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Abstract


In dimensiond ≥ 3 a variational principle for the size of the pure point
spectrum, thus taking embedded eigenvalues into account, of Schrödinger
operatorsH(e, V ) on the lattice is proven. The dispersion relationse are
assumed to be Morse functions and the potentialsV (x) to decay faster than
|x|−2(d+3), but are not necessarily of definite sign. The proof is based on
resolvent estimates forH(e, V ′), for smallV ′, combined with positivity ar-
guments.


1 Introduction


Let Γ = Zd be thed-dimensional hypercubic lattice. Given a potentialV ∈
ℓ∞(Γ,R), the discrete Schrödinger operator corresponding toV is


−∆Γ + V (x), (1)


whereV acts as a multiplication operator and∆Γ is the discrete Laplacian defined
by


[∆Γϕ](x) =
∑


|v|=1


{ϕ(x+ v) − ϕ(x)}. (2)
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More generally, we assume to be given a functione ∈ C2(Γ∗,R) on thed-
dimensional torus (Brillouin zone)Γ∗ = (R/2πZ)d = [−π, π)d, the dual group of
Γ. We refer toe as adispersion relationor simply adispersion. We then consider
the self-adjoint operator


H(e, V ) := h(e) + V (x), (3)


on ℓ2(Γ), whereh(e) ∈ B[ℓ2(Γ)] is the hopping matrix (convolution operator)
corresponding to the dispersion relatione, i.e.,


[F∗(h(e)ϕ)](p) = e(p) [F∗(ϕ)](p), (4)


for all ϕ ∈ ℓ2(Γ). Here,


F∗ : ℓ2(Γ) → L2(Γ∗), [F∗(ϕ)](p) :=
∑


x∈Γ


e−i〈p,x〉ϕ(x), (5)


is the usual discrete Fourier transformation with inverse


F : L2(Γ∗) → ℓ2(Γ), [F(ψ)](x) :=


∫


Γ∗


ei〈p,x〉ψ(p) dµ∗(p), (6)


µ∗ is the (normalized) Haar measure on the torus,dµ∗(p) = ddp
(2π)d


. Put differently,
h(e) = FeF∗ is the Fourier multiplier corresponding toe.


For eachx ∈ Γ, letϕx ∈ ℓ2(Γ) be the norm-one vector


ϕx(y) := δx,y, (7)


whereδx,y is the Kronecker delta. For a dispersion relatione and a pair(x, y) ∈
Γ2, define the hopping amplitude


h(e)xy :=
〈
ϕx| h(e)ϕy


〉
. (8)


We say thath(e) hasfinite rangeif, for someR <∞ and all(x, y) ∈ Γ2, |x−y| >
R impliesh(e)xy = 0. The smallest numberR(e) ≥ 0 with this property is the
rangeof the hopping matrixh(e).


We assume w.l.o.g. that the minimum ofe is 0, so


e(Γ∗) = [0, emax(e)]. (9)
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We will further assume that the dispersion relatione satisfies the following condi-
tion:


(M) e and|∇e|2 :=
d∑


k=1


|∂pke|2 are Morse functions. (10)


Note that−∆Γ = h(eLapl) andmin eLapl(Γ
∗) = 0, with


eLapl(p) := 2
d∑


i=1


(1 − cos(pi)) (11)


fulfilling (M) .
To consider more general dispersions thaneLapl is important, for instance, for


the analysis of many-body problems on the latticeΓ – even in the situation where
the dispersion relation for the one-body sector is chosen tobe eLapl: Let e be a
dispersion relation. For eachK ∈ Γ∗ define the non-negative functione(K) : Γ →
R


+
0 by


e
(K)(p) = e (p) + e (K − p) −E


(K)
0 , (12)


where
E


(K)
0 := min


p′∈Γ∗
{e (p′) + e (K − p′)} . (13)


Dispersions of the form (12) come about in the analysis of systems of two particles
on the latticeΓ both having the same dispersione and interacting by a (translation
invariant) potentialV (x1 − x2). Indeed, the two-particle Hamiltonian is unitarily
equivalent to the direct integral


∫ ⊕


Γ∗


[H(e(K), V ) + E
(K)
0 ] dµ∗(K). (14)


The functione(K) is viewed as the (effective) dispersion of a pair of particles
travelling through the lattice with total quasi-momentumK ∈ Γ∗. Clearly,e(K)


fulfills (M) – at least in a neighborhood ofK = 0 –, if e does. As soon asK 6= 0,
however,e(K)


Lapl is not proportional toeLapl. Similar facts hold true for theN-body
problem,N > 2.


Our goal in this paper is to give bounds on the sizeNpp[e, V ] of the pure point
spectrum ofH(e, V ),


Npp[e, V ] := dim span {x | x eigenvector ofH(e, V )} , (15)


in dimensionsd ≥ 3.
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Denote the essential and pure point spectra ofH(e, V ) byσess[e, V ] andσpp[e, V ],
respectively. Let further


σemb[e, V ] := σess[e, V ] ∩ σpp[e, V ] (16)


be the set of eigenvalues ofH(e, V ) embedded in its essential spectrum, soσpp[e, V ]
is the disjoint union ofσdiscr[e, V ] = σpp[e, V ]\σemb[e, V ] andσemb[e, V ]. Then


Npp[e, V ] = Ndiscr[e, V ] +Nemb[e, V ], (17)


whereNdiscr[e, V ] andNemb[e, V ] denote the size of the discrete and embedded
pure point spectrum ofH(e, V ):


Ndiscr[e, V ] = dim span {x | H(e, V )x = λx, λ ∈ σdiscr[e, V ]} , (18)


Nemb[e, V ] = dim span {x | H(e, V )x = λx, λ ∈ σemb[e, V ]} . (19)


Note that for the class of operatorsH(e, V ) considered hereσemb[e, V ] 6= ∅, in
general. In fact, it can be easily shown – through simple explicit examples – that
there exist potentialsV and dispersion relationse fulfilling the assumption(M)
for whichσemb[e, V ] 6= ∅, see (31)–(41) below.


In Theorem 4.4, we show that the following variational principle holds:


Ndiscr[e, V ],#σpp[e, V ] ≤ min {#supp V ′ |Φ2(V − V ′) < c(e) } . (20)


Here,c(e) > 0 is a constant depending only on a few derivatives ofe, and, for any
m ≥ 0 and any functionV : Γ → R,


Φm(V ) :=


[
∑


x∈Γ


|V (x)| 12 (|x| + 1)m


]2


. (21)


The proof of (20) uses resolvent bounds (Theorem 3.2(i)) forH(e, V −V ′), where
V ′ is chosen such that


Φ2(V − V ′) < c(e), (22)


see Theorem 4.4. Note that the variational principle (20) isuseful only ifV (x)
is of sufficiently rapid decay, as|x| → ∞. Indeed, ifΦm(V ) < ∞ thenV (x) =
O((|x| + 1)−2(m+d)).


In [BdSPL10] we proved a similar (and stronger) variationalprinciple for the
sizeNdiscr[e, V ] of the discrete spectrum ofH(e, V ) in any dimensiond ≥ 1 and
for potentialsV with a definite sign by using the Birman-Schwinger principle. For
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the Schrödinger operators considered in this paper, however, that method is not
directly applicable – not even for the study of the discrete spectrum. In particular
we do not assumeV to have a definite sign.


