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Abstract


Kramers’ law describes the mean transition time of an overdamped Brownian par-
ticle between local minima in a potential landscape. We review different approaches
that have been followed to obtain a mathematically rigorous proof of this formula. We
also discuss some generalisations, and a case in which Kramers’ law is not valid. This
review is written for both mathematicians and theoretical physicists, and endeavours
to link concepts and terminology from both fields.
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1 Introduction


The overdamped motion of a Brownian particle in a potential V is governed by a first-order
Langevin (or Smoluchowski) equation, usually written in the physics literature as


ẋ = −∇V (x) +
√


2ε ξt , (1.1)


where ξt denotes zero-mean, delta-correlated Gaussian white noise. We will rather adopt
the mathematician’s notation, and write (1.1) as the Itô stochastic differential equation


dxt = −∇V (xt) dt+
√


2εdWt , (1.2)


where Wt denotes d-dimensional Brownian motion. The potential is a function V : R d →
R , which we will always assume to be smooth and growing sufficiently fast at infinity.


The fact that the drift term in (1.2) has gradient form entails two important properties,
which greatly simplify the analysis:
1. There is an invariant probability measure, with the explicit expression


µ(dx) =
1
Z


e−V (x)/ε dx , (1.3)


where Z is the normalisation constant.
2. The system is reversible with respect to the invariant measure µ, that is, the transition


probability density satisfies the detailed balance condition


p(y, t|x, 0) e−V (x)/ε = p(x, t|y, 0) e−V (y)/ε . (1.4)
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Figure 1. Graph of a potential V in dimension d = 2, with two local minima x? and y?


and saddle z?.


The main question we are interested in is the following. Assume that the potential V
has several (meaning at least two) local minima. How long does the Brownian particle
take to go from one local minimum to another one?


To be more precise, let x? and y? be two local minima of V , and let Bδ(y?) be the ball
of radius δ centred in y?, where δ is a small positive constant (which may possibly depend
on ε). We are interested in characterising the first-hitting time of this ball, defined as the
random variable


τx
?


y? = inf{t > 0: xt ∈ Bδ(y?)} where x0 = x? . (1.5)


The two points x? and y? being local minima, the potential along any continuous path γ
from x? to y? must increase and decrease again, at least once but possibly several times.
We can determine the maximal value of V along such a path, and then minimise this value
over all continuous paths from x? to y?. This defines a communication height


H(x?, y?) = inf
γ:x?→y?


(
sup
z∈γ


V (z)
)
. (1.6)


Although there are many paths realising the infimum in (1.6), the communication height
is generically reached at a unique point z?, which we will call the relevant saddle between
x? and y?. In that case, H(x?, y?) = V (z?) (see Figure 1). One can show that generically,
z? is a critical point of index 1 of the potential, that is, when seen from z? the potential
decreases in one direction and increases in the other d − 1 directions. This translates
mathematically into ∇V (z?) = 0 and the Hessian ∇2V (z?) having exactly one strictly
negative and d− 1 strictly positive eigenvalues.


In order to simplify the presentation, we will state the main results in the case of a
double-well potential, meaning that V has exactly two local minima x? and y?, separated
by a unique saddle z? (Figure 1), henceforth referred to as “the double-well situation”.
The Kramers law has been extended to potentials with more than two local minima, and
we will comment on its form in these cases in Section 3.3 below.


In the context of chemical reaction rates, a relation for the mean transition time τx
?


y?


was first proposed by van t’Hoff, and later physically justified by Arrhenius [Arr89]. It
reads


E{τx?y? } ' C e[V (z?)−V (x?)]/ε . (1.7)
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The Eyring–Kramers law [Eyr35, Kra40] is a refinement of Arrhenius’ law, as it gives an
approximate value of the prefactor C in (1.7). Namely, in the one-dimensional case d = 1,
it reads


E{τx?y? } '
2π√


V ′′(x?)|V ′′(z?)|
e[V (z?)−V (x?)]/ε , (1.8)


that is, the prefactor depends on the curvatures of the potential at the starting minimum
x? and at the saddle z?. Smaller curvatures lead to longer transition times.


In the multidimensional case d > 2, the Eyring–Kramers law reads


E{τx?y? } '
2π


|λ1(z?)|


√
|det(∇2V (z?))|
det(∇2V (x?))


e[V (z?)−V (x?)]/ε , (1.9)


where λ1(z?) is the single negative eigenvalue of the Hessian ∇2V (z?). If we denote the
eigenvalues of ∇2V (z?) by λ1(z?) < 0 < λ2(z?) 6 · · · 6 λd(z?), and those of ∇2V (x?) by
0 < λ1(x?) 6 · · · 6 λd(x?), the relation (1.10) can be rewritten as


E{τx?y? } ' 2π


√
λ2(z?) . . . λd(z?)


|λ1(z?)|λ1(x?) . . . λd(x?)
e[V (z?)−V (x?)]/ε , (1.10)


which indeed reduces to (1.8) in the case d = 1. Notice that for d > 2, smaller curvatures
at the saddle in the stable directions (a “broader mountain pass”) decrease the mean
transition time, while a smaller curvature in the unstable direction increases it.


The question we will address is whether, under which assumptions and for which
meaning of the symbol ' the Eyring–Kramers law (1.9) is true. Answering this question
has taken a surprisingly long time, a full proof of (1.9) having been obtained only in
2004 [BEGK04].


