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MULTILINEAR MORAWETZ IDENTITIES FOR THE


GROSS-PITAEVSKII HIERARCHY


T. CHEN, N. PAVLOVIĆ, AND N. TZIRAKIS


Abstract. This article consists of two parts. In the first part, we review the most recent


proofs establishing quadratic Morawetz inequalities for the nonlinear Schrödinger equation


(NLS). We also describe the applications of these estimates to the problem of quantum


scattering. In the second part, we generalize some of the methods developed for the NLS


by many authors to the case of Gross-Pitaevskii (GP) hierarchies. In particular, we prove


both regular and interaction Morawetz identities for the GP hierarchy, which appear here


for the first time in the literature.


1. Introduction


In this paper, we discuss some recent a priori estimates for the solutions to the power


type nonlinear Schrödinger equation{
iut + ∆u = λ|u|p−1u, x ∈ Rn, t ∈ R,


u(x, 0) = u0(x) ∈ Hs(Rn)
(1.1)


for any p > 1 and λ ∈ R. This involves the proof of Morawetz identities and Morawetz


inequalities for the NLS. Moreover, we derive generalizations of both regular (one-particle),


and interaction Morawetz identities for Gross-Pitaevskii hierarchies.


Gross-Pitaevskii (GP) hierarchies are infinite systems of coupled linear non-homogeneous


PDEs that appear naturally in the derivation of the nonlinear Schrödinger equation, as the


dynamical mean field limit of the manybody quantum dynamics of Bose gases (under the


Gross-Pitaevskii scaling). Let q ∈ {2, 4} and λ ∈ {−1, 1}. The q-GP hierarchy on Rd is


an infinite system of coupled PDEs for functions (referred to as marginal density matrices)


γ(k)(t, x1, . . . , xk, x
′
1, . . . , x


′
k) for k ∈ N, t ∈ R and xi, x


′
i ∈ Rd for i ∈ {1, . . . , k}:


i∂tγ
(k) = −


k∑
j=1


(
∆xj −∆x′j


)
γ(k) + λBk+ q


2
γ(k+ q


2
), (1.2)
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where the inhomogeneous term is given by


Bk+ q
2
γ(k+ p


2
) =


k∑
j=1


(
B+
j;k+1,...,k+ q


2
γ(k+ q


2
) −B−


j;k+1,...,k+ q
2
γ(k+ q


2
)
)
. (1.3)


with (
B+
j;k+1,...,k+ q


2
γ(k+ q


2
)
)


(t, x1, . . . , xk, x
′
1, . . . , x


′
k)


= γ(k+ q
2


)(t, x1, . . . ,xj, . . . , xk,xj, · · ·xj︸ ︷︷ ︸
q
2


;x′1, . . . , x
′
k,xj, · · · ,xj︸ ︷︷ ︸


q
2


),


(
B−
j;k+1,...,k+ q


2
γ(k+ q


2
)
)


(t, x1, . . . , xk, x
′
1, . . . , x


′
k)


= γ(k+ q
2


)(t, x1, . . . , xk,x
′
j, · · ·x′j︸ ︷︷ ︸


q
2


;x′1, . . . ,x
′
j, . . . x


′
k,x
′
j, · · · ,x′j︸ ︷︷ ︸


q
2


) ,


accounting for the interactions between 1 + q
2 particles. The marginal density matrices are


hermitean, γ(k)(xk, x
′
k) = γ(k)(x′k, xk), and satisfy the property of admissibility, that is,


γ(k)(t, x1, . . . , xk;x
′
1, . . . , x


′
k) =


∫
dy γ(k+1)(t, x1, . . . , xk, y;x′1, . . . , x


′
k, y) (1.4)


for all k ∈ N, with normalization
∫
dx γ(1)(t, x;x) = 1.


1.1. Nonlinear Schrödinger equation. Equation (1.1) is the Euler-Lagrange equation


for the Lagrangian density


L(u) = −1


2
∆(|u|2) + λ


p− 1


p+ 1
|u|p+1.


Several invariants of the equation lead to conservation laws that play a central role in the


well-posedness theory of the problem. The homogeneous Sobolev norm Ḣsc is invariant


under the scaling uµ(x, t) = µ
− 2
p−1u(xµ ,


t
µ2


), when sc = n
2 −


2
p−1 . This critical regularity


already partitions the general problem into different sub-problems with a varied degree of


difficulty. Two important cases that are well understood correspond to the energy subcrit-


ical problem for 1 < p < 1 + 4
n−2 , n ≥ 3, 1 < p <∞, n = 1, 2 and initial data in H1, and


the L2 subcritical problem for 1 < p < 1 + 4
n , n ≥ 1 and L2 initial data. Time translation


invariance leads to energy conservation


E(u)(t) =
1


2


∫
|∇u(t)|2dx+


λ


p+ 1


∫
|u(t)|p+1dx = E(u0). (1.5)


In the defocusing case, (λ = 1), this law provides an H1 a priori bound that extends any


local energy subcritical solution to an interval of arbitrary length. The equation is also
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invariant under phase rotation which leads to the conservation of mass law


‖u(t)‖L2 = ‖u0‖L2 . (1.6)


This implies for any λ the existence of global-in-time solutions for solutions evolving from


finite mass data in the L2-subcritical case of p < 1 + 4
n . For the L2−critical problem,


p = 1+ 4
n , the time of the local theory depends on the profile of the initial data, in addition


to their L2 norm, and thus the conservation law is not immediately useful. Space translation


invariance leads to momentum conservation


~p(t) = =
∫
Rn
ū∇udx, (1.7)


a quantity that has no definite sign. It turns out that one can also use this conservation


law in the defocusing case and prove monotonicity formulas that are very useful in studying


the global-in-time properties of the solutions at t = ∞. For most of these classical results


the reader can consult [3], [43].


The study of the problem at infinity is an attempt to describe and classify the asymp-


totic behavior-in-time for the global solutions. To handle this issue, one tries to compare


the given nonlinear dynamics with suitably chosen simpler asymptotic dynamics. For the


semilinear problem (1.1), the first obvious candidate for the simplified asymptotic behavior


is the free dynamics generated by the group S(t) = e−it∆. The comparison between the two


dynamics gives rise to the questions of the existence of wave operators and of the asymp-


totic completeness of the solutions. In the literature nowadays, the problem of asymptotic


completeness is synonymous with the problem of scattering. More precisely, we have:


i) Let v+(t) = S(t)u+ be the solution of the free equation. Does there exist a solution u


of equation (1.1) which behaves asymptotically as v+ as t→∞, typically in the sense that


‖u(t)−v+‖H1 → 0, as t→∞. If this is true, then one can define the map Ω+ : u+ → u(0).


The map is called the wave operator and the problem of existence of u for given u+ is


referred to as the problem of the existence of the wave operator. The analogous problem


arises as t→ −∞.


ii) Conversely, given a solution u of (1.1), does there exist an asymptotic state u+ such


that v+(t) = S(t)u+ behaves asymptotically as u(t), in the above sense. If that is the case


for any u with initial data in X for some u+ ∈ X, one says that asymptotic completeness


holds in X.


In effect the existence of wave operators asks for the construction of global solutions that


behave asymptotically as the solution of the free Schrödinger equation while the asymptotic


completeness requires all solutions to behave asymptotically in this manner. It is thus not
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accidental that asymptotic completeness is a much harder problem than the existence of


the wave operators (except in the case of small data theory which follows from the iterative


methods of the local well-posedness theory).