Assume, for simplicity, that the hopping matrixh(e) has finite range, i.e.,
R(e) < ∞. We can also give bounds on the multiplicity of the embedded eigen-
values. Let, for anyλ ∈ R,


mλ := dim {x | H(e, V )x = λx} . (23)


Define the symmetric operator̂A = Â(e) onC∞(Γ∗,C) ⊂ L2(Γ∗,C) by


Âϕ̂(p) = i


d∑


i=1


{
[∂pie(p)][∂piϕ̂(p)] +


1


2
[∂2
pi
e(p)]ϕ̂(p)


}
. (24)


We further denote byA = A(e) the (inverse) Fourier transform of̂A, i.e., the op-
eratorA = F ÂF∗ with Dom(A) = F(C∞(Γ∗,C)). Note thati[V,A] uniquely
extends to a bounded self-adjoint operator onℓ2(Γ) (also denoted byi[V,A])
wheneverV and e are of finite range. Densely defined bounded operators will
be always identified with their closures in the sequel. We canshow that, for any
λ ∈ σpp[e, V ],


mλ ≤ min {dim Ran(i[V ′, A]) |Φ3(V − V ′) < c′(e), V ′of finite range} ,(25)


mλ ≤ min {dim Ran(V ′) |Φ2(V − V ′) < c(e), V ′ of finite range} . (26)


Here,c′(e) is some finite constant depending only on a few derivatives ofe andc(e)
is the same constant as in (20). Combining this with the bound(20) on#σpp[e, V ],
we get a bound onNpp[e, V ]. The bound (25) follows from resolvent estimates
(Theorem 3.2(ii)) for


h(|∇e|2) + i[V − V ′, A], providedΦ3(V − V ′) < c′(e), (27)


combined with positivity arguments in the form of a virial theorem (Lemma 2.3)
for H(e, V ), see Corollary 4.1. The bound (26) follows from resolvent estimates
(Theorem 3.2(i)) for


H(e, V − V ′), providedΦ2(V − V ′) < c(e), (28)


and basic facts about eigenspaces of self-adjoint operators (Lemma 4.2), see The-
orem 4.4.
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Observe that the bound (25) onmλ is tighter than the bound (26), in general.
Consider, for instance, the potentialsVR(x) := 1[|x| ≤ R], R ∈ (0,∞). Then


dim Ran(VR) = O(Rd), (29)


whereas
dim Ran (i[VR, A(e)]) = O(Rd−1). (30)


Moreover, note that the bounds in (25)–(26) also hold for more general dispersions
e ∈ C2(Γ∗,R) including dispersions with infinite range.


Observe that, by a theorem due to von Neumann and Weyl (see, for instance,
[Kato, Chapter X, Theorem 2.1]), for any self-adjoint operatorH0 on a separable
Hilbert spaceH and any prescribed upper boundε > 0, there is another self-
adjoint operatorH1 with a pure point spectrum (i.e., the space of eigenvectors of
H1 is dense inH) and (H1 −H0) smaller thanε in the Hilbert-Schmidt norm.
Thus, even arbitrarily small perturbations can drastically change the point spec-
trum of a self-adjoint operator drastically.


It is well-known [NaYa92] thatH(eLapl, V ) has no embedded eigenvalues if
d = 1 andV (x) = O(|x|1+ε) for someε > 0. This result strongly depends on
the particular choice of dimension and dispersion relationand is false, in general,
(even in one dimension) for more generalC2-dispersion relations, as can be seen
from the following simple examples:


For anyd ≥ 1 defineψ ∈ ℓ2(Γ) andẽ ∈ C2(Γ∗,R),


ψ(x) =


{
1 , xk = 0 for somek = 1, . . . , d,
1


x2
1x


2
2···x


2
d


, otherwise, (31)


ẽ(p) =
d∏
k=1


[1 − 2 cos(pk) + cos(2pk)] , (32)


wherex = (x1, . . . xd) ∈ Γ andp = (p1, . . . pd) ∈ Γ∗. From straightforward
calculations, one easily obtains


[h(̃e)ψ] (x) = O
(


1


x4
1x


4
2 · · ·x4


d


)
. (33)


Define a potential̃V by


Ṽ (x) := − [h(̃e)ψ] (x)


ψ(x)
(34)
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and observe that̃V is real valued and


Ṽ (x) = O
(


1


x2
1x


2
2 · · ·x2


d


)
. (35)


By construction,
[h(̃e)ψ] (x) = −Ṽ (x)ψ(x). (36)


In particular, asinf ẽ(Γ∗) < 0 < sup ẽ(Γ∗), we have


0 ∈ σess [̃e, Ṽ ] ∩ σpp [̃e, Ṽ ], (37)


i.e., in any dimensiond ≥ 1, 0 is an embedded eigenvalue ofH (̃e,Ṽ ) with Ṽ (x)
decaying faster than1/|x|2−ε, for anyε > 0, as|x| → ∞. Observe further that
the dispersion relatioñe defined in (32) satisfies(M) if d = 1, 2.


In higher dimensions there are even simpler examples of lattice Schrödinger
operators having embedded eigenvalues with dispersion relations satisfying(M)
and even for potentials with finite support, thus decaying arbitrarily fast: Let


Ṽ (x) := −δx,0
[∫


Γ∗


1


eLapl(p)
dµ∗(p)


]−1


, (38)


whereδx,y is the Kronecker delta. Ford ≥ 5, defineψ ∈ ℓ2(Γ) by


ψ(x) =


∫


Γ∗


eip·x


eLapl(p)
dµ∗(p), (39)


i.e. ψ is the inverse Fourier transform ofe
−1
Lapl (which is an element ofL2(Γ∗)).


Then clearly,
[h(eLapl)ψ] (x) = −Ṽ (x)ψ(x). (40)


In particular,


0 = inf eLapl(Γ
∗) ∈ σess[eLapl, Ṽ ] ∩ σpp[eLapl, Ṽ ]. (41)


Note thateLapl satisfies(M) in any dimensiond ≥ 1.


This paper is organized as follows:


• In Section 2 we discuss a few general facts about the spectrumof H(e, V )
and prove a virial theorem forH(e, V ) as Lemma 2.3.
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• In Section 3 we derive resolvent estimates forH(e, V − V ′), assuming
Φ2(V −V ′) < c(e), and forh(|∇e|2)+i[V −V ′, A], assumingΦ3(V −V ′) <
c′(e), respectively. An important technical problem we are facing in these
estimates arises from singularities of the type


1


p2
1 + · · · + p2


k − p2
k+1 · · · − p2


d


appearing in integrands. Such singularities are called “van Hove singu-
larities” in condensed matter physics and have important physical conse-
quences. They cannot be handled by simple “power counting”,and rather
sign cancellations have to be exploited in the bounds. This technical aspect
is discussed in Appendix 5.3.


• Bound (20) on#σpp[e, V ] is proven in Section 4, formulated in Theorem
4.4.


• Bounds (25) and (26) on the multiplicitymλ of eigenvaluesλ are proven in
Section 4 as Corollary 4.1 and Theorem 4.4, respectively.


