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Abstract. An ODE with non-Lipschitz right hand side has been con-
sidered. A family of solutions with Borel measurable dependence of the
initial data has been obtained.


1. Introduction


Consider a system of ordinary differential equations of the following form


ẋ = v(t, x), x ∈ Rm. (1.1)


The vector-function v is defined in the cross product of some interval [−T, T ]
and a domain D ⊆ Rm.


The simplest and often occurred situation is when the vector field v is
continuous and fulfills the Lipschitz condition in the second variable:


∥v(t, x′)− v(t, x′′)∥ ≤ c∥x′ − x′′∥. (1.2)


In such a case problem (1.1) has a unique solution x(t) that satisfies the
initial condition x(0) = x0 ∈ D. This result is known as Cauchy-Picard
existence theorem. (All the classical facts we mention without reference are
contained in [7].)


In general, the solution x(t) is defined not in the whole interval [−T, T ]
but in its smaller subinterval. In the described above conditions the solution
x(t) depends continuously on the initial data x0.


The Cauchy-Picard existence theorem as well as its proof transmit literally
from the case x ∈ Rm to the case when x belongs to an infinite dimensional
Banach space.


If we refuse Lipschitz hypothesis (1.2) then our problem becomes widely
complicated. Particularly, it is known that in an infinite dimensional Banach
space problem (1.1) may have no solutions [15], [6]. In the finite dimensional
case the existence is guaranteed by Peano’s theorem.
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So, when the function v is only continuous in [−T, T ]×D then for the same
initial datum x0 there may be several solutions. Nevertheless if by some
reason for any initial condition x0 the solution is unique then it depends
continuously on the initial data.


There are a lot of works devoted to investigating of different types of the
uniqueness conditions. As far as the author knows this activity has been
started from Kamke [8] and Levy [11]. Their results have been generalized in
different directions. See for example [12], [1] and references therein. Anther
approach is contained in [10], [2].


The problem of existence of individual solutions to ODE with measurable
in t and continuous in x right-hand side has been considered by Caratheodory
in [3].


The case when the vector field belongs to Sobolev spaces (at least H1,1)
has been studied in [5] in connection with the Navier-Stokes equation. In
this article the results on existence and dependence on the initial data have
been obtained.


If problem (1.1) admits non-uniqueness then for some initial datum x0
there are many ways to pick up a solution x(t) such that x(0) = x0. Actually
we even do not know how many ways to do this we have and how many such
points x0 are there. An attempt to clarify the last question has been done
in [14]. The main result of that article is as follows: the initial data with
non-unique solution form a Borel set of the class Fσδ.


Anyway for each x0 we can choose one of the solutions x(t) such that
x(0) = x0 and write


x(t) = x(t, x0), x(0, x0) = x0.


At this moment our argument is heavily rested on the Axiom of Choice.
From analysis we know that the Axiom of Choice is the best device to


produce very queer functions. It is sufficient to recall that non-measurable
functions exist due to the Choice Axiom.


Thus a priori we should not expect anything good from the function
x(t, x0).


The aim of this article is to show that one can choose the function x(t, x0)
to be measurable.


2. Main Theorems


Equip the space Rm = {x = (x1, . . . , xm)} with a norm


∥x∥ = max
k=1,...,m


|xk|.


Let Q ⊂ Rm be an open domain. By Iτ denote an interval


Iτ = [0, τ).
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Introduce a vector-function f(t, x) = (f1, . . . , fm)(t, x) ∈ C(Iτ ×Q,Rm).
Suppose that


M = sup
(t,x)∈Iτ×Q


∥f(t, x)∥ <∞.


Let F ⊂ Q be a compact set and assume that


d = inf{∥x− y∥ | x ∈ F, y ∈ ∂Q} > 0.


We investigate the set of solutions to the following IVP.


ut(t, x) = f(t, u(t, x)), u(0, x) = x ∈ F. (2.1)


Suppose all the solutions to this problem are defined on the interval IT
with some T ∈ (0, τ ]. From the basic ODE theory we know that T ≥
min{τ, d/M}. Constants T, τ can take infinite values.


Equip the space C(IT ,Rm) with compact convergence topology.
Let B(V,W ) stands for the set of Borel measurable functions of topological


space V to topological space W .


Theorem 1. 1) Problem (2.1) has a general solution w(t, x) such that the
functions x 7→ w(t, x), x 7→ wt(t, x) belong to B(F,C(IT ,Rm)). We shall
write w(t, x), wt(t, x) ∈ B(F,C(IT ,Rm)).


2) Let h(t, x) ∈ B(F,C(IT ,Rm)) be a general solution to (2.1). Then the
mapping t 7→ h(t, x) belongs to the space C1(IT , (L


∞(F ))m).


Remark 1. To use this theorem it is convenient to keep in mind that if
u(t, x) ∈ B(F,C(IT ,Rm)) then for any t the mapping x 7→ u(t, x) belongs to
the set B(F,Rm).


Indeed, let δt : C(IT ,Rm) → Rm stands for the δ−function: δt(v(·)) =
v(t). This is a continuous function. Thus δt ◦ u is measurable.


Theorem 1 opens possibility for dynamical studying of system (2.1). For
instance, let µ be a Borel measure in Q.Then we shall say that the general
solution w(t, x) preserves the measure µ if for any Borel set B and for any
t ∈ IT one has µ(B) = µ(w−1(t, B)).


Suppose that f does not depend on t and let T = +∞. Then the set of
mappings {w(t, ·)}t≥0 possesses natural semigroup structure: by definition
put


w(t′, ·) ∗ w(t′′, ·) = w(t′ + t′′, ·), t′, t′′ ≥ 0.