In the sequel, we will present several approaches towards a rigorous proof of the Arrhe-
nius and Eyring–Kramers laws. In Section 2, we present the approach based on the theory
of large deviations, which allows to prove Arrhenius’ law for more general than gradient
systems, but fails to control the prefactor. In Section 3, we review different analytical
approaches, two of which yield a full proof of (1.9). Finally, in Section 4, we discuss some
situations in which the classical Eyring–Kramers law does not apply, but either admits a
generalisation, or has to be replaced by a different expression.
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2 Large deviations and Arrhenius’ law


The theory of large deviations has applications in many fields of probability [DZ98, DS89].
It allows in particular to give a mathematically rigorous framework to what is known in
physics as the path-integral approach, for a general class of stochastic differential equations
of the form


dxt = f(xt) dt+
√


2ε dWt , (2.1)


where f need not be equal to the gradient of a potential V (it is even possible to consider
an x-dependent diffusion coefficient


√
2ε g(xt) dWt). In this context, a large-deviation


principle is a relation stating that for small ε, the probability of sample paths being close
to a function ϕ(t) behaves like


P
{
xt ' ϕ(t), 0 6 t 6 T


}
' e−I(ϕ)/2ε (2.2)


(see (2.4) below for a mathematically precise formulation). The quantity I(ϕ) = I[0,T ](ϕ) is
called rate function or action functional. Its expression was determined by Schilder [Sch66]
in the case f = 0 of Brownian motion, using the Cameron–Martin–Girsanov formula.
Schilder’s result has been extended to general equations of the form (2.1) by Wentzell and
Freidlin [VF70], who showed that


I(ϕ) =
1
2


∫ T


0
‖ϕ̇(t)− f(ϕ(t))‖2 dt . (2.3)


Observe that I(ϕ) is nonnegative, and vanishes if and only if ϕ(t) is a solution of the
deterministic equation ϕ̇ = f(ϕ). One may think of the rate function as representing the
cost of tracking the function ϕ rather than following the deterministic dynamics.


A precise formulation of (2.2) is that for any set Γ of paths ϕ : [0, T ]→ R d, one has


− inf
Γ◦
I 6 lim inf


ε→0
2ε log P


{
(xt) ∈ Γ


}
6 lim sup


ε→0
2ε log P


{
(xt) ∈ Γ


}
6 − inf


Γ
I . (2.4)


For sufficiently well-behaved sets of paths Γ, the infimum of the rate function over the
interior Γ◦ and the closure Γ coincide, and thus


lim
ε→0


2ε log P
{


(xt) ∈ Γ
}


= − inf
Γ
I . (2.5)


Thus roughly speaking, we can write P{(xt) ∈ Γ} ' e− infΓ I/2ε, but we should keep in
mind that this is only true in the sense of logarithmic equivalence (2.5).


Remark 2.1. The large-deviation principle (2.4) can be considered as an infinite-dimen-
sional version of Laplace’s method. In the finite-dimensional case of functions w : R d → R ,
Laplace’s method yields


lim
ε→0


2ε log
∫


Γ
e−w(x)/2ε dx = − inf


Γ
w , (2.6)


and also provides an asymptotic expansion for the prefactor C(ε) such that∫
Γ


e−w(x)/2ε dx = C(ε) e− infΓ w/2ε . (2.7)


This approach can be extended formally to the infinite-dimensional case, and is often used
to derive subexponential corrections to large-deviation results (see e.g. [MS93]). We are
not aware, however, of this procedure being justified mathematically.
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D


x?


xτ


Figure 2. The setting of Theorems 2.2 and 2.3. The domain D contains a unique stable
equilibrium point x?, and all orbits of the deterministic system ẋ = f(x) starting in D
converge to x?.


Let us now explain how the large-deviation principle (2.4) can be used to prove Ar-
rhenius’ law. Let x? be a stable equilibrium point of the deterministic system ẋ = f(x).
In the gradient case f = −∇V , this means that x? is a local minimum of V . Consider a
domain D ⊂ R d whose closure is included in the domain of attraction of x? (all orbits of
ẋ = f(x) starting in D converge to x?, see Figure 2). The quasipotential is the function
defined for z ∈ D by


V (z) = inf
T>0


inf
ϕ:ϕ(0)=x?,ϕ(T )=z


I(ϕ) . (2.8)


It measures the cost of reaching z in arbitrary time.


Theorem 2.2 ([VF69, VF70]). Let τ = inf{t > 0: xt 6∈ D} denote the first-exit time of
xt from D. Then for any initial condition x0 ∈ D, we have


lim
ε→0


2ε log Ex0 {τ} = inf
z∈∂D


V (z) =:V . (2.9)


Sketch of proof. First one shows that for any x0 ∈ D, it is likely to hit a small neigh-
bourhood of x? in finite time. The large-deviation principle shows the existence of a time
T > 0, independent of ε, such that the probability of leaving D in time T is close to
p = e−V /2ε. Using the Markov property to restart the process at multiples of T , one
shows that the number of time intervals of length T needed to leave D follows an approx-
imately geometric distribution, with expectation 1/p = eV /2ε (these time intervals can be
viewed as repeated “attempts” of the process to leave D). The errors made in the different
approximations vanish when taking the limit (2.9).


Wentzell and Freidlin also show that if the quasipotential reaches its minimum on ∂D
at a unique, isolated point, then the first-exit location xτ concentrates in that point as
ε→ 0. As for the distribution of τ , Day has shown that it is asymptotically exponential:


Theorem 2.3 ([Day83]). In the situation described above,


lim
ε→0


P
{
τ > sE{τ}


}
= e−s (2.10)


for all s > 0.
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In general, the quasipotential V has to be determined by minimising the rate func-
tion (2.3), using either the Euler–Lagrange equations or the associated Hamilton equations.
In the gradient case f = −∇V , however, a remarkable simplification occurs. Indeed, we
can write


I(ϕ) =
1
2


∫ T


0
‖ϕ̇(t) +∇V (ϕ(t))‖2 dt


=
1
2


∫ T


0
‖ϕ̇(t)−∇V (ϕ(t))‖2 dt+ 2


∫ T


0
〈ϕ̇(t),∇V (ϕ(t))〉dt


=
1
2


∫ T


0
‖ϕ̇(t)−∇V (ϕ(t))‖2 dt+ 2


[
V (ϕ(T ))− V (ϕ(0))


]
. (2.11)


The first term on the right-hand vanishes if ϕ(t) is a solution of the time-reversed deter-
ministic system ϕ̇ = +∇V (ϕ). Connecting a local minimum x? to a point in the basin of
attraction of x? by such a solution is possible, if one allows for arbitrarily long time. Thus
it follows that the quasipotential is given by


V = 2
[
inf
∂D


V − V (x?)
]
. (2.12)


Corollary 2.4. In the double-well situation,


lim
ε→0


ε log E
{
τBδ(y?)