2 The Spectrum ofH(e, V ) – Generalities


We require thatV decays at infinity,


V ∈ ℓ∞0 (Γ,R) :=
{
V : Γ → R


∣∣∣ lim
|x|→∞


V (x) = 0
}
, (42)


or sometimes even thatV has bounded support. Note thatV ∈ ℓ∞0 (Γ,R) is com-
pact as a multiplication operator onℓ2(Γ) and by a theorem of Weyl,


σess[H(e, V )] = σess[H(e, 0)] = [0, emax], (43)


whereemax ≡ emax(e).
Let e ∈C2(Γ∗,R) be a Morse function. AsΓ∗ is compact,e has at most finitely


many critical points. We denote the set of all critical points of e by


Crit(e) := {p ∈ Γ∗ | ∇e(p) = 0}. (44)


The critical values ofe, collected in the set


Thr(e) := e (Crit(e)) , (45)
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are called ofthresholdsof e.
Observe that, for all̂ϕ ∈ C∞(Γ∗,C),


i[e, Â]ϕ̂(p) = |∇e(p)|2ϕ̂(p) :=
d∑


i=1


[∂pie(p)]
2ϕ̂(p). (46)


In particular,i[e, Â] andi[h(e), A] extend to positive bounded operators onL2(Γ∗; C)
andℓ2(Γ; C), which we also denote a byi[e, Â] andi[h(e), A], respectively. See
(24) and sentence thereafter for the definition of the operators Â = Â(e) and
A = A(e).


Note that|∇e(p)|2 is a Morse function providede satisfies Assumption(M) .
As already mentioned above, one example of a dispersion relation satisfying(M)
is eLapl defined by (11). The condition(M) is stable under small perturbations in
theC3-sense, i.e., if‖e − ẽ‖C3(Γ∗) is sufficiently small ande satisfies(M), then so
does̃e.


Furthermore, we observe that a dispersion relatione ∈C2(Γ∗,R) has finite
range if, and only if, it is a trigonometric polynomial of theform


e(p) =
N∑
n=1


cne
ip·xn (47)


for suitablec1, . . . , cN ∈ C andx1, . . . , xN ∈ Zd. But then∇e has finite range,
too, and


R(∇e) ≤ R(e). (48)


Using the Fourier transformation one easily sees that ifV (x)|x| is summable
in Γ thenAV andV A define bounded operators. In particular, it follows imme-
diately from this that ifV (x)|x|p is summable for somep > 1 thenAV andV A
define compact operators. For such potentials we have the following estimate for
the commutatori[H(e, V ), A]:


Lemma 2.1 (Mourre Estimate forH(e, V )) If e ∈ C4(Γ∗,R) is a dispersion
relation thenA(e) uniquely extends to a self-adjoint operator (also denoted by
A(e)). If V : Γ → R is such thati[V,A] defines a compact operator, then,
for any continuous functionχ : R → R of compact support and satisfying
dist(Thr(e), suppχ) > 0, there is a compact operatorKχ ∈ B[ℓ2(Γ,C)] and
a constantcχ > 0 such that


χ [H(e, V )] i[H(e, V ), A]χ [H(e, V )] ≥ cχχ
2 [H(e, V )] +Kχ. (49)
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Observe that if∆ ⊂ R is a compact subset withdist(Thr(e),∆) > 0, then
there is a continuous functionχ : R → R with compact support such that
dist(Thr(e), suppχ) > 0, andχ(∆) = {1}. Let E∆ be the spectral projection
of H(e, V ) associated with∆. ThenχE∆ = χE∆ = E∆ and by multiplying
equation (49) withE∆ from the left and from the right it follows that, for some
c∆ > 0 and some compact operatorK∆,


E∆i[H(e, V ), A]E∆ ≥ c∆E∆ +K∆. (50)


Again using the Fourier transformation, one easily checks that if Φ2(V ) < ∞
thenAAV , AV A andV AA define bounded operators. By (46), ife ∈ C3(Γ∗,R),
[[h(e), A], A] extends to a bounded operator. In particular, ifΦ2(V ) < ∞ and
e ∈ C3(Γ∗,R), then[[H(e, V ), A], A] extends to a bounded operator onℓ2(Γ).


The following corollary is a consequence of the last two remarks and the fact
thatH(e, V ) is bounded, see [CFKS, Theorems 4.7 and 4.9].


Corollary 2.2 Lete ∈ C4(Γ∗,R) be a dispersion relation and letV be a potential
with Φ2(V ) < ∞. ThenH(e, V ) has no singular continuous spectrum and its
eigenvalues can only accumulate in points ofThr(e).


Lemma 2.3 (Virial Theorem for H(e, V )) Let e ∈ C4(Γ∗,R) be a dispersion
relation and letV1, V2 be potentials such thati[V1, A(e)] and i[V2, A(e)] define
bounded operators. Ifϕ is an eigenvector ofH(e, V1 + V2), then


〈ϕ | i[V2, A]ϕ〉 = −〈ϕ | i[H(e, V1), A]ϕ〉. (51)


Note that the restrictione ∈ C4(Γ∗,R) is only relevant for Corollary 2.2 and
Lemma 2.3 above.


The proofs of Lemmata 2.1 and 2.3 use adaptations for the lattice case of
known methods used for the continuum and are given in the Appendix 5.1– 5.2
for completeness. See also [CFKS, Chapter 4] and [GSch97].


The following upper bound on the multiplicity of embedded eigenvalues of
H(e, V ), in the case thatV andh(e) have finite range, is an immediate conse-
quence of the virial theorem (Lemma 2.3) above:


Corollary 2.4 (Upper Bound onmλ, Finite Range Case)Let d ≥ 1, λ ∈ R, V
be a potential of finite range, ande be a dispersion relation of finite range. Let


Σ(e, V ) := dim Ran (i[V,A(e)]) . (52)


Thenmλ ≤ Σ(e, V ).
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Proof. dim Ran (i[V,A]) is finite ande ∈ C∞(Γ∗,R). We assume w.l.o.g. that
λ is an eigenvalue ofH(e, V ). Otherwise, the boundmλ ≤ Σ(e, V ) is trivial.
Observe that by (46)i[h(e), A] is positive and has purely absolutely continuous
spectrum. Thus, for allϕ ∈ ℓ2(Γ)\{0}, 〈ϕ | i[h(e), A]ϕ〉 > 0. SettingV1 = 0
andV2 = V it follows from Lemma 2.3 that, for any normalized eigenvector ϕ of
H(e, V ), we have


〈ϕ | i[V,A]ϕ〉 = −〈F∗(ϕ) | | ∇e|2F∗(ϕ)〉 < 0. (53)


Hence, denoting byE any finite dimensional subspace of{x |H(e, V )x = λx}
we obtain, by compactness of then-sphere,n = dimE − 1, the estimate


max {〈ϕ | i[V,A]ϕ〉 | ϕ ∈ E, ‖ϕ‖2 = 1} < 0. (54)


By the min-max principle, the dimension ofE cannot exceed the number of neg-
ative eigenvalues of the self-adjoint operatori[V,A] which, in turn, cannot exceed
the rank ofi[V,A]. Hence,


mλ ≤ Σ(e, V ). (55)


�


In dimensiond ≥ 3 the upper bound onmλ given in the corollary above can
be improved in the following sense:


• If Φ3(V ) is small enough thenH(e, V ) has no bound states cf. Corollary
3.3(i), i.e.,mλ = 0 for all λ ∈ R.


• If V = V1 + V2 with V1 of finite range andΦ3(V2) small enough (butV
not necessarily of finite range), thenmλ ≤ Σ(e, V1), i.e., the bound on the
multiplicitiesmλ of eigenvaluesλ of H(e, V ) in the corollary above is true
with V replaced byV1 cf. Corollary 4.1.