Asymptotic completeness for large data not only require a repulsive nonlinearity but


also some decay for the nonlinear solutions. In the ideal scenario the nonlinear solution will


obey the same decay properties of the linear Schrödinger equation. This decay of the linear


problem can already establish weak quantum scattering in the energy space for example,


but to say more, we usually need decay in an Lp norm for the nonlinear solution. In this


paper, we provide a summary of recent results that demonstrates a straightforward method


to obtain such estimates by taking advantage of the momentum conservation law (1.7). A


key example of these ideas is contained in the following generalized virial inequality of Lin


and Strauss [33]. (We recall the proof of this inequality in the next section.)


∫
Rn×R


(−∆∆a(x))|u(x, t)|2dxdt+ λ


∫
Rn×R


(∆a(x))|u(x, t)|p+1dxdt ≤ C (1.8)


where a(x) is a convex function, u is a solution to (1.1), and C a constant that depends


only on the energy and mass bounds.


An inequality of this form, which we will call a one-particle inequality, was first derived


in the context of the Klein-Gordon equation by Morawetz [34], and then extended to the


NLS equation in [33]. The inequality was applied to prove asymptotic completeness first


for the nonlinear Klein-Gordon and then for the NLS equation in the papers by Morawetz


and Strauss, [35], and by Lin and Strauss, [33] for slightly more regular solutions in space


dimension n ≥ 3. The case of general finite energy solutions for n ≥ 3 was treated in [25]


for the NLS and in [23] for the Hartree equation. The treatment was then improved to the


more difficult case of low dimensions by Nakanishi, [36], [37].


The bilinear a priori estimates that we outline here give stronger bounds on the solutions


and in addition simplify the proofs of the results in the papers cited above. For a detailed


summary of the method see [24]. In the original paper by Morawetz, the weight function


that was used was a(x) = |x|. This choice has the advantage that the distribution −∆∆( 1
|x|)


is positive for n ≥ 3. More precisely it is easy to compute that ∆a(x) = n−1
|x| and that


−∆∆a(x) =


 8πδ(x), if n = 3
(n−1)(n−3)
|x|2 , if n ≥ 4.
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In particular, the computation in (1.8) gives the following estimate for n = 3 and λ positive∫
R
|u(t, 0)|2dt+


∫
R3×R


|u(x, t)|p+1


|x|
dxdt ≤ C. (1.9)


Similar estimates are true in higher dimensions. The second, nonlinear term, or certain local


versions of it, have played central role in the scattering theory for the nonlinear Schrödinger


equation, [2], [25], [26], [33]. The fact that in 3d, the bi-harmonic operator acting on the


weight a(x) produces the δ−measure can be exploited further. In [13], a quadratic Morawetz


inequality was proved by correlating two nonlinear densities ρ1(x) and ρ2(y) and define as


a(x, y) the distance between x and y in 3d. The authors obtained an a priori estimate of


the form
∫
R3×R |u(x, t)|4dx ≤ C for solutions that stay in the energy space. A frequency


localized version of this estimate has been successfully implemented to remove the radial


assumption of Bourgain, [2], and prove global well-posedness and scattering for the energy-


critical (quintic) equation in 3d, [14]. For n ≥ 4 new quadratic Morawetz estimates were


given in [44]. Finally in [10] and in [38] these estimates were extended to all dimensions.


We should mention that taking as the weight function the distance between two points


in Rn is not the only approach, see [11] for a recent example. Nowadays it is well under-


stood that the bilinear Morawetz inequalities provide a unified approach for proving energy


scattering for sub-critical solutions of the NLS when p > 1 + 4
n (L2 super-critical nonlin-


earities). This last statement has been rigorously formalized only recently due to the work


of the aforementioned authors, and a general exposition has been published in [24]. Sub-


energy solution scattering in the same range of powers has been initiated in [13]. For the


L2-critical problem, scattering is a very hard problem, but it seems that the problem has


now been resolved in a series of new papers by B. Dodson. For mass sub-critical solutions,


scattering even in the energy space is a very hard problem, and is probably false. Neverthe-


less, two particle Morawetz estimates have been used for the problem of the existence (but


not uniqueness) of the wave operator for mass subcritical problems, [29]. We have already


mentioned their implementation to the hard problem of energy critical solutions in [2], [26],


and [14]. Recent preprints have used these inequalities for the mass critical problem, [15],


and the energy super-critical problem, [30]. For a frequency localized one particle Morawetz


inequality and its application to the scattering problem for the mass-critical equation with


radial data see [45].


1.2. The Gross-Pitaevskii Hierarchy. The q-GP hierarchy appears naturally in the


derivation, based on the BBGKY hierarchy of density matrices, of the nonlinear Schrödinger


equation as the dynamical mean field limit of the manybody quantum dynamics of Bose
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gases with (1 + q
2)-particle interactions. Recently, this research area has experienced some


remarkable progress, see [17, 18, 19, 31, 32, 39] and the references therein, and also [1, 16,


20, 21, 22, 28, 41].


Of particular importance for our work is the method developed in works of Erdös, Schlein,


and Yau, [17, 18, 19], which consists of the following main steps:


(1) One determines the BBGKY hierarchy of marginal density matrices for particle


number N , and derives the Gross-Pitaevskii (GP) hierarchy in the limit N → ∞,


in a scaling where the particle interaction potential tends to a delta distribution;


see also [31, 40].


(2) One establishes uniqueness of solutions to the GP hierarchy. This is the most


difficult part of this analysis, and is obtained in [17, 18, 19] by use of Feynman


graph expansion methods inspired by quantum field theory. It is subsequently


verified that for factorized initial data


γ
(k)
0 (xk;x


′
k) =


k∏
j=1


φ0(xj)φ0(x′j) ,


the solution of the GP hierarchy remains factorized for all t ∈ I ⊆ R,


γ(k)(t, xk;x
′
k) =


k∏
j=1


φ(t, xj)φ(t, x′j) ,


if φ(t) ∈ H1(Rd) solves the defocusing NLS,


i∂tφ = −∆xφ + λ |φ|qφ ,


for t ∈ I ⊆ R, and φ(0) = φ0 ∈ H1(Rd) with q ∈ {2, 4}. In other words, the


solutions of the GP hierarchy are governed by a cubic NLS for systems with 2-body


interactions (q = 2), [17, 18, 19, 31], and quintic NLS for systems with 3-body


interactions (q = 4), [4].


More recently, Klainerman and Machedon have introduced an alternative method in [32]


to prove the uniqueness of solutions to the GP hierarchy for q = 2 and d = 3, in spaces


defined via spacetime bounds on the density matrices in the GP hierarchy; these spaces


are different from the ones used in [17, 18, 19]. The uniqueness result in [32] relies on


the assumption of an a priori spacetime bound on the density matrices. For dimensions


d ≤ 2, this assumption can be directly verified by exploiting energy conservation in the


BBGKY hierarchy in the limit N →∞, combined with a Sobolev type inequality for density


matrices. This was recognized in the paper [31] by Kirkpatrick, Schlein and Staffilani where


the authors prove uniqueness for the cubic case in d = 2, and establish the assumption made
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in [32]. In [4], the corresponding problem in d = 1, 2 is solved for the quintic case. Both


[31] and [4] involve a step where a certain spacetime norm is controlled by using a Sobolev


inequality for density matrices, and an a priori energy bound, without exploiting the decay


in time. This approach is applicable for d ≤ 2, but not for dimension d = 3. In d = 3,


a method is necessary that is truly based on spacetime norms; and such an approach has


recently been developed in [8].