}
= V (z?)− V (x?) . (2.13)


Sketch of proof. Let D be a set containing x?, and contained in the basin of attraction
of x?. One can choose D in such a way that its boundary is close to z?, and that the
minimum of V on ∂D is attained close to z?. Theorem 2.2 and (2.12) show that a relation
similar to (2.13) holds for the first-exit time from D. Then one shows that once xt has
left D, the average time needed to hit a small neighbourhood of y? is negligible compared
to the expected first-exit time from D.


Remark 2.5.


1. The case of more than two stable equilibrium points (or more general attractors) can
be treated by organising these points in a hierarchy of “cycles”, which determines the
exponent in Arrhenius’ law and other quantities of interest. See [FW98, Fre00].


2. As we have seen, the large-deviations approach is not limited to the gradient case, but
also allows to compute the exponent for irreversible systems, by solving a variational
problem. However, to our knowledge a rigorous computation of the prefactor by this
approach has not been achieved, as it would require proving that the large-deviation
functional I also yields the correct subexponential asymptotics.
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Figure 3. Symmetric random walk on Z with two absorbing sets A, B.


3 Analytic approaches and Kramers’ law


The different analytic approaches to a proof of Kramers’ law are based on the fact that
expected first-hitting times, when considered as a function of the starting point, satisfy
certain partial differential equations related to Feynman–Kac formulas.


To illustrate this fact, we consider the case of the symmetric simple random walk on
Z . Fix two disjoint sets A,B ⊂ Z , for instance of the form A = (−∞, a] and B = [b,∞)
with a < b (Figure 3). A first quantity of interest is the probability of hitting A before B,
when starting in a point x between A and B:


hA,B(x) = Px{τA < τB} . (3.1)


For reasons that will become clear in Section 3.3, hA,B is called the equilibrium potential
between A and B. Using the Markov property to restart the process after the first step,
we can write


hA,B(x) = Px{τA < τB, X1 = x+ 1}+ Px{τA < τB, X1 = x− 1}
= Px{τA < τB|X1 = x+ 1}Px{X1 = x+ 1}


+ Px{τA < τB|X1 = x− 1}Px{X1 = x− 1}
= hA,B(x+ 1) · 1


2 + hA,B(x− 1) · 1
2 . (3.2)


Taking into account the boundary conditions, we see that hA,B(x) satisfies the linear
Dirichlet boundary value problem


∆hA,B(x) = 0 , x ∈ (A ∪B)c ,
hA,B(x) = 1 , x ∈ A ,


hA,B(x) = 0 , x ∈ B , (3.3)


where ∆ denotes the discrete Laplacian


(∆h)(x) = h(x− 1)− 2h(x) + h(x+ 1) . (3.4)


A function h satisfying ∆h = 0 is called a (discrete) harmonic function. In this one-
dimensional situation, it is easy to solve (3.3): hA,B is simply a linear function of x
between A and B.


A similar boundary value problem is satisfied by the mean first-hitting time of A,
wA(x) = Ex {τA}, assuming that A is such that the expectation exist (that is, the random
walk on Ac must be positive recurrent). Here is an elementary computation (a shorter
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derivation can be given using conditional expectations):


wA(x) =
∑
k


kPx{τA = k}


=
∑
k


k
[


1
2Px−1{τA = k − 1}+ 1


2Px+1{τA = k − 1}
]


=
∑
`


(`+ 1)
[


1
2Px−1{τA = `}+ 1


2Px+1{τA = `}
]


= 1
2wA(x− 1) + 1


2wA(x+ 1) + 1 . (3.5)


In the last line we have used the fact that τA is almost surely finite, as a consequence of
positive recurrence. It follows that wA(x) satisfies the Poisson problem


1
2∆wA(x) = −1 , x ∈ Ac ,


wA(x) = 0 , x ∈ A . (3.6)


Similar relations can be written for more general quantities of the form Ex
{


eλτA 1{τA<τB}
}


.
In the case of Brownian motion on R d, the probability hA,B(x) of hitting a set A before


another set B satisfies the Dirichlet problem


1
2∆hA,B(x) = 0 , x ∈ (A ∪B)c ,


hA,B(x) = 1 , x ∈ A ,


hA,B(x) = 0 , x ∈ B , (3.7)


where ∆ now denotes the usual Laplacian in R d, and the expected first-hitting time of A
satisfies the Poisson problem


1
2∆wA(x) = −1 , x ∈ Ac ,


wA(x) = 0 , x ∈ A . (3.8)


For more general diffusions of the form


dxt = −∇V (xt) dt+
√


2εdWt , (3.9)


Dynkin’s formula [Dyn65, Øks85] shows that similar relations as (3.7), (3.8) hold, with
1
2∆ replaced by the infinitesimal generator of the diffusion,


L = ε∆−∇V (x) · ∇ . (3.10)


Note that L is the adjoint of the operator appearing in the Fokker–Planck equation,
which is more familiar to physicists. Thus by solving a boundary value problem involving
a second-order differential operator, one can in principle compute the expected first-hitting
time, and thus validate Kramers’ law. This turns out to be possible in the one-dimensional
case, but no general solution exists in higher dimension, where one has to resort to per-
turbative techniques instead.


Remark 3.1. Depending on the set A, Systems (3.6) and (3.7) need not admit a bounded
solution, owing to the fact that the symmetric random walk and Brownian motion are
null recurrent in dimensions d = 1, 2 and transient in dimensions d > 3. A solution
exists, however, for sets A with bounded complement. The situation is less restrictive for
diffusions in a confining potential V , which are usually positive recurrent.
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Figure 4. Example of a one-dimensional potential for which Kramers’ law (3.15) holds.