3 Resolvent Estimates


Let e′′(p) be the Hessian matrix of the dispersion relatione ∈ C2(Γ∗,R) at p ∈
Crit(e). Define theminimal curvature ofe at p ∈ Crit(e) by:


K(e, p) := min
{
|λ| 12 : λeigenvalue ofe′′(p)


}
. (56)


Define also theminimal (critical) curvature ofe by


K(e) := min{K(e, p) | p ∈ Crit(e)}. (57)
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Note thatK(e) > 0 andK(|∇e|2) > 0 under Assumption(M).
For any functione ∈ Cm(Γ∗,C) andm ∈ N0, define theCm-norms as usual


by
‖e‖Cm := max


n∈Nd
0


|n|=m


max
p∈Γ∗


|∂np e(p)|. (58)


Lemma 3.1 Let e be any dispersion relation fromC3(Γ∗,R). LetK > 0 and
C < ∞ be constants withK(e) ≥ K, and‖e‖C3 ≤ C. Then there is a constant
c3.1 <∞ depending only onK andC such that


∥∥∥V
1
2 (z − h(e))−1V


1
2


∥∥∥
B[ℓ2(Γ)]


≤ c3.1 Φ2(V ), (59)


∥∥∥V 1
2 (z − h(e))−1AV


1
2


∥∥∥
B[ℓ2(Γ)]


∥∥∥V 1
2A(z − h(e))−1V


1
2


∥∥∥
B[ℓ2(Γ)]


∥∥∥V 1
2A(z − h(e))−1AV


1
2


∥∥∥
B[ℓ2(Γ)]









≤ c3.1 Φ3(V ), (60)


|〈ϕx|(z − h(e))−1ϕy〉| ≤ c23.1(1 + |x|)2(1 + |y|)2, (61)


∥∥∥V
1
2 (z − h(e))−1ϕx


∥∥∥
2
≤ c3.1 (1 + |x|)2Φ2(V )


1
2 , (62)


∥∥∥V
1
2A(z − h(e))−1ϕx


∥∥∥
2
≤ c3.1 (1 + |x|)2Φ3(V )


1
2 , (63)


for all potentialsV : Γ → R, all z ∈ C\R, and allx, y ∈ Γ. Here,V
1
2 denotes


an arbitrary functionV : Γ → C with (V
1
2 (x))2 = V (x).


Proof. We freely use the equality((V
1
2 )∗)2 = (V


1
2 )2 = V in the sequel without


further mentioning. We write


〈ϕx|(z − h(e))−1ϕy〉 = (1 + |x|)2(1 + |y|)2


∫


Γ∗


Fxy(p)


z − e(p)
dµ∗(p), (64)


with


Fxy(p) :=
eip·(x−y)


(1 + |x|)2(1 + |y|)2
, (65)


12







and note thatsup{‖Fxy‖C2 | x, y ∈ Γ} < ∞. Hence, it follows from Lemma 5.1
that there is a constantconst <∞, such that


|〈ϕx|(z − h(e))−1ϕy〉| ≤ const(1 + |x|)2(1 + |y|)2


for all z ∈ C\R and allx, y ∈ Γ.
Let V : Γ → R be a potential withRan(V


1
2 ) ⊂ dom(A). For allϕ ∈ ℓ2(Γ),


we define the following functions onΓ∗,


F ϕ
V (p) := F∗ ◦ V 1


2 (ϕ)(p) =
∑


x∈Γ


e−ip·xV
1
2 (x)ϕ(x), (66)


F ϕ
AV (p) :=


d∑


i=1


i[∂pie(p)][∂piF
ϕ
V ](p) +


i


2
|∇e(p)|2F ϕ


V (p). (67)


Then, for allx ∈ Γ,


〈(z̄ − h(e))−1V
1
2ϕ |ϕx〉 =


∫


Γ∗


F ϕ
V (p)e−ip·x


z − e(p)
dµ∗(p), (68)


〈(z̄ − h(e))−1AV
1
2ϕ |ϕx〉 =


∫


Γ∗


F ϕ
AV (p)e−ip·x


z − e(p)
dµ∗(p). (69)


We note
F ϕ


#(p)e−ip·x = (1 + |x|)2
[
(1 + |x|)−2F ϕ


#(p)e−ip·x
]
, (70)


where# denotesV orAV , and observe that theC2-norms of the functions


p 7→ (1 + |x|)−2F ϕ
V (p)e−ip·x, p 7→ (1 + |x|)−2F ϕ


AV (p)e−ip·x


are bounded byconst Φ2(V )
1
2 andconst Φ3(V )


1
2 , const < ∞, respectively, uni-


formly in x ∈ Γ andϕ ∈ ℓ2(Γ), ‖ϕ‖2 ≤ 1. It follows from Lemma 5.1 that, for
some constantconst <∞, all x ∈ Γ, all z ∈ C\R, and allϕ ∈ ℓ2(Γ), ‖ϕ‖2 ≤ 1,


‖V 1
2 (z − h(e))−1ϕx‖2 ≤ const (1 + |x|)2Φ2(V )


1
2 , (71)


‖V 1
2A(z − h(e))−1ϕx‖2 ≤ const (1 + |x|) 2Φ3(V )


1
2 , (72)∑


x∈Γ


|〈(z − h(e))−1V
1
2ϕ | V 1


2ϕx〉|2 ≤ const2 Φ2(V )2, (73)


∑


x∈Γ


|〈(z − h(e))−1AV
1
2ϕ | V 1


2ϕx〉|2 ≤ const2 Φ3(V )Φ2(V ) (74)


≤ const2 Φ3(V )2. (75)


13







Thus,


‖V 1
2 (z − h(e))−1V


1
2‖B[ℓ2(Γ)] ≤ const Φ2(V ), (76)


‖V 1
2 (z − h(e))−1AV


1
2‖B[ℓ2(Γ)] ≤ const Φ3(V ), (77)


for someconst < ∞, all z ∈ C\R and allx ∈ Γ. By taking adjoints, we further
obtain


‖V 1
2A(z − h(e))−1V


1
2‖B[ℓ2(Γ)] ≤ const Φ3(V ). (78)


Similarly, it follows, for a suitable constantconst < ∞, all z ∈ C\R, all x ∈ Γ,
and allϕ ∈ ℓ2(Γ), ‖ϕ‖2 ≤ 1, that


∑


x∈Γ


|〈(z − h(e))−1AV
1
2ϕ |AV 1


2ϕx〉|2 ≤ const2 Φ3(V )2. (79)


Thus,
‖V 1


2A(z − h(e))−1AV
1
2‖B[ℓ2(Γ)] ≤ const Φ3(V ) (80)


for all z ∈ C\R and allx ∈ Γ. �


Theorem 3.2 (Resolvent Estimates in Dimensiond ≥ 3) Let d ≥ 3 and e ∈
C3(Γ∗,R) be a dispersion relation satisfying(M).