In [5], Chen and Pavlović initiated the study of the well-posedness of the Cauchy problem


for GP hierarchies with both focusing and defocusing interactions, starting directly on


the level of GP hierarchies, and independent of the derivation from N -body Schrödinger


dynamics. Accordingly, the corresponding GP hierarchies are referred to as cubic (q = 2),


quintic (q = 4), focusing, or defocusing GP hierarchies, depending on the type of the


NLS governing the solutions obtained from factorized initial conditions. We note that for


instance, it is currently not known how to rigorously derive a GP hierarchy from the N →∞
limit of a BBGKY hierarchy with L2-supercritical, attractive interactions.


For the analysis of the Cauchy problem for q-GP hierarchies in [5], the following Banach


space of sequences of k-particle marginal density matrices is introduced


G = {Γ = ( γ(k)(x1, . . . , xk;x
′
1, . . . , x


′
k) )k∈N |Trγ(k) < ∞} . (1.10)


Given ξ > 0, the space


Hαξ = {Γ | ‖Γ ‖Hαξ < ∞} (1.11)


is endowed with the norm


‖Γ ‖Hαξ :=
∑
k∈N


ξk ‖ γ(k) ‖Hα , (1.12)


where


‖γ(k)‖Hα
k


:= ‖S(k,α)γ(k)‖L2(R2kd) (1.13)


with


S(k,α) :=


k∏
j=1


〈
∇xj


〉α〈∇x′j〉α
is the norm considered in [32]. If Γ ∈ Hαξ , then ξ−1 an upper bound on the typical Hα-


energy per particle. The parameter α determines the regularity of the solution (e.g. for


cubic GP when d = 3, α ∈ [1,∞)). In [5], the existence and uniqueness of solutions for


energy subcritical focusing and defocusing cubic and quintic GP hierarchies is proven in a


subspace of Hαξ . The proof involves a Picard fixed point argument, and holds for various
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dimensions d, without any requirement on factorization. The solutions derived in [5] satisfy


a space-time bound corresponding to the one used (as an a priori assumption) in the work


of Klainerman and Machedon, [32]. The parameter ξ > 0 is determined by the initial


condition, and it sets the energy scale of the given Cauchy problem.


The work [5] motivated further study of the Cauchy problem for q-GP hierarchy:


• In [9], we identified a conserved energy functional E1(Γ(t)) = E1(Γ(0)) describing


the average energy per particle, and we proved virial identities for solutions of GP


hierarchies. In particular, we use these ingredients to prove that for L2-critical and


supercritical focusing GP hierarchies, blowup occurs whenever E1(Γ0) < 0, and


when the variance is finite. We note that prior to [9], no exact conserved energy


functional on the level of the GP hierarchy was identified in any of the previous


works, including [31] and [17, 18].


• In [6], new higher order energy functionals were introduced, and proven to be con-


served quantitites for energy subcritical defocusing, and L2 subcritical (de)focusing


GP hierarchies, in spaces similar to those used by Erdös, Schlein and Yau in [17, 18].


By use of this tool, a priori H1 bounds for positive semidefinite solutions are proven


in the same spaces. Moreover, global well-posedness was obtained for positive semi-


definite solutions in the spaces studied in the works of Klainerman and Machedon,


[32], and in [5].


• A new proof of existence of solutions to cubic and quintic GP hierarchies for focusing


and defocusing interactions was obtained in [7]. It does not require the a priori


bound on the spacetime norms, which was introduced in the work of Klainerman


and Machedon, [32], and used in the earlier work of Chen and Pavlović [5].


• Very recently, a new derivation of the defocusing cubic GP hierarchy has been ob-


tained in [8] for dimensions d = 2, 3, which crucially involves generalizations of the


tools developed in the above mentioned paper [7]. In particular, it is established


in [8] that the GP hierarchy obtained from the N → ∞ limit of the correspond-


ing BBGKY hierarchy, is contained in the space introduced by Klainerman and


Machedon in [32] based on their spacetime norms. While these results do not as-


sume factorization of the solutions, consideration of the special case of factorized


solutions yields a new derivation of the cubic, defocusing NLS in d = 2, 3.


In this paper, we extend the study of Morawetz type identities for the GP hierarchy,


inspired by our proof of a virial identity for GP hierarchies in [9]. More precisely, we derive


an interaction Morawetz identity, and as a consequence, a regular one-particle Morawetz
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identity for solutions of the GP hierarchy. These calculations are carried out in Section 3


of the paper.


2. The nonlinear Schrödinger equation.


We start with the equation


iut + ∆u = λ|u|p−1u (2.1)


with p ≥ 1 and λ ∈ R. We use Einstein’s summation convention throughout this sec-


tion. According to this convention, when an index variable appears twice in a single term,


once in an upper (superscript) and once in a lower (subscript) position, it implies that we


are summing over all of its possible values. We will also write ∇ju for ∂u
∂xj


. For a func-


tion a(x, y) defined on Rn×Rn we define∇x,j a(x, y) = ∂a(x,y)
∂xj


and similarly for∇x,k a(x, y).


We define the mass density ρ and the momentum vector ~p, by the relations


ρ = |u|2, pk = =(ū∇ku).


It is well known, [3], that smooth solutions to the semilinear Schrödinger equation satisfy


mass and momentum conservation. The local conservation of mass reads


∂tρ+ 2div~p = ∂tρ+ 2∇jpj = 0 (2.2)


and the local momentum conservation is


∂tp
j +∇k


(
δjk
(
− 1


2
∆ρ+ λ


p− 1


p+ 1
|u|p+1


)
+ σjk


)
= 0 (2.3)


where the symmetric tensor σjk is given by


σjk = 2<(∇ju∇ku).


Notice that the term λp−1
p+1 |u|


p+1 is the only nonlinear term that appears in the expression.


One can express the local conservation laws purely in terms of the mass density ρ and the


momentum ~p if we write


λ
p− 1


p+ 1
|u|p+1 = 2


p+1
2 λ


p− 1


p+ 1
ρ
p+1
2


and


σjk = 2<(∇ju∇ku) =
1


ρ
(2pjpk +


1


2
∇jρ∇kρ),


but we won’t use this formulation in this paper. We are ready to state the main theorem


of this section:
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Theorem 2.1. [10, 13, 38, 44] Consider u ∈ Ct(R;C∞0 (Rn)) a smooth and compactly


supported solution to (2.1) with u(x, 0) = u(x) ∈ C∞0 (Rn). Then for n ≥ 2 we have that


C‖D−
n−3
2 (|u|2)‖2L2


tL
2
x


+ (n− 1)λ
p− 1


p+ 1


∫
Rt


∫
Rnx×Rny


|u(y, t)|2|u(x, t)|p+1


|x− y|
dxdydt


≤ ‖u0‖2L2 sup
t∈R
|My(t)|,


where


My(t) =


∫
Rn


x− y
|x− y|


· =
(
u(x)∇u(x)


)
dx,


Dα is defined on the Fourier side as D̂αf(ξ) = |ξ|αû(ξ) for any α ∈ R and C is a positive


constant that depends only on n, [42]. For n = 1 the estimate is


‖∂x(|u|2)‖2L2
tL


2
x


+ λ
p− 1


p+ 1
‖u‖p+3


Lp+3
t Lp+3


x
≤ 1


2
‖u0‖3L2 sup


t∈R
‖∂xu‖L2 .