3. Proof of Theorem 1


Prove the first assertion of the Theorem.
Consider a set


K = {u(·) ∈ C1(IT ,Rm) | ut(t) = f(t, u(t)), u(0) ∈ F}.


We regard K as a topological space with inducted from C(IT ,Rm) topology.
First, we intent to show that K is a compact set.
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The functions from K satisfy the integral equation


u(t) = u(0) +


∫ t


0
f(s, u(s)) ds. (3.1)


Thus the set K is uniformly continuous: for every t′, t′′ ∈ IT one has


∥u(t′)− u(t′′)∥ ≤M |t′ − t′′|.


The set K(t) = {u(t) | u(·) ∈ K} is bounded for each t, indeed, by formula
(3.1) it follows that


∥u(t)∥ ≤ max
x∈F


∥x∥+ tM. (3.2)


Thus by Ascoli theorem [13] the set K is relatively compact in C(IT ,Rm).
It remains to note that K is closed in C(IT ,Rm). Indeed, if a sequence


{un(t)} ⊆ K and this sequence is convergent to the function u(t) then from
standard theorems of analysis we know that u ∈ C(IT ,Rm) and u satisfies
equation (3.1). Thus u ∈ K.


The following proposition is a consequence from the Measurable Selection
Theorem [9].


Proposition 1. Let K be a compact metric space and let Y be a separable
Hausdorff topological space. Then for any continuous mapping g : K → Y
there exists a Borel set B ⊆ K such that g(B) = g(K) and g |B is an
injection and g−1 : g(K) → B is Borel measurable.


On a role Y we take F and let g(u(·)) = u(0). By Proposition 1 we obtain
the Borel function x 7→ w(t, x) that solves problem (2.1).


Denote the mapping x 7→ w(t, x) by q : F → C(IT ,Rm). To show that
the mapping x 7→ wt(t, x) = f(t, w(t, x)) is Borel measurable introduce a
continuous function ψ : C(IT , Q) → C(IT ,Rm) by the following formula
ψ(y(·)) = f(t, y(t)). Now the mapping f(t, w(t, x)) = ψ ◦ q is a measurable
function as a composition of measurable functions.


Prove the second part of the Theorem.
By Remark 1 for any fixed t the function h(t, x) is a measurable function


of F with values in Rm. Since h(t, x) is bounded (by the same argument as
expressed in formula (3.2)) we have h(t, x) ∈ (L∞(F ))m for any t ∈ IT .


To make sure that the mapping t 7→ h(t, x) belongs to the space C(IT , (L
∞(F ))m)


it is sufficient to observe that


∥h(t′, x)− h(t′′, x)∥ ≤M |t′ − t′′|, t′, t′′ ∈ IT .


But the mapping t 7→ h(t, x) also belongs to the space C1(IT , (L
∞(F ))m).
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Indeed, say for definiteness ξ > 0 then∥∥∥h(t+ ξ, ·)− h(t, ·)
ξ


− f(t, h(t, ·))
∥∥∥
(L∞(F ))m


=
∥∥∥1
ξ


∫ t+ξ


t
f(s, h(s, ·))− f(t, h(t, ·)) ds


∥∥∥
(L∞(F ))m


≤ sup
t≤s≤t+ξ


∥f(s, h(s, ·))− f(t, h(t, ·))∥(L∞(F ))m . (3.3)


We have already shown that ∥h(t, ·)− h(s, ·)∥(L∞(F ))m → 0 as s→ t.The
function f(t, y) is uniformly continuous in a compact set


[t− ε, t+ ε]× {y ∈ Rm | ∥y∥ ≤ max
x∈F


∥x∥+ (t+ ε)M} ∩Q


provided ε > 0 is small enough. Consequently the final expression in formula
(3.3) tends to zero as ξ → 0.


Theorem 1 is proved.


References


[1] M. Bownds, A Uniqueness Theorem for Non-Lipschitzian Systems of Ordinary Dif-
ferential Equations. Funkcialaj Ekvacioj 13 (1970) ,61-65.


[2] F. Brauer S. Sternberg, Local uniqueness, existence in the large, and the convergence
of successive approximations, Amer. J. Math., 80 (1958), 421-430.


[3] Coddington, Earl A.; Levinson, Norman (1955), Theory of Ordinary Differential
Equations, New York: McGraw-Hill .


[4] R. Engelking General Topology. Warszawa, 1977.
[5] R.J. DiPerna P.L. Lions Ordinary Differential Equations, Transport Theory and


Sobolev Spaces. Invent. math. 98, 511-547 (1989).
[6] A. N. Godunov, Peano’s theorem in Banach spaces, Functional Anal. Appl. 9 (1975),


53-55.
[7] Ph. Hartman Ordinary Differential Equations Jhon Wiley New York 1964.
[8] E. Kamke, Differentialgleichungen reeler Functionen, Academische Verlagage-


sellschaft, Giest and Portig, Leipzig, 1930, 96-100.
[9] Kechris A.S. Classical descriptive set theory. Springer, Berlin - New York, 1995, xviii


p. 402 [52,290,448,454]
[10] M. A. Krasnoselskii S. G. Krein, On a class of uniqueness theorems for the equations


y′ = f(x, y). Uspehi Mat. Nauk (N.S.)
[11] P. Levy, Provessus stochastiques et mouvement Brownien, Gauthier-Villars, Paris,


1948, 46-47.
[12] P. Ramankutty Kamke’s Uniqueness Theorem, J. London Math. Soc. (2), 22 (1980),


110-116.
[13] L. Schwartz Analyse mathématique, Hermann, 1967.
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