(i) If c3.1 Φ2(V ) < 1 then there exists a constantc3.2 < ∞ such that, for all
z ∈ C\R and allx, y ∈ Γ,


|〈ϕx|(z −H( e,V ))−1ϕy〉| ≤ c3.2(1 + |x|)2(1 + |y|)2. (81)


(ii) If 2 c3.1 Φ3(V ) < 1 then there exists a constantcpc
3.2 < ∞ such that, for all


z ∈ C\R and allx ∈ Γ,


|〈ϕx|(z − i[H(e, V ), A])−1ϕy〉| ≤ cpc
3.2(1 + |x|)2(1 + |y|)2. (82)


Proof. Forn ∈ N andz ∈ C\R let


On(z) := [V (z − h( e) )−1]n = V
1
2 Õn(z)V


1
2 (z − h( e))−1, (83)


where


Õn(z) :=
[
V


1
2 (z − h( e))−1V


1
2


]n−1


. (84)
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Assume thatc3.1 Φ2(V ) < 1. Then, by (59),‖Õn(z)‖ < an−1, for some0 < a <
1. Thus we can define the operators


Õ(z) :=


∞∑


n=1


Õn(z).


It follows that, for eachz ∈ C\R, ‖Õ(z)‖B(ℓ2(Γ)) ≤ (1−a)−1 and that(z−h( e)−
V ) has a bounded inverse given by


(z − h( e) − V )−1 = (z − h( e))−1
[
1 + V


1
2 Õ(z)V


1
2 (z − h( e))−1


]
. (85)


This, (61), and (62) imply (81).
To prove (ii), we temporarily ignore questions of convergence and write


(z − i[H(e, V ), A])−1 =
∞∑


n=0


R0(i[V,A]R0)
n, (86)


whereR0 := (z − i[h( e), A])−1. Observe that


i[V,A] = iV
1
2 (V


1
2A) + i(−AV 1


2 )V
1
2 (87)


= i


1∑


σ=0


(−1)σ(AσV
1
2 )(V


1
2A1−σ).


Hence,


(z − i[H(e, V ), A])−1 − R0 (88)


=


∞∑


n=1


1∑


σ1,...,σn=0


in(−1)|σ|R0A
σ1V


1
2


(
n−1∏
j=1


V
1
2A1−σjR0A


σj+1V
1
2


)
V


1
2A1−σnR0.


Now, due to Lemma 3.1, we have that
∥∥∥V


1
2AσR0ϕx


∥∥∥
2


≤ c3.1(1 + |x|2) max{Φ2(V )
1
2 ,Φ3(V )


1
2} (89)


= c3.1(1 + |x|2)Φ3(V )
1
2 , (90)


∥∥∥V
1
2AσR0A


ηV
1
2


∥∥∥
B[ℓ2(Γ)]


≤ c3.1 max{Φ2(V ),Φ3(V )} (91)


= c3.1Φ3(V ). (92)
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for all x ∈ Γ andσ, η ∈ {0, 1}. By assumption,2c3.1Φ3(V ) < 1, and the Neu-
mann series evaluated on the vectorsϕx andϕy, converges. Namely,


|〈ϕx|(z − i[H(e, V ), A])−1ϕy〉|


≤ c23.1(1 + |x|2)(1 + |y|2)
∞∑


n=0


(2c3.1Φ3(V ))n (93)


=
c23.1(1 + |x|2)(1 + |y|2)


1 − 2c3.1Φ3(V )
. (94)


�


Corollary 3.3 Let d ≥ 3 and e ∈C3(Γ∗,R) be a dispersion relation satisfying
(M).


(i) If c3.1 Φ2(V ) < 1 thenH(e, V ) has purely absolutely continuous spectrum
and


σac(H(e, V )) = [0, emax]. (95)


(ii) If 2 c3.1 Φ3(V ) < 1 theni[H(e, V ), A] is positive and has purely absolutely
continuous spectrum.


Proof. Assume thatc3.1 Φ2(V ) < 1. From Theorem 3.2(i), for all z ∈ C\R and
all vectorsϕ ∈ span{ϕx | x ∈ Γ}, i.e.ϕ of finite support, we have that


|〈ϕ|(z −H( e,V ))−1ϕ〉| ≤ c(ϕ) <∞ (96)


with c(ϕ) depending only onϕ. As span{ϕx | x ∈ Γ} is dense inℓ2(Γ,C), (96)
implies the absolute continuity of the spectrum ofH(e, V ); see, for instance,
[CFKS, Proposition 4.1]. Analogously, by Theorem 3.2(ii), i[H(e, V ), A] has
only absolutely continuous spectrum whenever2 c3.1Φ3(V ) < 1. If Φ2(V ) < ∞
thenV andi[V,A] define trace class operators. By the Kato-Rosenblum theorem,


σac(H(e, V )) = σac( h(e) ) = [0, emax] and σac(i[H(e, V ), A]) ⊂ R
+
0 . (97)


�
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4 Bounds on the Size ofσpp[e, V ]


Corollary 3.3 yields useful upper bounds on the multiplicitymλ of eigenvalues of
H(e, V ) for d ≥ 3 without assumingV to be of finite range:


Corollary 4.1 (Upper Bound onmλ, Infinite Range Case,d ≥ 3) Letd ≥ 3, λ ∈
R, and let e be a dispersion relation fromC4(Γ∗,R) satisfying(M). Let V :
Γ → R be a potential withΦ3(V ) < ∞ and chooseV1, V2 : Γ → R such that
2 c3.1 Φ3(V1) < 1 andV2 has finite support. Thenmλ ≤ Σ(e, V2), wheremλ and
Σ(e, V2) are defined in (23) and (52), respectively.


Proof. If 2 c3.1 Φ3(V1) < 1, then by Corollary 3.3(ii), i[H(e, V1), A] ≥ 0 and has
purely absolutely continuous spectrum. Thus, by Lemma 2.3,if ϕ is an eigenvec-
tor ofH(e, V ) then〈ϕ | i[V2, A]ϕ〉 < 0 and hencemλ ≤ dim Ran(i[V2, A]). See
the proof of Corollary 2.4 for more details. �


Lemma 4.2 (Bound on the Point Spectrum at Finite Rank Perturbations) Let
H0 be a bounded self-adjoint operator on a Hilbert spaceH for whichσpp[H0] =
∅, i.e.H0 has no eigenvalue. LetW be another bounded self-adjoint operator on
H. Then


#σpp[H0 +W ] ≤ dim Ran (W ). (98)


Moreover, ifλ ∈ σpp[H0 +W ] then


dim ker(H0 +W − λ) ≤ dim Ran(W ). (99)


Proof. We assume w.l.o.g. thatW has finite rank. Letλ ∈ σpp[H0 + W ]. Then,
for someψ ∈ H\{0},


(H0 − λ)ψ = −Wψ. (100)


By assumptionσpp[H0] = ∅, hence


Wψ = −(H0 − λ)ψ 6= 0. (101)


This implies thatPWψ 6= 0, wherePW is the orthogonal projection onto the range
of W . LetHW


0 := PWH0. Then, asW has finite rank,


HW
0 ϕ =


N∑
k=1


〈H0ψk|ϕ〉ψk, (102)
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where{ψk}Nk=1 is an ONB ofRan(W ). LetP be the orthogonal projection on the
finite dimensional subspace


span {Ran(W ) ∪ Ran(H0W )} ⊂ H. (103)


From the eigenvalue equation it follows that


PW [H0 − λ+W ]ψ = 0. (104)


Hence, ifλ ∈ σpp[H0 +W ] then, for someϕ ∈ ran(P )\{0},


[HW
0 − λPW +W ]ϕ = 0, (105)


sinceW = WPW . This implies that


D(λ) := det
(
P [HW


0 − λPW +W ]P
)


= 0 (106)


wheneverλ ∈ σpp[H0 + W ]. Observe thatD(λ) is a polynomial of degree at
mostdim Ran (W ) and has thus at mostdim Ran (W ) zeros. This proves the first
assertion.


