωω


ωωωωωω


ωη
ω


ωη
ωω


                   (2-64) 


 


Simplify the upper bound on the Schwartz weighted Fourier transform of the momentum of (2-


64) 
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)
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dsFUUie
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ω
ω
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ωη
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r


r


           (2-65)


 


Since )(
ˆˆ 3


0 Ω∈ SU
rr
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)3(
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)2(


2


)1(


1


)3(


3


)2(


2


)1(


10


||


3


|
ˆ


|||sup|||
ˆ


|sup


,0


3


2


3 MUUe


Wpt


ppppppt ≤≤


∈≥∀


Ω∈


−


Ω∈


rr


r


r


r


r ωωωωωω
ω


ωη
ω


                         (2-66) 


Since 


 


)(
ˆˆ


),(
ˆˆ


)
ˆ


()(
ˆˆ 333 Ω∈Ω∈∗⇒Ω∈ SFSUUSU t


rrrrrrrr
ω                                                                        (2-67) 


 


it follows by (2-20)  (the norm on the matrix operator) that 
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ωωω


ωωωω


ω
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ωωω


ωωω


ωη


ωη


ωη
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ω


                         (2-68) 


 


Now switch to the vector norm Schwartz condition. 


 


It suffices to consider the integral. 


|])||)
ˆˆ


([|||sup(sup||||(sup2


|])
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dsFUUe


rrrrrr
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∫


∫


ωωω


ω
ω
ωω


ω


ω
ωη
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ωη
ω


                     (2-69) 


The previous inequality follows by the product inequality, the inequality for the product of 


suprema, the inequality relating suprema with respect to one vector parameter vs. one vector 


parameter and one variable and the fact that |.|||sup|.||| 3


pp ωω
ω


rr
r


Ω∈
≤  .  


 


)}.()({
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|])||)
ˆˆ


([|||sup(sup|)|||(sup2
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)()(


0


0


)(||2
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2
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kMkM


FUUdse kktp
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st


+≤


+∗× ≥Ω∈
−−
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η


ωωω
ω


ωη
ω


rrrrrr
rr


                   (2-70) 


 


The inequality above follows by integration for the first factor and the Schwartz bounds for each 


term of the second factor. 


 


 


The homogeneous term has a uniform upper bound 
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)1(
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)2(
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|
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|||sup
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3 MUUe
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∈≥∀


Ω∈
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r ωωωωωω
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ωη
ω


                       (2-71) 


 


The pressure function


 0,0)]},,(
ˆˆˆ


[{
||


1
),(ˆ 3


2


rrrrrrrrr
−Ω∈≥−∗⋅= ωωω


ω
ttFUUrrtP t                                                       (2-72) 
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is  Schwartz in ω
r
since tUU ω


rrr ˆ
,
ˆ


  are  Schwartz by hypothesis, the convolution of discrete 


Schwartz functions is Schwartz  and the difference of Schwartz functions )],(
ˆˆˆ


[ ωω
rrrrr


tFUU t −∗  is  


Schwartz. 


 


By the same reasoning any finite order time derivative of the pressure transform ),(ˆ ω
r


tP  is  


 Schwartz.   


  


END PROOF 


 


 


The following theorem is the main result of this paper. 


 


 


Theorem 2-4. Suppose 0,...,2,1,0),(, 3)()()( ≥=∈∇⋅ tkRSUFU kkk
rrrr


 where the ,...2,1,0,)( =kU k
r


satisfy the Navier-Stokes partial differential equations and its finite order time derivatives such 


that  


,...2,1,0,0,0,||||
0


2)(


0


)()( =>≥∇⋅<⋅ ∫ ∫∫ ∫ ktdsxdUdsxdFU


t


D


k


t


D


kk ηη
rrrrr


                                     (2-73)       


where )(kF
r


 is jointly smooth in ),( xt
r
, Schwartz in 3Rx ∈


r
and bounded in ),0[ ∞∈t . Then every 


finite time derivative of the solution of the Navier-Stokes momentum equation is bounded, 


continuous and uniquely determined in t. It is also smooth in 
3Rx ∈


r
for all forward time.  


 


PROOF 


The conclusion follows directly by the properties of the inverse Fourier transform representation 


U
ˆ̂r
of the velocity function, theorem 2-2 and theorem 2-3. In particular,  


.)),,0([
ˆ̂


)),,0([
ˆ


0),(
ˆ̂


0),(
ˆˆ


33


33


RxCUUCU


tRCUUtSU


∈∞∈=⇒Ω∈∞∈


≥∈=⇒≥Ω∈


∞∞


∞


rrrrrrr


rrrrr


ω


                                                       (2-74) 


 


By the formula in  lemma 2-2, each component of the pressure gradient satisfies the same 


properties as each component of the momentum vector (marginal smoothness in xt
r
, , uniqueness, 


and boundedness for all forward time). 


 


END PROOF 
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