3.1 The one-dimensional case


In the case d = 1, the generator of the diffusion has the form


(Lu)(x) = εu′′(x)− V ′(x)u′(x) , (3.11)


and the equations for hA,B(x) = Px{τA < τB} and wA(x) = Ex {τA} can be solved
explicitly.


Consider the case where A = (−∞, a) and B = (b,∞) for some a < b, and x ∈ (a, b).
Then it is easy to see that the equilibrium potential is given by


hA,B(x) =


∫ b


x
e−V (y)/ε dy∫ b


a
e−V (y)/ε dy


. (3.12)


Laplace’s method to lowest order shows that for small ε,


hA,B(x) ' exp
{
−1
ε


[
sup
[a,b]


V − sup
[x,b]


V


]}
. (3.13)


As one expects, the probability of hitting A before B is close to 1 when the starting point
x lies in the basin of attraction of a, and exponentially small otherwise.


The expected first-hitting time of A is given by the double integral


wA(x) =
1
ε


∫ x


a


∫ ∞
z


e[V (z)−V (y)]/ε dy dz . (3.14)


If we assume that x > y? > z? > a, where V has a local maximum in z? and a local
minimum in y? (Figure 4), then the integrand is maximal for (y, z) = (y?, z?) and Laplace’s
method yields exactly Kramers’ law in the form


Ex {τA} = wA(x) =
2π√


|V ′′(z?)|V ′′(y?)
e[V (z?)−V (y?)]/ε


[
1 +O(


√
ε)
]
. (3.15)
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3.2 WKB theory


The perturbative analysis of the infinitesimal generator (3.10) of the diffusion in the limit
ε → 0 is strongly connected to semiclassical analysis. Note that L is not self-adjoint for
the canonical scalar product, but as a consequence of reversibility, it is in fact self-adjoint
in L2(R d, e−V/ε dx). This becomes immediately apparent when writing L in the equivalent
form


L = ε eV/ε∇ · e−V/ε∇ (3.16)


(just write out the weighted scalar product). It follows that the conjugated operator


L̃ = e−V/2ε L eV/2ε (3.17)


is self-adjoint in L2(R d, dx). In fact, a simple computation shows that L̃ is a Schrödinger
operator of the form


L̃ = ε∆ +
1
ε
U(x) , (3.18)


where the potential U is given by


U(x) =
1
2
ε∆V (x)− 1


4
‖∇V (x)‖2 . (3.19)


Example 3.2. For a double-well potential of the form


V (x) =
1
4
x4 − 1


2
x2 , (3.20)


the potential U in the Schrödinger operator takes the form


U(x) = −1
4
x2(x2 − 1)2 +


1
2
ε(x2 − 1)2 . (3.21)


Note that this potential has 3 local minima at almost the same height, namely two of
them at ±1 where U(±1) = 0 and one at 0 where U(0) = ε/2.


One may try to solve the Poisson problem LwA = −1 by WKB-techniques in order
to validate Kramers’ formula. A closely related problem is to determine the spectrum
of L. Indeed, it is known that if the potential V has n local minima, then L admits n
exponentially small eigenvalues, which are related to the inverse of expected transition
times between certain potential minima. The associated eigenfunctions are concentrated
in potential wells and represent metastable states.


The WKB-approach has been investigated, e.g., in [SM79, BM88, KM96, MS97].
See [Kol00] for a recent review. A mathematical justification of this formal procedure
is often possible, using hard analytical methods such as microlocal analysis [HS84, HS85b,
HS85a, HS85c], which have been developed for quantum tunnelling problems. The diffi-
culty in the case of Kramers’ law is that due to the form (3.19) of the Schrödinger potential
U , a phenomenon called “tunnelling through nonresonant wells” prevents the existence of
a single WKB ansatz, valid in all R d. One thus has to use different ansatzes in different
regions of space, whose asymptotic expansions have to be matched at the boundaries, a
procedure that is difficult to justify mathematically.


Rigorous results on the eigenvalues of L have nevertheless been obtained with different
methods in [HKS89, Mic95, Mat95], but without a sufficiently precise control of their
subexponential behaviour as would be required to rigorously prove Kramers’ law.
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y A


Figure 5. Green’s function GAc(x, y) for Brownian motion is equal to the electrostatic
potential in x created by a unit charge in y and a grounded conductor in A.


3.3 Potential theory


Techniques from potential theory have been widely used in probability theory [Kak45,
Doo84, DS84, Szn98]. Although Wentzell may have had in mind its application to Kramers’
law [Ven73], this program has been systematically carried out only quite recently by Bovier,
Eckhoff, Gayrard and Klein [BEGK04, BGK05].


We will explain the basic idea of this approach in the simple setting of Brownian motion
in R d, which is equivalent to an electrostatics problem. Recall that the first-hitting time
τA of a set A ⊂ R d satisfies the Poisson problem (3.6). It can thus be expressed as


wA(x) = −
∫
Ac
GAc(x, y) dy , (3.22)


where GAc(x, y) denotes Green’s function, which is the formal solution of


1
2∆u(x) = δ(x− y) , x ∈ Ac ,


u(x) = 0 , x ∈ A . (3.23)


Note that in electrostatics, GAc(x, y) represents the value at x of the electric potential
created by a unit point charge at y, when the set A is occupied by a grounded conductor
(Figure 5).


Similarly, the solution hA,B(x) = Px{τA < τB} of the Dirichlet problem (3.7) represents
the electric potential at x, created by a capacitor formed by two conductors at A and B,
at respective electric potential 1 and 0 (Figure 6). Hence the name equilibrium potential.
If ρA,B denotes the surface charge density on the two conductors, the potential can thus
be expressed in the form


hA,B(x) =
∫
∂A
GBc(x, y)ρA,B(dy) . (3.24)


Note finally that the capacitor’s capacity is simply equal to the total charge on either of
the two conductors, given by


capA(B) =
∣∣∣∣∫
∂A
ρA,B(dy)


∣∣∣∣ . (3.25)
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Figure 6. The function hA,B(x) = Px{τA < τB} is equal to the electric potential in x of
a capacitor with conductors in A and B, at respective potential 1 and 0.