Remarks on Theorem 2.1.


1. By the Cauchy-Schwarz inequality it follows that for any n ≥ 2,


sup
0,t
|My(t)| . ‖u0‖3L2 sup


t∈R
‖∇u(t)‖L2 .


A variant of Hardy’s inequality gives


sup
0,t
|My(t)| . ‖u0‖2L2 sup


t∈R
‖u(t)‖2


Ḣ
1
2
,


For details, see [24].


2. Concerning our main theorem, we note that both the integrated functions in the second


term on the left hand side of the inequalities are positive. Thus when λ > 0, which


corresponds to the defocusing case, and for H1 data say, we obtain for n ≥ 2:


‖D−
n−3
2 (|u|2)‖L2


tL
2
x
. ‖u0‖


3
2


L2 sup
t∈R
‖∇u(t)‖


1
2


L2 .M(u0)
3
2E(u0)


1
2 ,


and for n = 1


‖∂x(|u|2)‖2L2
tL


2
x
. ‖u0‖


3
2


L2 sup
t∈R
‖∂xu(t)‖


1
2


L2 .M(u0)
3
2E(u0)


1
2 .


These are easy consequences of the conservation laws of mass (1.6) and energy (1.5). They


provide the global a priori estimates that are used in quantum scattering in the energy


space, [24].


3. Analogous estimates hold for the case of the Hartree equation iut+∆u = λ(|x|−γ ? |u|2)u


when 0 < γ < n, n ≥ 2. For the details, see [29]. We should point out that for 0 < γ ≤ 1
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scattering fails for the Hartree equation, [27], and thus the estimates given in [29] for n ≥ 2


cover all the interesting cases. We also expect the Hartree quadratic Morawetz estimates


that were established in [29] to extend to the case of the Hartree hierarchy, for which


factorized solutions are determined by the Hartree equation. A detailed analysis of this


problem for GP hierarchies is presented in section 3, below.


4. Take λ > 0. The expression


‖D−
n−3
2 (|u|2)‖L2


tL
2
x
,


for n = 3, provides an estimate for the L4
tL


4
x norm of the solution. For n = 2 by Sobolev


embedding one has that


‖u‖2L4
tL


8
x


= ‖|u|2‖L2
tL


4
x
. ‖D


1
2
(
|u|2
)
‖L2


tL
2
x
. CM(u0),E(u0).


For n ≥ 4 the power of the D operator is negative but some harmonic analysis and inter-


polation with the trivial inequality


‖D
1
2u‖L∞t L2


x
. ‖u‖


L∞t Ḣ
1
2
x


provides an estimate in a Strichartz norm. For the details see [44].


5. In the defocusing case all the estimates above give a priori information for the Ḣ
1
4 -


critical Strichartz norm. We remind the reader that the Ḣs-critical Strichartz norm is


‖u‖LqtLrx where the pair (q, r) satisfies 2
q + n


r = n
2 − s. In principle the correlation of k


particles will provide a priori information for the Ḣ
1
2k critical Strichartz norm. In 1d an


estimate that provides a bound on the Ḣ
1
8 critical Strichartz norm has been given in [12].


6. To make our presentation easier we considered smooth solutions of the NLS equation.


To obtain the estimates in Theorem 2.1 for arbitrary H1 functions we have to regularize


the solutions and then take a limit. The process is described in [24].


7. A more general bilinear estimate can be proved if one correlates two different solutions


(thus considering different density functions ρ1 and ρ2). Unfortunately, one can obtain


useful estimates only for n ≥ 3. The proof is based on the fact that −∆2|x| is a positive


distribution only for n ≥ 3. For details the reader can check [13]. Our proof shows that the


diagonal case when ρ1 = ρ2 = |u|2 provides useful monotonicity formulas in all dimensions.


Proof. We define the Morawetz action centered at zero by


M0(t) =


∫
R
∇a(x) · ~p(x) dx, (2.4)
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where the weight function a(x) : Rn → R is for the moment arbitrary. The minimal


requirements on a(x) call for the matrix of the second partial derivatives ∂j∂ka(x) to be


positive definite. Throughout our paper we will take a(x) = |x|, but many estimates can


be given with different weight functions, see for example [11] and [30]. If we differentiate


the Morawetz action with respect to time we obtain:


∂tM0(t) =


∫
Rn
∇a(x) · ∂t~p(x) dx =


∫
Rn
∇ja(x)∂tp


j(x) dx


=


∫
Rn


(
∇j∇ka(x)


)
δjk
(
− 1


2
∆ρ+ λ


p− 1


p+ 1
|u|p+1


)
dx+ 2


∫
Rn


(
∇j∇ka(x)


)
<
(
∇ju∇ku


)
dx,


where we use equation (2.3). We rewrite and name the equation as follows


∂tM0(t) =


∫
Rn


∆a(x)
(
− 1


2
∆ρ+λ


p− 1


p+ 1
|u|p+1


)
dx+2


∫
Rn


(
∇j∇ka(x)


)
<
(
∇ju∇ku


)
dx. (2.5)


Notice that for a(x) = |x| the matrix ∇j∇ka(x) is positive definite and the same is true if


we translate the weight function by any point y ∈ Rn and consider ∇x,j∇x,ka(x − y) for


example. That is for any vector function on Rn, {vj(x)}nj=1, with values on R or C we have


that ∫
Rn


(
∇j∇ka(x)


)
vj(x)vk(x)dx ≥ 0.


To see this, observe that for n ≥ 2 we have ∇ja =
xj
|x| and ∇j∇ka = 1


|x|
(
δkj −


xjxk
|x|2
)
.


Summing over j = k we obtain ∆a(x) = n−1
|x| . Then


∇j∇ka(x)vj(x)vk(x) =
1


|x|
(
δkj −


xjxk
|x|2


)
vj(x)vk(x) =


1


|x|


(
|~v(x)|2 −


(x · ~v(x)


|x|
)2) ≥ 0


by the Cauchy-Schwarz inequality. Notice that it does not matter if the vector function is


real or complex valued for this inequality to be true. In dimension one (2.5) simplifies to


∂tM0(t) =


∫
R
axx(x)


(
− 1


2
∆ρ+ λ


p− 1


p+ 1
|u|p+1 + 2|ux|2


)
dx. (2.6)


In this case for a(x) = |x|, we have that axx(x) = 2δ(x). Since the identity (2.5) does not


change if we translate the weight function by y ∈ Rn we can define the Morawetz action


with center at y ∈ Rn by


My(t) =


∫
Rn
∇a(x− y) · ~p(x) dx.