Let ψ1, ψ2 ∈ ker(H0 +W − λ) for someλ ∈ σpp[H0 +W ]. Then


(H0 − λ)(ψ1 − ψ2) = −W (ψ1 − ψ2). (107)


Thus, asσpp[H0] = ∅, ψ1 = ψ2 iff W (ψ1 − ψ2) = 0. In other words,W :
ker(H0 +W − λ) → Ran (W ) is injective and thus


mλ = dim ker(H0 +W − λ) ≤ dim Ran (W ). (108)


�


Observe that the bound (98) above takes embedded eigenvalues into account
but disregards multiplicities. If we only consider the discrete spectrum ofH(e, V )
it is easy to see, by using the min-max principle, that a similar bound, but counting
multiplicities instead, holds true. A proof of this fact is given below for complete-
ness:


Lemma 4.3 (Bound onNdiscr[e, V ]) Let V1 ∈ ℓ∞0 (Γ) be any potential such that
σdiscr[H(e, V1)] = ∅. For any potentialV2,


Ndiscr[e, V1 + V2] ≤ #supp V2. (109)


18







Proof. We assume that#supp V2 < ∞, otherwise there is nothing to prove. Let
N+


discr[e, V1 + V2] andN−
discr[e, V1 + V2] be the size of the discrete spectrum above


and below zero, respectively. Then


N−
discr[e, V1 + V2] ≤ #supp V −


2 , (110)


whereV −
2 := −V2 1[V2 < 0] is the negative part ofV2: As


H(e, V1 + V2) ≥ H(e, V1 − V −
2 ), (111)


it suffices to prove thatH(e, V1 − V −
2 ) has at mostM := #supp V −


2 eigenvalues
below zero (counting multiplicities). Assume thus thatH(e, V1 −V −


2 ) has at least
M+1 eigenvalues below zero. Then, by the min-max principle, there is a subspace
X ⊂ ℓ2(Γ), dim X = M + 1, for which


sup
ψ∈X, ‖ψ‖2=1


〈ψ |H(e, V1 − V −
2 )ψ〉 < 0. (112)


Hence


sup
ψ∈X∩ker(V−


2
),


‖ψ‖2=1


〈ψ |H(e, V1 − V −
2 )ψ〉 = sup


ψ∈X∩ker(V−
2


),


‖ψ‖2=1


〈ψ |H(e, V1)ψ〉 < 0. (113)


As σess[H(e, V1)] = [0, emax], again by the min-max principle, this would then
imply thatσdiscr[H(e, V1)] is not empty. But, by assumption,σdiscr[H(e, V1)] = ∅.


Let V +
2 := V2 1[V2 > 0]. Note that


N+
discr[e, V1+V2] = N−


discr[emax−e,−V1−V2] ≤ N−
discr[emax−e,−V1−V +


2 ]. (114)


and thatσdiscr[H(e, V1)] = ∅ impliesσdiscr[H(emax−e,−V1] = ∅. Thus, similarly,


N+
discr[e, V1 + V +


2 ] ≤ #supp V +
2 (115)


and hence


Ndiscr[e, V1 + V2] = N−
discr[e, V1 + V2] +N+


discr[e, V1 + V +
2 ] (116)


≤ #supp V −
2 + #supp V +


2 (117)


= #supp V2. (118)


�


Combining Corollary 3.3 with Lemmata 4.2 and 4.3 we finally arrive at Bounds
(20) and (26):
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Theorem 4.4 (Bound on the Size ofσpp(e, V )) Let d ≥ 3 and assume that the
dispersion relatione satisfies(M). Then there exists a constantc(e) > 0 depending
only on three derivatives of the dispersion relatione such that, for all potentials
V : Γ → R with Φ2(V ) <∞, we have


Ndiscr[e, V ],#σpp[e, V ] ≤ min {#supp V ′ |Φ2(V − V ′) < c(e) } , (119)


mλ ≤ min {dim Ran(V ′) |Φ2(V − V ′) < c(e), V ′ of finite range} (120)


and, for all potentialsV : Γ → R, with Φ3(V ) <∞, we further have


mλ ≤ min {dim Ran(i[V ′, A]) |Φ3(V − V ′) < c(e), V ′ of finite range} . (121)


5 Appendix


5.1 Proof of Lemma 2.1


LetN be the unique self-adjoint extension of the operatorÑ defined onC∞(Γ∗,C) ⊂
L2(Γ∗) by


Ñϕ(p) =


d∑


i=1


(1 − ∂2
pi


)ϕ(p). (122)


Observe that for someconst <∞ and allϕ, ϕ′ ∈ C∞(Γ∗,C),


|〈ϕ′ |Aϕ〉| ≤ const ‖ ϕ′
2 ‖2‖ N


1
2ϕ2 ‖2≤ const ‖ N 1


2ϕ′ ‖2‖ N
1
2ϕ2 ‖2 . (123)


For allϕ ∈ C∞(Γ∗,C),


(NA−AN)ϕ(p) = −i
d∑


k,k′=1


{
(2[∂2


pk
∂pk′ e(p)][∂pk′ϕ(p)] +


1


2
[∂2
pk
∂2
pk′


e(p)]ϕ(p)


+2[∂pk∂pk′ e(p)][∂pk∂pk′ϕ(p)]
}
. (124)


An integration of the terms with second derivatives ofϕ by parts yields, for some
0 < const <∞ and allϕ, ϕ′ ∈ C∞(Γ∗,C), that


|〈Nϕ′ |Aϕ〉 − 〈Aϕ′ |Nϕ〉| ≤ const ‖ N 1
2ϕ′


2 ‖2‖ N
1
2ϕ2 ‖2 . (125)
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Thus, by Nelson’s commutator theorem (see [RS2, Theorem X.36]), A is essen-
tially self-adjoint onC∞(Γ∗,C).


Clearly, asχ is continuous and has compact support,


χ(H(e, V )) − χ(H(e, 0)) (126)


= lim
η↓0


1√
πη


∫ ∞


0


χ(t)
[
exp


(−(H(e, V ) − t)2


η


)
− exp


(−(H(e, 0) − t)2


η


)]
dt


in norm sense. Observe that


−η
∫ ∞


0


χ(t)


[
exp


(−(H(e, V ) − t)2


η


)
− exp


(−(H(e, 0) − t)2


η


)]
dt (127)


=


∫ 1


0


[∫ ∞


0


χ(t) exp


(−s(H(e, V ) − t)2


η


)
(V h(e) + h(e)V + V 2 − 2tV )


exp


(−(1 − s)(H(e, 0)− t)2


η


)
dt


]
ds.


As V is a compact operator, it follows from (127) thatχ(H(e, V )) − χ(H(e, 0))
is compact.