The key observation is that even though we know neither Green’s function, nor the
surface charge density, the expressions (3.22), (3.24) and (3.25) can be combined to yield a
useful relation between expected first-hitting time and capacity. Indeed, let C be a small
ball centred in x. Then we have∫


Ac
hC,A(y) dy =


∫
Ac


∫
∂C
GAc(y, z)ρC,A(dz) dy


= −
∫
∂C
wA(z)ρC,A(dz) . (3.26)


We have used the symmetry GAc(y, z) = GAc(z, y), which is a consequence of reversibility.
Now since C is a small ball, if wA does not vary too much in C, the last term in (3.26)
will be close to wA(x) capC(A). This can be justified by using a Harnack inequality, which
provides bounds on the oscillatory part of harmonic functions. As a result, we obtain the
estimate


Ex
{
τA
}


= wA(x) '


∫
Ac
hC,A(y) dy


capC(A)
. (3.27)


This relation is useful because capacities can be estimated by a variational principle.
Indeed, using again the electrostatics analogy, for unit potential difference, the capacity
is equal to the capacitor’s electrostatic energy, which is equal to the total energy of the
electric field ∇h:


capA(B) =
∫


(A∪B)c
‖∇hA,B(x)‖2 dx . (3.28)


In potential theory, this integral is known as a Dirichlet form. A remarkable fact is that
the capacitor at equilibrium minimises the electrostatic energy, namely,


capA(B) = inf
h∈HA,B


∫
(A∪B)c


‖∇h(x)‖2 dx , (3.29)


where HA,B denotes the set of all sufficiently regular functions h satisfying the boundary
conditions in (3.7). Similar considerations can be made in the case of general reversible
diffusions of the form


dxt = −∇V (xt) dt+
√


2εdWt , (3.30)
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a crucial point being that reversibility implies the symmetry


e−V (x)/εGAc(x, y) = e−V (y)/εGAc(y, x) . (3.31)


This allows to obtain the estimate


Ex
{
τA
}


= wA(x) '


∫
Ac
hC,A(y) e−V (y)/ε dy


capC(A)
, (3.32)


where the capacity is now defined as


capA(B) = inf
h∈HA,B


∫
(A∪B)c


‖∇h(x)‖2 e−V (x)/ε dx . (3.33)


The numerator in (3.32) can be controlled quite easily. In fact, rather rough a priori
bounds suffice to show that if x? is a potential minimum, then hC,A is exponentially close
to 1 in the basin of attraction of x?. Thus by straightforward Laplace asymptotics, we
obtain ∫


Ac
hC,A(y) e−V (y)/ε dy =


(2πε)d/2 e−V (x?)/ε√
det(∇2V (x?))


[
1 +O(


√
ε|log ε|)


]
. (3.34)


Note that this already provides one “half” of Kramers’ law (1.9). The other half thus
has to come from the capacity capC(A), which can be estimated with the help of the
variational principle (3.33).


Theorem 3.3 ([BEGK04]). In the double-well situation, Kramers’ law holds in the sense
that


Ex
{
τBε(y?)


}
=


2π
|λ1(z?)|


√
|det(∇2V (z?))|
det(∇2V (x?))


e[V (z?)−V (x?)]/ε
[
1 +O(ε1/2|log ε|3/2)


]
, (3.35)


where Bε(y?) is the ball of radius ε (the same ε as in the diffusion coefficient) centred
in y?.


Sketch of proof. In view of (3.32) and (3.34), it is sufficient to obtain sharp upper
and lower bounds on the capacity, of the form


capC(A) =
1


2π


√
(2πε)d|λ1(z)|
λ2(z) . . . λd(z)


e−V (z)/ε
[
1 +O(ε1/2|log ε|3/2)


]
. (3.36)


The variational principle (3.33) shows that the Dirichlet form of any function h ∈ HA,B
provides an upper bound on the capacity. It is thus sufficient to construct an appropriate
h. It turns out that taking h(x) = h1(x1), depending only on the projection x1 of x on the
unstable manifold of the saddle, with h1 given by the solution (3.12) of the one-dimensional
case, does the job.


The lower bound is a bit more tricky to obtain. Observe first that restricting the
domain of integration in the Dirichlet form (3.33) to a small rectangular box centred in
the saddle decreases the value of the integral. Furthermore, the integrand ‖∇h(x)‖2 is
bounded below by the derivative in the unstable direction squared. For given values of
the equilibrium potential hA,B on the sides of the box intersecting the unstable manifold
of the saddle, the Dirichlet form can thus be bounded below by solving a one-dimensional
variational problem. Then rough a priori bounds on the boundary values of hA,B yield
the result.
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x?1


x?2


x?3


h1


h2


H


Figure 7. Example of a three-well potential, with associated metastable hierarchy. The
relevant communication heights are given by H(x?2, {x?1, x?3}) = h2 and H(x?1, x


?
3) = h1.


Remark 3.4. For simplicity, we have only presented the result on the expected transition
time for the double-well situation. Results in [BEGK04, BGK05] also include the following
points:
1. The distribution of τBε(y) is asymptotically exponential, in the sense of (2.10).
2. In the case of more than 2 local minima, Kramers’ law holds for transitions between


local minima provided they are appropriately ordered. See Example 3.5 below.
3. The small eigenvalues of the generator L can be sharply estimated, the leading terms


being equal to inverses of mean transition times.
4. The associated eigenfunctions of L are well-approximated by equilibrium potentials
hA,B for certain sets A,B.