We can then obtain like before


∂tMy(t) =


∫
Rn


∆xa(x− y)
(
− 1


2
∆ρ+ λ


p− 1


p+ 1
|u|p+1


)
dx


+2


∫
Rn


(
∇x,j∇x,ka(x− y)


)
<
(
∇x,ju∇x,ku


)
dx.
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We now define the two-particle Morawetz action


M(t) =


∫
Rny
|u(y)|2My(t) dx


and differentiate with respect to time. Using the identity above and the local conservation


of mass law we obtain four terms


∂tM(t) =


∫
Rny
|u(y)|2∂tMy(t) dx+


∫
Rny
∂tρ(y)My(t) dx


=


∫
Rny×Rnx


|u(y)|2∆xa(x− y)
(
− 1


2
∆ρ+ λ


p− 1


p+ 1
|u|p+1


)
dxdy


+2


∫
Rny×Rnx


|u(y)|2
(
∇x,j∇x,ka(x− y)


)
<
(
∇x,ju∇x,ku


)
dxdy


−2


∫
Rny×Rnx


∇y,jpj(y)∇x,ka(x− y)pk(x)dxdy


= I + II + III + 2


∫
Rny×Rnx


pj(y)∇y,j∇x,ka(x− y)pk(x)dxdy


by integration by parts with respect to the y−variable. Since


∇y,j∇x,ka(x− y) = −∇x,j∇x,ka(x− y)


we obtain that


∂tM(t) = I + II + III − 2


∫
Rny×Rnx


∇x,j∇x,ka(x− y)pj(y)pk(x)dxdy (2.7)


= I + II + III + IV


where


I =


∫
Rny×Rnx


|u(y)|2∆xa(x− y)
(
− 1


2
∆ρ
)
dxdy,


II =


∫
Rny×Rnx


|u(y)|2∆xa(x− y)
(
λ
p− 1


p+ 1
|u|p+1


)
dxdy,


III = 2


∫
Rny×Rnx


|u(y)|2
(
∇x,j∇x,ka(x− y)


)
<
(
∇x,ju∇x,ku


)
dxdy,


IV = −2


∫
Rny×Rnx


∇x,j∇x,ka(x− y)pj(y)pk(x)dxdy.


Claim: III + IV ≥ 0. Assume the claim. Since ∆xa(x− y) = n−1
|x−y| we have that


∂tM(t) ≥ n− 1


2


∫
Rny×Rnx


|u(y)|2


|x− y|
(
−∆ρ


)
dxdy + (n− 1)λ


p− 1


p+ 1


∫
Rny×Rnx


|u(y)|2


|x− y|
|u(x)|p+1dxdy.
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But recall that on one hand we have that −∆ = D2 and on the other that the distributional


Fourier transform of 1
|x| for any n ≥ 2 is c


|ξ|n−1 where c is a positive constant depending


only on n. Thus we can define


D−(n−1)f(x) = c


∫
Rn


f(y)


|x− y|
dy


and express the first term as


n− 1


2


∫
Rny×Rnx


|u(y)|2


|x− y|
(
−∆ρ


)
dxdy = c


n− 1


2
< D−(n−1)|u|2, D2|u|2 >= C‖D−


n−3
2 |u|2‖2L2


x


by the usual properties of the Fourier transform for positive and real functions. Integrating


from 0 to t we obtain the theorem in the case that n ≥ 2.


Proof of the claim: Notice that


III + IV = 2


∫
Rny×Rnx


∇x,j∇x,ka(x− y)
(
|u(y)|2<


(
∇x,ju(x)∇x,ku(x)


)
− pj(y)pk(x)


)
dxdy


= 2


∫
Rny×Rnx


∇x,j∇x,ka(x− y)
(ρ(y)


ρ(x)
<
(
u(x)(∇x,ju(x))u(x)(∇x,ku(x))


)
− pj(y)pk(x)


)
dxdy.


Since


∇x,j∇x,ka(x− y) = ∇y,j∇y,ka(y − x)


by exchanging the roles of x and y we obtain the same inequality and thus


III + IV =


∫
Rny×Rnx


∇x,j∇x,ka(x− y)
(ρ(y)


ρ(x)
<
(
u(x)(∇x,ju(x))u(x)(∇x,ku(x))


)
− pj(y)pk(x)


+
ρ(x)


ρ(y)
<
(
u(y)(∇y,ju(y))u(y)(∇y,ku(y))


)
− pj(x)pk(y)


)
dxdy.


Now set z1 = u(x)∇x,ku(x) and z2 = u(x)∇x,ju(x) and apply the identity


<(z1z̄2) = <(z1)<(z2) + =(z1)=(z2)


to obtain


<
(
u(x)(∇x,ju(x))u(x)(∇x,ku(x))


)
= <


(
u(x)∇x,ku(x)


)
<
(
u(x)∇x,ju(x)


)
+=
(
u(x)∇x,ku(x)


)
=
(
u(x)∇x,ju(x)


)
=


1


4
∇x,kρ(x)∇x,jρ(x)− pk(x)pj(x)


and similarly


<
(
u(y)(∇y,ju(y))u(y)(∇y,ku(y))


)
=


1


4
∇y,kρ(y)∇y,jρ(y)− pk(y)pj(y).


Thus


III + IV =
1


4


∫
Rny×Rnx


∇x,j∇x,ka(x− y)
ρ(y)


ρ(x)
∇x,kρ(x)∇x,jρ(x)dxdy
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+
1


4


∫
Rny×Rnx


∇y,j∇y,ka(x− y)
ρ(x)


ρ(y)
∇y,kρ(y)∇y,jρ(y)dxdy


+


∫
Rny×Rnx


∇y,j∇y,ka(x−y)
(ρ(y)


ρ(x)
pk(x)pj(x)+


ρ(x)


ρ(y)
pk(y)pj(y)−pk(x)pj(y)−pk(y)pj(x)


)
dxdy.


Since the matrix ∇x,j∇x,ka(x − y) = ∇y,j∇y,ka(x − y) is positive definite, the first two


integrals are positive. Thus,


III + IV ≥∫
Rny×Rnx


∇x,j∇x,ka(x−y)
(ρ(y)


ρ(x)
pk(x)pj(x)+


ρ(x)


ρ(y)
pk(y)pj(y)−pk(x)pj(y)−pk(y)pj(x)


)
dxdy.


Now if we define the two point vector


Jk(x, y) =


√
ρ(y)


ρ(x)
pk(x)−


√
ρ(x)


ρ(y)
pk(y)


we obtain that


III + IV ≥
∫
Rny×Rnx


∇x,j∇x,ka(x− y)J j(x, y)Jk(x, y)dxdy ≥ 0


and we are done.


The proof when n = 1 is easier. First, an easy computation shows that if a(x, y) = |x−y|
then ∂xxa(x, y) = 2δ(x− y). In this case from (2.7) we obtain


∂tM(t) =


∫
Ry×Rx


|u(y)|22δ(x− y)
(
− 1


2
ρxx
)
dxdy + 2


∫
R
|u(x)|2


(
λ
p− 1


p+ 1
|u(x)|p+1


)
dx


+4


∫
R
|u(x)|2|ux|2dx− 4


∫
R
p2(x)dx.


But ∫
Ry×Rx


|u(y)|22δ(x− y)
(
− 1


2
ρxx
)
dxdy =


∫
R


(
∂x|u(x)|2


)2
dx.


In addition a simple calculation shows that


|u(x)|2|ux|2 =
(
<(uux)


)2
+
(
=(uux)


)2
=


1


4


(
∂x|u|2


)2
+ p2(x).