The difference


i[H(e, V ), A] − i[H(e, 0), A] = i[V,A] (128)


is also a compact operator, by assumption. To finish the proofobserve that, as
i[H(e, 0), A] is unitarily equivalent to the multiplication operator|∇e|2, there is a
constantc0χ > 0 such that


χ(H(e, 0))i[H(e, 0), A]χ(H(e, 0)) ≥ c0χχ
2(H(e, 0)). (129)


�


5.2 Proof of Lemma 2.3


Let ϕ be an eigenvector ofH(e, V1 + V2) and define, for eachn ∈ Z\{0}, the
vector


ϕn :=
i n


i n+ A
ϕ. (130)


Sincei[H(e, V1), A] andi[V2, A] are bounded operators, by assumption, we have
that


lim
n→∞


〈ϕ−n | i[H(e, V1), A]ϕn〉 = 〈ϕ | i[H(e, V1), A]ϕ〉, (131)


lim
n→∞


〈ϕ−n | i[V2, A]ϕn〉 = 〈ϕ | i[V2, A]ϕ〉. (132)
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Note that


〈ϕ−n | i[H(e, V1 + V2), A]ϕn〉
= 〈ϕ−n | i[H(e, V1), A]ϕn〉 + 〈ϕ−n | i[V2, A]ϕn〉. (133)


Hence it suffices to prove, for alln ∈ N, that


〈ϕ−n | i[H(e, V1 + V2), A]ϕn〉 = 0. (134)


For alln ∈ N,


〈ϕ−n | i[H(e, V1 + V2), A]ϕn〉 (135)


=


〈
ϕ
∣∣∣ i
[
H(e, V1 + V2),


i nA


i n+ A


]
ϕ


〉
= 0.


�


5.3 Proof of Lemma 3.1


In order to prove Lemma 3.1 we need the following estimate:


Lemma 5.1 Assume thatd ≥ 3 and lete be a dispersion relation withK(e) > 0
and ‖e‖C3 < ∞. Suppose thatχ ∈ C2(Γ∗,R). Then there exists a constant
c5.1 <∞ depending only onK(e), ‖e‖C3 and‖χ‖C2 such that


∣∣∣∣
∫


Γ∗


χ(p)


z − e(p)
dµ∗(p)


∣∣∣∣ ≤ c5.1 (136)


for all z ∈ C\R.


Proof.We assume w.l.o.g. thatz is bounded by|z| ≤ emax+1, say. We further note
thate has only finitely many critical points,#Q <∞, abbreviatingQ := Crit(e),
sinceΓ∗ is compact ande is a Morse function. The latter is also the reason that,
for eachq ∈ Q, there exist an indexmq ∈ {0, . . . , d} and aC2–coordinate chart
ξq ∈ C2(Bd−m × Bm;Uq), for


Bn := BRn(0, r) = {x ∈ R
n : |x| < r}, r > 0, (137)


denoting the Euclidean open ball inRn of radiusr andUq ⊂ Γ∗ being an open
neighborhood ofq such that, for allx ∈ Bd−m, y ∈ Bm,


c1 ≤ | det Jac ξq(x, y)| ≤ c2, (138)
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e◦ξq(x, y) = e(q) + x2 − y2, (139)


Uq ⊇ BΓ∗(q, δ), (140)


for suitable constantsc1, δ > 0, r ∈ (0, 1) andc2 <∞. δ > 0 can be chosen such
that away from the critical points we can find a finite set


Q̃ ⊆ N := {q ∈ Γ∗ | e(q) = Re{z}} (141)


and, for eachq ∈ Q̃, aC2–coordinate chart̃ξq ∈ C2((−r, r) × Bd−1; Ũq), with


Ũq ⊂ Γ∗ being an open neighborhood ofq, such that, for allx ∈ (−r, r), y ∈ Bd−1,


c1 ≤ | det Jac ξ̃q(x, y)| ≤ c2, (142)


e◦ξ̃q(x, y) = e(q) + x, (143)
⋃


q∈ eQ


Ũq ⊇ {p ∈ Γ∗ : |e(q) − z| < δ, dist(p,Q) ≥ δ}. (144)


Let


N̂ :=


{
p ∈ Γ∗ : |e(p) − z| > δ


2


}
. (145)


Then{N̂} ∪ {Uq}q∈Q ∪ {Ũq}q∈ eQ is a finite open covering ofΓ∗ and there exists a
subordinate partition of unity,


{η̂} ∪ {ηq}q∈Q ∪ {η̃q}q∈ eQ
⊆ C∞(Γ∗; [0, 1]), (146)


such that
supp̂η ⊂ N̂ , suppηq ⊂ Uq, supp̃ηq ⊂ Ũq, (147)


for q ∈ Q ∪ Q̃, and
η̂ +


∑
q∈Q


ηq +
∑


q∈ eQ


η̃q ≡ 1. (148)


It follows that ∫


Γ∗


χ(p)


z − e(p)
dµ∗(p) = Î +


∑
q∈Q


Iq +
∑


q∈ eQ


Ĩq, (149)


where


Î :=


∫


Γ∗


η̂(p)χ(p)


z − e(p)
dµ∗(p), (150)


Ĩq :=


∫


Bd−1


dd−1y


∫ r


−r


dx
f̃q(x, y)


ib− x
, (151)


Iq :=


∫


Bd−mq


dd−mqx


∫


Bmq


dmqy
fq(x, y)


aq + ib− x2 + y2
, (152)
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whereb := Im{z}, aq := Re{z} − e(q), and


f̃q := (η̃q ◦ ξ̃q)(χ ◦ ξ̃q)| det Jac ξ̃q|, (153)


fq := (ηq ◦ ξq)(χ ◦ ξq)| det Jac ξq|. (154)


Note thatf̃q ∈ C2
0((−r, r) × Bd−1; R) andfq ∈ C2


0 (Bd−mq × Bmq ; R), due to


(147). Moreover,‖f̃q‖C2 , ‖fq‖C2 < ∞. The asserted estimate (136) now follows
from Lemmata 5.2–5.4 and the trivial estimate


|Î| ≤ 2


δ


∫


Γ∗


|χ(p)|dµ∗(p). (155)


Observe that the constantsr, δ, c1, c2 and#Q, #Q̃ only depend onK(e) , ‖e‖C3


and‖χ‖C2 . �


Lemma 5.2 Assume thatd ≥ 1 and0 < r < 1. There is a constant̂C1 <∞ such
that, for all f ∈ C1((−r, r) ×Bd−1; R) and all b ∈ R\{0},


∣∣∣∣∣


∫


Bd−1


dd−1y


∫ r


−r


dx
f(x, y)


ib − x


∣∣∣∣∣ ≤ Ĉ1 ‖f‖C1 . (156)


Proof. For allx ∈ (−r, r) and ally ∈ Bd−1, the fundamental theorem of calculus
gives ∣∣∣∣


f(x, y) − f(0, y)


ib− x


∣∣∣∣ ≤
∣∣∣∣


x


ib− x


∣∣∣∣ ‖∂xf‖∞ ≤ ‖f‖C1 , (157)


and thus
∣∣∣∣∣


∫


Bd−1


dd−1y


∫ r


−r


dx
f(x, y)


ib− x


∣∣∣∣∣ ≤ 2|Bd−1| ‖f‖C1


(
1 +


∣∣∣∣
∫ r


−r


dx


ib− x


∣∣∣∣
)
. (158)


The assertion follows then from
∣∣∣∣
∫ r


−r


dx


ib− x


∣∣∣∣ ≤
∣∣∣∣
∫ 1


−1


b dx


b2 + x2


∣∣∣∣ = 2 arctan(|b|) ≤ π. (159)


�


Lemma 5.3 Assume thatd ≥ 3 and0 < r < 1. There is a constant̂C2 <∞ such
that, for all f ∈ C1