If the potential V has n local minima, there exists an ordering


x?1 ≺ x?2 ≺ · · · ≺ x?n (3.37)


such that Kramers’ law holds for the transition time from each x?k+1 to the set Mk =
{x?1, . . . , x?k}. The ordering is defined in terms of communication heights by the condition


H(x?k,Mk−1) 6 min
i<k


H(x?i ,Mk \ x?i )− θ (3.38)


for some θ > 0. This means that the minima are ordered from deepest to shallowest.


Example 3.5. Consider the three-well potential shown in Figure 7. The metastable
ordering is given by


x?3 ≺ x?1 ≺ x?2 , (3.39)


and Kramers’ law holds in the form


Ex?1
{
τ3


}
' C1 eh1/ε , Ex?2


{
τ{1,3}


}
' C2 eh2/ε , (3.40)


where the constants C1, C2 depend on second derivatives of V . However, it is not true
that Ex?2 {τ3} ' C2 eh2/ε. In fact, Ex?2 {τ3} is rather of the order eH/ε. This is due to the
fact that even though when starting in x?2, the process is very unlikely to hit x?1 before x?3
(this happens with a probability of order e−(h1−H)/ε), this is overcompensated by the very
long waiting time in the well x?1 (of order eh1/ε) in case this happens.
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3.4 Witten Laplacian


In this section, we give a brief account of another successful approach to proving Kramers’
law, based on WKB theory for the Witten Laplacian. It provides a good example of the
fact that problems may be made more accessible to analysis by generalising them.


Given a compact, d-dimensional, orientable manifold M , equipped with a smooth
metric g, let Ωp(M) be the set of differential forms of order p on M . The exterior derivative
d maps a p-form to a (p+ 1)-form. We write d(p) for the restriction of d to Ωp(M). The
sequence


0→ Ω0(M) d(0)


−−→ Ω1(M) d(1)


−−→ . . .
d(d−1)


−−−−→ Ωd(M) d(d)


−−→ 0 (3.41)


is called the de Rham complex associated with M .
Differential forms in the image im d(p−1) are called exact, while differential forms in the


kernel ker d(p) are called closed. Exact forms are closed, that is, d(p) ◦ d(p−1) = 0 or in short
d2 = 0. However, closed forms are not necessarily exact. Hence the idea of considering
equivalence classes of differential forms differing by an exact form. The vector spaces


Hp(M) =
ker d(p)


im d(p−1)
(3.42)


are thus not necessarily trivial, and contain information on the global topology of M .
They form the so-called de Rham cohomology.


The metric g induces a natural scalar product 〈·, ·〉p on Ωp(M) (based on the Hodge
isomorphism ∗). The codifferential on M is the formal adjoint d∗ of d, which maps (p+1)-
forms to p-forms and satisfies


〈dω, η〉p+1 = 〈ω,d∗ η〉p (3.43)


for all ω ∈ Ωp(M) and η ∈ Ωp+1(M). The Hodge Laplacian is defined as the symmetric
non-negative operator


∆H = d d∗+ d∗ d = (d + d∗)2 , (3.44)


and we write ∆(p)
H for its restriction to Ωp. In the Euclidean caseM = R d, using integration


by parts in (3.43) shows that
∆(0)
H = −∆ , (3.45)


where ∆ is the usual Laplacian. Differential forms γ in the kernel Hp∆(M) = ker ∆(p)
H


are called p-harmonic forms. They are both closed (d γ = 0) and co-closed (d∗ γ = 0).
Hodge has shown (see, e.g. [GH94]) that any differential form ω ∈ Ωp(M) admits a unique
decomposition


ω = dα+ d∗ β + γ , (3.46)


where γ is p-harmonic. As a consequence, Hp∆(M) is isomorphic to the pth de Rham
cohomology group Hp(M).


Given a potential V : M → R , the Witten Laplacian is defined in a similar way as the
Hodge Laplacian by


∆V,ε = dV,ε d∗V,ε + d∗V,ε dV,ε , (3.47)


where dV,ε denotes the deformed exterior derivative


dV,ε = ε e−V/2ε d eV/2ε . (3.48)
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As before, we write ∆(p)
V,ε for the restriction of ∆V,ε to Ωp(M). A direct computation shows


that in the Euclidean case M = R d,


∆(0)
V,ε = −ε2∆ +


1
4
‖∇V ‖2 − 1


2
ε∆V , (3.49)


which is equivalent, up to a scaling, to the Schrödinger operator (3.18).
The interest of this approach lies in the fact that while eigenfunctions of ∆(0)


V,ε are
concentrated near local minima of the potential V , those of ∆(p)


V,ε for p > 1 are concentrated
near saddles of index p of V . This makes them easier to approximate by WKB theory.
The intertwining relations


∆(p+1)
V,ε d(p)


V,ε = d(p)
V,ε ∆(p)


V,ε , (3.50)


which follow from d2 = 0, then allow to infer more precise information on the spectrum
of ∆(0)


V,ε, and hence of the generator L of the diffusion [HN05].
This approach has been used by Helffer, Klein and Nier [HKN04] to prove Kramers’


law (1.9) with a full asymptotic expansion of the prefactor C = C(ε), and in [HN06] to
describe the case of general manifolds with boundary. General expressions for the small
eigenvalues of all p-Laplacians have been recently derived in [LPNV11].


4 Generalisations and limits


In this section, we discuss two generalisations of Kramers’ formula, and one irreversible
case, where Arrhenius’ law still holds true, but the prefactor is no longer given by Kramers’
law.


4.1 Non-quadratic saddles


Up to now, we have assumed that all critical points are quadratic saddles, that is, with a
nonsingular Hessian. Although this is true generically, as soon as one considers potentials
depending on one or several parameters, degenerate saddles are bound to occur. See for
instance [BFG07a, BFG07b] for a natural system displaying many bifurcations involving
nonquadratic saddles. Obviously, Kramers’ law (1.9) cannot be true in the presence of
singular Hessians, since it would predict either a vanishing or an infinite prefactor. In fact,
in such cases the prefactor will depend on higher-order terms of the Taylor expansion of
the potential at the relevant critical points [Ste05]. The main problem is thus to determine
the prefactor’s leading term.