Thus


4|u(x)|2|ux|2 − 4p2(x) =
(
∂x|u|2


)2


and the identity becomes


∂tM(t) = 2


∫
R


(
∂x|u|2


)2
dx+ 2


∫
R
|u(x)|2


(
λ
p− 1


p+ 1
|u(x)|p+1


)
dx (2.8)


which finishes the proof of the theorem. �
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3. Morawetz identities for the GP hierarchy


In this section, we derive one-particle Morawetz inequalities for GP hierarchies in Theo-


rem 3.1, and interaction Morawetz identities for GP hierarchies in Theorem 3.2, below, for


1 ≤ n ≤ 3 dimensions. For simplicity of exposition, we will only present the case of cubic


GP hierarchies here, that is, q-GP hierarchies with q = 2. The case of quintic or higher


degree q-GP hierarchies (q ≥ 4, q ∈ 2N) can be treated in a completely analogous manner.


For convenience of exposition, we assume that Γ = (γ(k)) solves the cubic GP hierarchy


(1.2) inH2
ξ (the corresponding local well-posedness theory is covered in [5]), with interaction


terms defined in (1.3) with q = 2. 1


3.1. One-particle Morawetz identities for the cubic GP hierarchy. The density


function corresponding to the one-particle marginal is defined by


ρ(x) := γ(1)(x;x) . (3.1)


One can straightforwardly verify that


∂tρ(x) =


∫
du du′ ei(u−u


′)x ∂tγ̂
(1)(u;u′)


=
1


i


∫
du du′ ei(u−u


′)x(u2 − (u′)2) γ̂(1)(u;u′)


+
λ


i


∫
du du′ ei(u−u


′)x B̂1,2γ(2)(u;u′) (3.2)


=
1


i


∫
du du′ ei(u−u


′)x(u+ u′)(u− u′) γ̂(1)(u;u′)


= −∇x ·
∫
du du′ ei(u−u


′)x(u+ u′) γ̂(1)(u;u′) , (3.3)


so that in analogy with (2.2),


∂tρ(x) + 2∇x · P (x) = 0 , (3.4)


with


P (x) :=


∫
du du′ ei(u−u


′)x u+ u′


2
γ̂(1)(u;u′) (3.5)


is the momentum operator, see also [9]. The fact that the interaction term (3.2) equals zero


is proven in eqs. (5.5) - (5.8) in [9]. We are here adopting conventions analogous to those


in the previous chapter applied to the NLS. In the sequel, we will suppress the dependence


on t from the notation, for simplicity.


1As a result, all expressions in the steps below can easily seen to be well-defined. By adopting the


arguments of [6], it in fact suffices to consider solutions in H1
ξ .
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We define the Morawetz action


Ma :=


∫
dx∇a(x) · P (x) (3.6)


in analogy to (2.4). The time derivative is given by


∂tMa =


∫
dx∇a(x) · ∂tP (x) . (3.7)


Then, we obtain the following version of the regular Morawetz identity.


Theorem 3.1. Under the conditions formulated above, the one-particle Morawetz identity


∂tMa = −1


2


∫
dx (∆x∆xa(x)) γ(1)(x;x)


+
λ


2


∫
dx (∆xa(x))γ(2)(x, x;x, x)


+2<
∫
dxdx′δ(x− x′)


∑
j,`


(
∂xj∂x`a(x)


)
∂x`∂x′jγ


(1)(x;x′) . (3.8)


holds for solutions of the cubic GP hierarchy.


We defer the proof to section 3.3.


3.1.1. Factorized solutions. Substituting factorized solutions of the form


γ(k)(t, xk, x
′
k) =


k∏
j=1


φ(t, xj)φ(t, x′j) , (3.9)


where


i∂tφ(t, x) + ∆xφ(t, x) = λ |φ(t, x)|2 φ(t, x) (3.10)


with initial data φ(0, · ) = φ0 ∈ H1, we obtain the following result.


∂tMa = −1


2


∫
dx (∆x∆xa(x)) |φ(t, x)|2


+
λ


2


∫
dx (∆xa(x))|φ(t, x)|4


+2<
∫
dx
∑
j,`


(
∂xj∂x`a(x)


)
(∂x`φ(t, x)) ∂x′jφ(t, x′) . (3.11)


This corresponds to the one-particle Morawetz identity (2.5) for the NLS, in the cubic case


p = 3.


3.2. Interaction Morawetz identities for the cubic GP hierarchy. In this section,


we derive interaction Morawetz identities for GP hierarchies which generalize those for the


NLS.
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3.2.1. Morawetz action. We write


γ(2)(x, y;x′, y′) =


∫
du du′ dv dv′ eiux−iu


′x′eivy−iv
′y′ γ̂(2)(u, v;u′, v′) . (3.12)


For a function a : Rn × Rn → R, (x, y) 7→ a(x, y), we define the Morawetz action


Ma :=


∫
dx dy∇xa(x, y) · Px(x, y) . (3.13)


where


Px(x, y) :=


∫
du du′ dv dv′ ei(u−u


′)x+i(v−v′)y
(
u+ u′


2


)
γ̂(2)(u, v;u′, v′) (3.14)


so that


P (x) =


∫
dy Px(x, y) . (3.15)


The time derivative is given by


∂tMa =


∫
dx dy∇xa(x, y) · ∂tPx(x, y)


=
1


2


[
(A1) + (A2) + (A3) + (A4)


]
, (3.16)


where the four terms on the rhs are defined as follows.


We have


(A1) :=
1


i


∫
dx dy


(
∇xa(x, y) ·


∫
du du′ dv dv′ ei(u−u


′)x+i(v−v′)y


(u+ u′) (u2 − (u′)2) γ̂(2)(u, v;u′, v′) (3.17)


and


(A2) :=
1


i


∫
dx dy


(
∇xa(x, y) ·


∫
du du′ dv dv′ ei(u−u


′)x+i(v−v′)y


(u+ u′) (v2 − (v′)2) γ̂(2)(u, v;u′, v′) . (3.18)


Moreover,


(A3) :=
λ


i


∫
dx dy


(
∇xa(x, y) ·


∫
du du′ dv dv′ ei(u−u


′)x+i(v−v′)y


(u+ u′)
(
B̂+


1,3γ
(3)(u, v;u′, v′) − B̂−1,3γ


(3)(u, v;u′, v′)
)


(3.19)


and


(A4) :=
λ


i


∫
dx dy


(
∇xa(x, y) ·


∫
du du′ dv dv′ ei(u−u


′)x+i(v−v′)y


(u+ u′)
(
B̂+


2,3γ
(3)(u, v;u′, v′) − B̂−2,3γ


(3)(u, v;u′, v′)
)
. (3.20)


We now discuss each of these four terms in detail.
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3.2.2. The term (A1). We have


(A1)


=
1


i


∫
dx dy∇xa(x, y) ·


∫
du du′ dv dv′ ei(u−u


′)x+i(v−v′)y (u+ u′) (u2 − (u′)2)


γ̂(2)(u, v;u′, v′)


=
1


i


∫
dx dy∇xa(x, y) ·


∫
du du′ dv dv′ γ̂(2)(u, v;u′, v′)


[(u+ u′)⊗ (u+ u′)](u− u′) ei(u−u′)x+i(v−v′)y


= −
∫
dx dy


∫
du du′ dv dv′ γ̂(2)(u, v;u′, v′)


∇xa(x, y) · [(u+ u′)⊗ (u+ u′)](∇xei(u−u
′)x+i(v−v′)y )