0 (Bd; R), all a ∈ R and all b ∈ R\{0},
∣∣∣∣
∫


Bd


f(x)


a+ ib− x2
ddx


∣∣∣∣ ≤ Ĉ2 ‖f‖C1 (1 + a2 + b2). (160)
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Proof. Introducing spherical coordinates, we observe that


J :=


∫


Bd


f(x)


a + ib− x2
ddx =


∫ r


0


g(s)sd−1


a + ib− s2
ds, (161)


whereg ∈ C1([0, 1]; R) is the spherical average off , ‖g‖C1 ≤ ‖f‖C1 , defined by


g(s) :=


∫


Sd−1


f(sϑ) dd−1σ(ϑ). (162)


An integration by parts gives


Re{J }


=


∫ r


0


g(s)sd−1 a− s2


(a− s2)2 + b2
ds (163)


= −1


4


∫ r


0


g(s)sd−2


(
d


ds
ln
[
(a− s2)2 + b2


])
ds (164)


=
1


4


∫ r


0


(
g′(s)sd−2 + (d− 2)g(s)sd−3


)
ln
[
(a− s2)2 + b2


]
ds. (165)


We used above thatg(r) = 0. Now, use the elementary estimate


| ln(λ)| ≤ 1


2α
(λα + λ−α), (166)


which holds true for allλ, α > 0. Choosingα := 1
8
, (166) yields


|Re{J }| ≤ d− 1


4
‖g‖C1


∫ 1


0


∣∣ln
[
(a− s2)2 + b2


]∣∣ ds (167)


≤ C ‖g‖C1


[
(1 + a2 + b2)


1
8 +


∫ 1


0


ds


|a− s2| 14


]
(168)


≤ C ′ ‖g‖C1 (1 + a2 + b2), (169)


for some universal constantsC,C ′ <∞. Similarly,


|Im{J }|


=
1


|b|


∣∣∣∣
∫ r


0


g(s)sd−1


1 + b−2(a− s2)2
ds


∣∣∣∣ (170)
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=
1


2


∣∣∣∣
∫ r


0


g(s)sd−2


(
d


ds
arctan


[
a− s2


|b|


])
ds


∣∣∣∣ (171)


=
1


2


∣∣∣∣
∫ r


0


(
g′(s)sd−2 + (d− 2)g(s)sd−3


)
arctan


[
a− s2


|b|


]
ds


∣∣∣∣ (172)


≤ C ‖g‖C1 . (173)


�


Lemma 5.4 Assume thatd ≥ 3, 0 < r < 1, and1 ≤ m ≤ d − 1. There is a
constantĈ3 < ∞ such that, for allf ∈ C1


0(Bd−m × Bm; R), all a ∈ R and all
b ∈ R\{0},
∣∣∣∣∣


∫


Bd−m


∫


Bm


f(x, y)


a + ib− x2 + y2
dd−mx dmy


∣∣∣∣∣ ≤ Ĉ3 ‖f‖C1 (1 + a2 + b2). (174)


Proof. As in Lemma 5.3, we introduce spherical coordinates onBd−m andBm


and defineg ∈ C1([0, 1] × [0, 1]; R), with ‖g‖C1 ≤ ‖f‖C1 , by


g(x, y) :=


∫


Sd−m−1


∫


Sm−1


f(xϑ, yκ) dd−m−1σ(ϑ) dm−1σ(κ), (175)


so that


K :=


∫


Bd−m


∫


Bm


f(x, y)


a+ ib− x2 + y2
dd−mx dmy (176)


=


∫ r


0


∫ r


0


g(x, y)xd−m−1ym−1


a + ib− x2 + y2
dx dy. (177)


We perform yet another smooth coordinate change byφ ∈C∞((0, r)×(−1, 1); (0, 2r)×
(0, 2r)),


x = φ1(s, u) := s(1 + u), y = φ2(s, u) := s(1 − u), (178)


|det Jac φ(s, u)| = 2s, (179)


g̃(s, u) := (1 + u)d−m−1 (1 − u)m−1 g (s(1 + u), s(1 − u)) , (180)


from which we obtain


K = 2


∫ r


0


∫ 1


−1


sd−1g̃(s, u)


a+ ib− (2s)2u
du dr. (181)
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Note that̃g(s, u) = 0 whenevers(1 ± u) ≥ r. Following a similar strategy as in
the proof of Lemma 5.3, we first observe that


Re{K}


= 2


∫ r


0


∫ 1


−1


sd−1g̃(s, u)
a− (2s)2u


(a− (2s)2u)2 + b2
du ds (182)


= −1


4


∫ r


0


sd−3


[∫ 1


−1


g̃(s, u)


(
d


du
ln
[
(a− (2s)2u)2 + b2


])
du


]
ds(183)


= −1


4


∫ r


0


sd−3g̃(s, 1) ln
[
(a− (2s)2)2 + b2


]
ds (184)


+
1


4


∫ r


0


sd−3g̃(s,−1) ln
[
(a+ (2s)2)2 + b2


]
ds (185)


+
1


4


∫ r


0


sd−3


[∫ 1


−1


(∂ug̃)(s, u) ln
[
(a− (2s)2u)2 + b2


]
du


]
ds. (186)


We use (166) again to bound


ln
[
(a− (2s)2u)2 + b2


]
≤ 8(8 + 2a2 + b2)


1
8 + 8|(2s)2|u| − |a||− 1


4 (187)


for u = ±1 andu ∈ [−1, 1], respectively, and hence


|Re{K}| ≤ C ‖f‖C1


(
1 + a2 + b2 +


∫ 2


0


ds


|s2 − |a|| 14
(188)


+


∫ 2


0


[∫ 1


0


du


|s2u− |a|| 14


]
ds
)


for a suitable constantC <∞. Since
∫ 2


0


ds


|s2 − |a|| 14
=


∫ 2


0


ds


(s+ |a| 12 ) 1
4 |s− |a| 12 | 14


≤
∫ 2


0


ds


|s− |a| 12 | 12
≤ 4 (189)


and ∫ 2


0


∫ 2


0


ds du


|s2u− |a|| 14
=


∫ 2


0


1


s
1
2


(∫ 2


0


du


|u− |a|
s2
| 14


)
ds ≤ 8, (190)


we obtain that
|Re{K}| ≤ 24C ‖f‖C1


(
1 + a2 + b2


)
. (191)
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Similarly,


Im{K}


= −2


∫ r


0


∫ 1


−1


sd−1g̃(s, u)
bsd−1g̃(s, u)


(a− (2s)2u)2 + b2
du ds (192)


=
1


2


∫ r


0


sd−3


[∫ 1


−1


g̃(s, u)


(
d


du
arctan


[
a− (2s)2u


|b|


])
du


]
ds (193)


=
1


2


∫ r


0


sd−3g̃(s, 1) arctan


[
a− (2s)2


|b|


]
ds (194)


−1


2


∫ r


0


sd−3g̃(s,−1) arctan


[
a + (2s)2


|b|


]
ds (195)


−1


2


∫ r


0


sd−3


[∫ 1


−1


(∂ug̃)(s, u) arctan


[
a− u(2s)2


|b|


]
du


]
ds (196)


and| arctan(ϕ)| ≤ π
2


immediately implies that


|Im{K}| ≤ C ‖f‖C1 (197)


for a suitable constantC <∞.
�
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