There are two (non-exclusive) cases to be considered: the starting potential minimum
x? or the relevant saddle z? is non-quadratic. The potential-theoretic approach presented
in Section 3.3 provides a simple way to deal with both cases. In the first case, it is in fact
sufficient to carry out Laplace’s method for (3.34) when the potential V has a nonquadratic
minimum in x?, which is straightforward.


We discuss the more interesting case of the saddle z? being non-quadratic. A general
classification of non-quadratic saddles, based on normal-form theory, is given in [BG10].


Consider the case where in appropriate coordinates, the potential near the saddle
admits an expansion of the form


V (y) = −u1(y1) + u2(y2, . . . , yk) +
1
2


d∑
j=k+1


λjy
2
j +O(‖y‖r+1) , (4.1)


16







for some r > 2 and 2 6 k 6 d. The functions u1 and u2 may take negative values in a small
neighbourhood of the origin, of the order of some power of ε, but should become positive
and grow outside this neighbourhood. In that case, we have the following estimate of the
capacity:


Theorem 4.1 ([BG10]). There exists an explicit β > 0, depending on the growth of u1


and u2, such that in the double-well situation the capacity is given by


ε


∫
R k−1


e−u2(y2,...,yk)/ε dy2 . . . dyk∫ ∞
−∞


e−u1(y1)/ε dy1


d∏
j=k+1


√
2πε
λj


[
1 +O(εβ|log ε|1+β)


]
. (4.2)


We discuss one particular example, involving a pitchfork bifurcation. See [BG10] for
more examples.


Example 4.2. Consider the case k = 2 with


u1(y1) = −1
2
|λ1|y2


1 ,


u2(y2) =
1
2
λ2y


2
2 + C4y


4
2 , (4.3)


where λ1 < 0 and C4 > 0 are bounded away from 0. We assume that the potential
is even in y2. For λ2 > 0, the origin is an isolated quadratic saddle. At λ2 = 0, the
origin undergoes a pitchfork bifurcation, and for λ2 < 0, there are two saddles at y2 =
±
√
|λ2|/4C4 +O(λ2). Let µ1, . . . , µd denote the eigenvalues of the Hessian of V at these


saddles.
The integrals in (4.2) can be computed explicitly, and yield the following prefactors in


Kramers’ law:
• For λ2 > 0, the prefactor is given by


C(ε) = 2π


√
(λ2 +


√
2εC4 )λ3 . . . λd


|λ1| det(∇2V (x?))
1


Ψ+(λ2/
√


2εC4)
, (4.4)


where the function Ψ+ is bounded above and below by positive constants, and is given
in terms of the modified Bessel function of the second kind K1/4 by


Ψ+(α) =


√
α(1 + α)


8π
eα


2/16K1/4


(
α2


16


)
. (4.5)


• For λ2 < 0, the prefactor is given by


C(ε) = 2π


√
(µ2 +


√
2εC4 )µ3 . . . µd


|µ1| det(∇2V (x?))
1


Ψ−(µ2/
√


2εC4)
, (4.6)


where the function Ψ− is again bounded above and below by positive constants, and
given in terms of the modified Bessel function of the first kind I±1/4 by


Ψ−(α) =


√
πα(1 + α)


32
e−α


2/64


[
I−1/4


(
α2


64


)
+ I1/4


(
α2


64


)]
. (4.7)
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Figure 8. The prefactor C(ε) in Kramers’ law when the potential undergoes a pitchfork
bifurcation as the parameter λ2 changes sign. The minimal value of C(ε) has order ε1/4.


As long as λ2 is bounded away from 0, we recover the usual Kramers prefactor. When
|λ2| is smaller than


√
ε, however, the term


√
2εC4 dominates, and yields a prefactor of


order ε1/4 (see Figure 8). The exponent 1/4 is characteristic of this particular type of
bifurcation.


The functions Ψ± determine a multiplicative constant, which is close to 1 when λ2 �√
ε, to 2 when λ2 � −


√
ε, and to Γ(1/4)/(25/4√π) for |λ2| �


√
ε. The factor 2 for large


negative λ2 is due to the presence of two saddles.


4.2 SPDEs


Metastability can also be displayed by parabolic stochastic partial differential equations
of the form


∂tu(t, x) = ∂xxu(t, x) + f(u(t, x)) +
√


2εẄtx , (4.8)


where Ẅtx denotes space-time white noise (see, e.g. [Wal86]). We consider here the simplest
case where u(t, x) takes values in R , and x belongs to an interval [0, L], with either periodic
or Neumann boundary conditions (b.c.). Equation (4.8) can be considered as an infinite-
dimensional gradient system, with potential


V [u] =
∫ L


0


[
1
2
u′(x)2 + U(u(x))


]
dx , (4.9)


where U ′(x) = −f(x). Indeed, using integration by parts one obtains that the Fréchet
derivative of V in the direction v is given by


d
dη
V [u+ ηv]


∣∣∣
η=0


= −
∫ L


0


[
u′′(x) + f(u(x))


]
v(x) dx , (4.10)


which vanishes on stationary solutions of the deterministic system ∂tu = ∂xxu+ f(u).
In the case of the double-well potential U(u) = 1


4u
4− 1


2u
2, the equivalent of Arrhenius’


law has been proved by Faris and Jona-Lasinio [FJL82], based on a large-deviation princi-
ple. For both periodic and Neumann b.c., V admits two global minima u±(x) ≡ ±1. The
relevant saddle between these solutions depends on the value of L. For Neumann b.c., it
is given by


u0(x) =


0 if L 6 π ,


±
√


2m
m+1 sn


(
x√
m+1


+ K(m),m
)


if L > π ,
(4.11)


18







where 2
√
m+ 1 K(m) = L, K denotes the elliptic integral of the first kind, and sn denotes


Jacobi’s elliptic sine. There is a pitchfork bifurcation at L = π. The exponent in Arrhenius’
law is given by the difference V [u0] − V [u−], which can be computed explicitly in terms
of elliptic integrals.