=


∫
dx dy


∫
du du′ dv dv′ γ̂(2)(u, v;u′, v′) (3.21)∑


i,j


(∂xi∂xja(x, y)) ũiũj e
i(u−u′)x+i(v−v′)y


where ũ := u+ u′. This equals


=


∫
dxdx′ dy δ(x− x′)


∫
du du′ dv dv′


∑
i,j


(∂xi∂xja(x, y))


ũiũj e
i(ux−u′x′)+i(v−v′)y γ̂(2)(u, v;u′, v′)


= −
∫
dxdx′ dy δ(x− x′)


∑
i,j


(∂xi∂xja(x, y)) (∂xi − ∂x′i)(∂xj − ∂x′j ) γ
(2)(x, y;x′, y)


= −
∫
dxdx′ dy δ(x− x′)


∑
i,j


(∂xi∂xja(x, y)) (∂xi∂xj + ∂x′i∂x′j ) γ
(2)(x, y;x′, y)


+


∫
dxdx′ dy δ(x− x′)


∑
i,j


(∂xi∂xja(x, y)) (∂x′i∂xj + ∂xi∂x′j ) γ
(2)(x, y;x′, y)


= −
∫
dxdx′ dy δ(x− x′)


∑
i,j


(∂xi∂xja(x, y))


(∂xi∂xj + ∂xi∂x′j + ∂x′i∂xj + ∂x′i∂x′j ) γ
(2)(x, y;x′, y)


+ 2


∫
dxdx′ dy δ(x− x′)


∑
i,j


(∂xi∂xja(x, y)) (∂x′i∂xj + ∂xi∂x′j ) γ
(2)(x, y;x′, y)


= −
∫
dxdy


∑
i,j


(∂xi∂xja(x, y)) ∂xi∂xj γ
(2)(x, y;x, y)


+ 4<
∫
dxdx′ dy δ(x− x′)


∑
i,j


(∂xi∂xja(x, y)) ∂xi∂x′j γ
(2)(x, y;x′, y) (3.22)







20 T. CHEN, N. PAVLOVIĆ, AND N. TZIRAKIS


where we used γ(2)(x, y;x′, y) = γ(2)(x′, y;x, y), and applied a coordinate change x↔ x′ in


one of the two integrals contributing to the last line. This equals


= −
∫
dxdx′ dy (∆xa(x, y)) ∆xγ


(2)(x, y;x, y)


+ 4<
∫
dxdx′ dy δ(x− x′)


∑
i,j


(∂xi∂xja(x, y)) ∂xi∂x′j γ
(2)(x, y;x′, y) . (3.23)


This corresponds to the first and last term on the rhs of (3.36) in [43].


3.2.3. The term (A2). We have


(A2) :=
1


i


∫
dx dy


(
∇xa(x, y)


)
·
∫
du du′ dv dv′ ei(u−u


′)x+i(v−v′)y


[(u+ u′)⊗ (v + v′)](v − v′) γ̂(2)(u, v;u′, v′)


= −
∫
dx dy


∑
j,`


(
∂xja(x, y)


)
·
∫
du du′ dv dv′ (∂y`e


i(u−u′)x+i(v−v′)y)


(u+ u′)j(v + v′)` γ̂
(2)(u, v;u′, v′)


=


∫
dx dy


(
∂xj∂y`a(x, y)


)
(3.24)∫


du du′ dv dv′ ei(u−u
′)x+i(v−v′)y (u+ u′)j(v + v′)` γ̂


(2)(u, v;u′, v′) .


Here we note that if γ(2)(x, y;x′, y′) = γ(1)(x;x′)γ(1)(y; y′) has product form, then the


integral on the last line corresponds to 4P (x)P (y), the product of momentum densities


defined in (3.5).


3.2.4. The term (A3). We have


B+
1,3γ


(3)(x, y;x′, y′)


=


∫
dz dz′ δ(x− z) δ(x− z′)∫


dudvdqdu′dv′dq′ei(ux+vy+qz−u′x′−v′y′−q′z′) γ̂(3)(u, v, q;u′, v′, q′)


=


∫
dudvdqdu′dv′dq′ei((u+q−q′)x−u′x′+vy−v′y′) γ̂(3)(u, v, q;u′, v′, q′) . (3.25)


Therefore,


B̂+
1,3γ


(3)(u, v;u′, v′)


=


∫
dxdx′dydy′ e−iux−ivy+iu′x′+iv′y′ (B+


1,3γ
(3))(x, y;x′, y′)


=


∫
dqdq′ γ̂(3)(u− q + q′, v, q;u′, v′, q′) . (3.26)
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Likewise, one obtains


B̂−1,3γ
(3)(u, v;u′, v′) =


∫
dqdq′ γ̂(3)(u, v, q;u′ + q − q′, v′, q′) . (3.27)


Now, in order to consider (A3) we first look at


1


i


∫
dudu′dvdv′ ei(u−u


′)x+i(v−v′)y (u+ u′) (B̂+
1,3γ


(3)(u, v;u′, v′)− B̂−1,3γ(3)(u, v;u′, v′))


=
1


i


∫
dudu′dvdv′dqdq′ ei(u−u


′)x+i(v−v′)y (u+ u′) γ̂(3)(u− q + q′, v, q;u′, v′, q′)


− 1


i


∫
dudu′dvdv′dqdq′ ei(u−u


′)x+i(v−v′)y (u+ u′) γ̂(3)(u, v, q;u′ + q − q′, v′, q′) .(3.28)


In the last term, we apply the change of variables u → u− q + q′ and u′ → u′ − q + q′, so


that the difference u− u′ remains unchanged. We obtain that the above equals


1


i


∫
dudu′dvdv′dqdq′ ei(u−u


′)x+i(v−v′)y (u+ u′) γ̂(3)(u− q + q′, v, q;u′, v′, q′)


− 1


i


∫
dvdv′dqdq′ ei(u−u


′)x+i(v−v′)y (u+ u′ − 2q + 2q′) γ̂(3)(u− q + q′, v, q;u′, v′, q′)


=
1


i


∫
dudu′dvdv′dqdq′ ei(u−u


′)x+i(v−v′)y ( (u+ u′) − (u+ u′ − 2q + 2q′)
)


γ̂(3)(u− q + q′, v, q;u′, v′, q′)


=
1


i


∫
dvdv′dqdq′ ei(u−u


′)x+i(v−v′)y 2(q − q′) γ̂(3)(u− q + q′, v, q;u′, v′, q′) . (3.29)


The contribution of this term to (A3) is given by


λ
1


i


∫
dxdy∇xa(x, y) ·


∫
dudu′dvdv′dqdq′ ei(u−u


′)x+i(v−v′)y


2(q − q′) γ̂(3)(u− q + q′, v, q;u′, v′, q′) . (3.30)


Next, we express everything in position space.
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We have that the last line equals


λ


i


∫
dxdy ∇xa(x, y) ·


∫
dXdY dZdX ′dY ′dZ ′


∫
dudu′dvdv′dqdq′ ei(u−u


′)x+(v−v′)y 2(q − q′)


ei(−(u−q+q′)X−vY−qZ+u′X′+v′Y ′+q′Z′)γ(3)(X,Y, Z;X ′, Y ′, Z ′)


=
λ


i


∫
dxdy


∫
dXdY dZdX ′dY ′dZ ′ γ(3)(X,Y, Z;X ′, Y ′, Z ′)


∫
dudu′dvdv′dqdq′


eiu(x−X)+iv(y−Y )−iu′(x−X′)−iv′(y−Y ′) 2∇xa(x, y) · (q − q′) e+iq(X−Z)−q′(X−Z′)


= −λ
∫
dxdy


∫
dXdY dZdX ′dY ′dZ ′ γ(3)(X,Y, Z;X ′, Y ′, Z ′)


∫
dqdq′


δ(x−X)δ(x−X ′) δ(y − Y )δ(y − Y ′) 2∇Xa(X,Y ) · ∇X e+iq(X−Z)−iq′(X−Z′)


= −λ
∫
dXdY dZdZ ′ γ(3)(X,Y, Z;X,Y, Z ′)


2∇Xa(X,Y ) · ∇X δ(X − Z) δ(Z − Z ′) (3.31)


= −λ
∫
dXdY dZ γ(3)(X,Y, Z;X,Y, Z) 2∇Xa(X,Y ) · ∇X δ(X − Z)


= λ


∫
dXdY dZ δ(X − Z) (2∆Xa(X,Y ) + 2(∇Xa(X,Y )) · ∇X )


γ(3)(X,Y, Z;X,Y, Z) (3.32)


where we have written δ(X − Z)δ(X − Z ′) = δ(X − Z)δ(Z − Z ′) to get (3.31).


Now we rename the variables (X,Y, Z)→ (x, y, z), and note that


∫
dxdy (∇xa(x, y)) · ∇xγ(3)(x, y, x;x, y, x)


=


∫
dxdydz δ(x− z) ( (∇xa(x, y)) · ∇x + (∇za(z, y)) · ∇z )γ(3)(x, y, z;x, y, z)


=


∫
dxdydz δ(x− z) ( (∇xa(x, y)) · ∇xγ(3)(x, y, z;x, y, z)


+ (∇za(z, y)) · ∇zγ(3)(z, y, x; z, y, x) )


=


∫
dxdydz δ(x− z) ( 2(∇xa(x, y)) · ∇xγ(3)(x, y, z;x, y, z) ) (3.33)


where we used the symmetry γ(3)(x, y, z;x, y, z) = γ(3)(z, y, x; z, y, x), and renamed the


variables in the last term. Clearly, the left hand side equals


−
∫
dxdy (∆xa(x, y)) γ(3)(x, y, x;x, y, x) (3.34)


from integrating by parts.
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Therefore, combining (3.32), (3.33) and (3.34)


(A3) = λ


∫
dxdydz δ(x− z) (2∆xa(x, y)−∆xa(x, y) )γ(3)(x, y, z;x, y, z)


= λ


∫
dxdy (∆xa(x, y))γ(3)(x, y, x;x, y, x) . (3.35)


This corresponds to the second term on the rhs of (3.36) in [43].


3.2.5. The term (A4). We have


(A4) =
λ


i


∫
dx dy∇xa(x, y) ·


∫
du du′ dv dv′ ei(u−u


′)x+i(v−v′)y


(u+ u′)
[
B̂+


2,3γ
(3)(u, v;u′, v′) − B̂−2,3γ


(3)(u, v;u′, v′)
]


=:
λ


i


∫
dx dy∇xa(x, y) ·


∫
du du′ dv dv′ dq dq′ ei(u−u


′)x+i(v−v′)y (3.36)


(u+ u′)
[
γ̂(3)(u, v − q + q′, q;u′, v′, q′) − γ̂(3)(u, v, q;u′, v′ + q − q′, q′)


]
=:


λ


i


∫
dx dy∇xa(x, y) ·


∫
du du′ dv dv′ dq dq′ ei(u−u


′)x+i(v−v′)y (3.37)


(u+ u′)
[
γ̂(3)(u, v + q′, q;u′, v′ + q, q′) − γ̂(3)(u, v + q′, q;u′, v′ + q, q′)


]
= 0 (3.38)


where to pass to (3.37), we used the coordinate change v → v + q, v′ → v′ + q for the


expression involving the first term in the square bracket in (3.36), and v → v+q′, v′ → v′+q′


for the second term. Both coordinate changes leave the difference v − v′ invariant.


3.2.6. Completing the proof. Summarizing, we obtain from (3.16) that the following result


holds.


Theorem 3.2. Under the conditions formulated above, the interaction Morawetz identity


∂tMa = − 1


2


∫
dxdy (∆xa(x, y)) ∆xγ


(2)(x, y;x, y)


+
λ


2


∫
dxdy (∆xa(x, y))γ(3)(x, y, x;x, y, x)


+ 2<
∫
dxdx′dy δ(x− x′)


∑
j,`


(
∂xj∂x`a(x, y)


)
∂x`∂x′jγ


(2)(x, y;x′, y)


+ 2


∫
dx dy


∑
j,`


(
∂xj ∂y`a(x, y)


) ∫
du du′ dv dv′ ei(u−u


′)x+i(v−v′)y


(
u+ u′


2


)
j


(
v + v′


2


)
`


γ̂(2)(u, v;u′, v′) . (3.39)


holds for solutions of cubic GP hierarchies.
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We compare this result with (2.7) obtained above for the NLS.


For factorized solutions of the cubic GP hierarchy of the form (3.9), we obtain the


following:


∂tMa = − 1


2


∫
dxdy |φ(y)|2 (∆xa(x, y)) ∆xρ(t, x)


+
λ


2


∫
dx (∆xa(x, y)) |φ(t, y)|2 |φ(t, x)|4


+ 2<
∫
dxdy |φ(y)|2


∑
j,`


(
∂xj∂x`a(x, y)


)
(∂x`φ(t, x)) (∂xjφ(t, x))


+ 2


∫
dx dy


∑
j,`


(
∂xj ∂y`a(x, y)


)
(Pφ(t, x))j (Pφ(t, y))` , (3.40)


where


Pφ(x) := =(φ(x)∇xφ(x) ) (3.41)


is the momentum density corresponding to φ(t, x). This corresponds to (2.7) for the cubic


NLS where p = 3 (so that λp−1
p+1 = λ


2 ). In particular, we note that for a(x, y) = ã(x − y),


we evidently have ∂xj∂y`a(x, y) = −∂xj∂x`a(x, y), which agrees with (2.7).


3.3. Proof of the one-particle Morawetz identities. In this section, we prove the stan-


dard (single-particle) Morawetz identities in Theorem 3.1, as a corollary of the interaction


Morawetz identities derived above.


The corresponding explicit expression for ∂tMa can be easily obtained from the interac-


tion Morawetz identities (3.39), by choosing


a(x, y) = a(x) (3.42)


independent of y, and


γ(1)(x;x′) =


∫
dy γ(2)(x, y;x′, y)


γ(2)(x, z;x′, z′) =


∫
dy γ(3)(x, y, z;x′, y, z′) , (3.43)


which follows from the admissibility of the density matrices, see (1.4).
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Accordingly, (3.39) reduces to


∂tMa = −1


2


∫
dx (∆x∆xa(x)) γ(1)(x;x)


+
λ


2


∫
dx (∆xa(x))γ(2)(x, x;x, x)


+2<
∫
dxdx′δ(x− x′)


∑
j,`


(
∂xj∂x`a(x)


)
∂x`∂x′jγ


(1)(x;x′) . (3.44)


We note that the term involving the momentum densities on the last line of (3.40) is not


present here (since ∂y`a(x) = 0).
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