The prefactor in Kramers’ law has been computed by Maier and Stein, for various
b.c., and L bounded away from the bifurcation value (L = π for Neumann and Dirichlet
b.c., L = 2π for periodic b.c.) [MS01, MS03, Ste04]. The basic observation is that the
second-order Fréchet derivative of V at a stationary solution u is the quadratic form


(v1, v2) 7→ 〈v1, Q[u]v2〉 , (4.12)


where
Q[u]v(x) = −v′′(x)− f ′(u(x))v(x) . (4.13)


Thus the rôle of the eigenvalues of the Hessian is played by the eigenvalues of the second-
order differential operator Q[u], compatible with the given b.c. For instance, for Neumann
b.c. and L < π, the eigenvalues at the saddle u0 are of the form −1 + (πk/L)2, k =
0, 1, 2, . . . , while the eigenvalues at the local minimum u− are given by 2 + (πk/L)2,
k = 0, 1, 2, . . . . Thus formally, the prefactor in Kramers’ law is given by the ratio of
infinite products


C =
1


2π


√∏∞
k=0|−1 + (πk/L)2|∏∞
k=0[2 + (πk/L)2]


=
1


2π


√√√√1
2


∞∏
k=1


1− (L/πk)2


1 + 2(L/πk)2
= 23/4π


√
sinL


sinh(
√


2L)
. (4.14)


The determination of C for L > π requires the computation of ratios of spectral de-
terminants, which can be done using path-integral techniques (Gelfand’s method, see
also [For87, MT95, CdV99] for different approaches to the computation of spectral deter-
minants). The case of periodic b.c. and L > 2π is even more difficult, because there is a
continuous set of relevant saddles owing to translation invariance, but can be treated as
well [Ste04]. The formal computations of the prefactor have been extended to the case
of bifurcations L ∼ π, respectively L ∼ 2π for periodic b.c. in [BG09]. For instance, for
Neumann b.c. and L 6 π, the expression (4.14) of the prefactor has to be replaced by


C =
23/4π


Ψ+(λ1/
√


3ε/4L)


√
λ1 +


√
3ε/4L


λ1


√
sinL


sinh(
√


2L)
, (4.15)


where λ1 = −1 + (π/L)2. Unlike (4.14), which vanishes in L = π, the above expression
converges to a finite value of order ε1/4 as L→ π−.


Putting these formal results on a rigorous footing is a challenging problem. A possible
approach is to consider a sequence of finite-dimensional systems converging to the SPDE
as dimension goes to infinity, and to control the dimension-dependence of the error terms.
A step in this direction has been made in [BBM10] for the chain of interacting particles
introduced in [BFG07a], where a Kramers law with uniform error bounds is obtained for
particular initial distributions. A somewhat different approach is to work with spectral
Galerkin approximations of the SPDE [BBG11].
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D


Figure 9. Two-dimensional vector field with an unstable periodic orbit. The location of
the first exit from the domain D delimited by the unstable orbit displays the phenomenon
of cycling.


4.3 The irreversible case


Does Kramers’ law remain valid for general diffusions of the form


dxt = f(xt) dt+
√


2ε dWt , (4.16)


in which f is not equal to the gradient of a potential V ? In general, the answer is negative.
As we remarked before, large-deviation results imply that Arrhenius’ law still holds for
such systems. The prefactor, however, can behave very differently as in Kramers’ law. It
need not even converge to a limiting value as ε→ 0.


We discuss here a particular example of such a non-Kramers behaviour, called cycling.
Consider a two-dimensional vector field admitting an unstable periodic orbit, and let D
be the interior of the unstable orbit (Figure 9). Since paths tracking the periodic orbit do
not contribute to the rate function, the quasipotential is constant on ∂D, meaning that
on the level of large deviations, all points on the periodic orbit are equally likely to occur
as first-exit points.


Day has discovered the remarkable fact that the distribution of first-exit locations
rotates around ∂D, by an angle proportional to log ε [Day90, Day94, Day96]. Hence this
distribution does not converge to any limit as ε→ 0.


Maier and Stein provided an intuitive explanation for this phenomenon in terms of most
probable exit paths and WKB-approximations [MS96]. Even though the quasipotential
is constant on ∂D, there exists a well-defined path minimising the rate function (except
in case of symmetry-related degeneracies). This path spirals towards ∂D, the distance to
the boundary decreasing geometrically at each revolution. One expects that exit becomes
likely as soon as the minimising path reaches a distance of order


√
ε from the boundary,


which happens after a number of revolutions of order log ε.
It turns out that the distribution of first-exit locations itself has universal character-


istics. The following result applies to a slightly simplified system obtained by linearising
the dynamics around the periodic orbit.


Theorem 4.3 ([BG04]). There exists an explicit parametrisation of ∂D by an angle θ
(taking into account the number of revolutions), such that the distribution of first-exit
locations has density


p(θ) = ftransient(θ)
e−(θ−θ0)/λTK


λTK
PλT (θ − log(ε−1)) , (4.17)
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where
• ftransient(θ) is a transient term, exponentially close to 1 as soon as θ � |log ε|;
• T is the period of the unstable orbit, and λ is its Lyapunov exponent;
• TK = Cε−1/2 eV /ε plays the rôle of Kramers’ time;
• the universal periodic function PλT (θ) is a sum of shifted Gumbel distributions, given


by


PλT (θ) =
∑
k∈Z


A(θ − kλT ) , A(x) =
1
2


e−2x− 1
2


e−2x
. (4.18)


Although this result concerns the first-exit location, the first-exit time is strongly
correlated with the first-exit location, and should thus display a similar behaviour.


Another interesting consequence of this result is that it allows to determine the resi-
dence-time distribution of a particle in a periodically perturbed double-well potential, and
therefore gives a way to quantify the phenomenon of stochastic resonance [BG05].
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