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Abstract


We study the thermodynamic properties of a certain type of inhomogeneous Fermi and quantum spin


systems on lattices. We are particularly interested in the case where the space scale of the inhomogeneities


stays macroscopic, but very small as compared to the side–length of the box containing fermions or spins.


The present study is however not restricted to “macroscopic inhomogeneities” and also includes the (periodic)


microscopic and mesoscopic cases. We prove that – as in the homogeneous case – the pressure is, up to


a minus sign, the conservative value of a two–person zero–sum game, named here thermodynamic game.


Because of the absence of space symmetries in such inhomogeneous systems, it is not clear from the beginning


what kind of object equilibrium states should be in the thermodynamic limit. Though, we give rigorous


statements on correlations functions for large boxes.


Keywords:Superconductivity – Hubbard model – Inhomogeneous systems – Thermodynamic game –


Two–person zero–sum game – BCS model


1. Introduction


Inhomogeneous quantum systems are of great physical interest. The inhomogeneities could, for instance,


correspond to inhomogeneously distributed impurities in crystals, to (space) inhomogeneous external potentials


and many other situations. Such quantum models are also interesting since some space homogeneous microscopic


theories, as the celebrated BCS model [1, 2, 3], can be seen as inhomogeneous quantum systems on the reciprocal


lattice of (quasi–) momenta.


Some general results concerning the spin case have been performed in [4]. Motivated by the BCS model and


the Duffield–Pulè method [5], the authors treat in [4] the thermodynamic pressure of “approximately symmetric”


spin models. Our study is thus reminiscent of [4, 5], but it extends to a much broader class of Fermi systems


with long–range interactions. In particular, we never use here the quantum spin representation of fermions as


it generally breaks the translation invariance of interactions.


Moreover, the technical approach used in [4] gives an infinite volume pressure through two variational problems


(∗) and (∗∗) over states on a much larger algebra than the original observable algebra of the model. By [4,


II.2 Theorem and II.3 Proposition (1)], both variational problems (∗) and (∗∗) have non–empty compact sets –


respectivelyM∗ andM∗∗ – of minimizers, but the link between them and (finite volume) Gibbs states is unclear.


By [4, II.3 Proposition (1)], extreme states of the convex and compact set M∗ are constructed from minimizers


of the second variational problem (∗∗) which, as the authors wrote in [4, p. 642], “can pose a formidable task”.


We treat here similar problems for Fermi and quantum spin systems, but obtain handy variational problems


instead, and some results on the asymptotics of Gibbs states in the thermodynamic limit. We are particularly


interested in the case where the two–particle interaction has a macroscopic range which stays (very) small as


compared to the side–length 2l (l ∈ N) of cubic boxes Λl ⊂ ZD (D ∈ N) containing fermions or spins.
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Spain (jeanbernard bru@ehu.es) and IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain (jb.bru@ikerbasque.org)


†Institut für Mathematik, Universität Mainz; Staudingerweg 9, 55099 Mainz, Germany ( pedra@mathematik.uni-mainz.de)


1







2


A prototype of such a model is for instance the strong coupling BCS model with inhomogeneous chemical


potential µ, magnetic field h, Hubbard–type interactions v, λ and BCS coupling function Γ defined by


UStr
l := −


∑
x∈Λl


µ
(
2−lx


)
(nx,↑ + nx,↓)−


∑
x∈Λl


h
(
2−lx


)
(nx,↑ − nx,↓)


+2
∑
x∈Λl


λ
(
2−lx


)
nx,↑nx,↓ +


1


|Λl|
∑
x,y∈Λl


v
(
2−lx, 2−ly


)
(nx,↑ + nx,↓) (ny,↑ + ny,↓)


− 1


|Λl|
∑
x,y∈Λl


Γ
(
2−lx, 2−ly


)
a∗x,↑a


∗
x,↓ay,↓ay,↑ (1.1)


for µ, λ, h ∈ C([−1/2, 1/2]D;R) and any symmetric continuous functions v and Γ from [−1/2, 1/2]d×[−1/2, 1/2]d


to R. The operator a∗x,s (resp. ax,s) creates (resp. annihilates) a fermion with spin s ∈ {↑, ↓} at lattice position


x ∈ ZD, whereas the particle number operator at position x and spin s is denoted by nx,s := a∗x,sax,s.


The first term of the right hand side of (1.1) corresponds to the strong coupling limit of the kinetic energy,


also called “atomic limit” in the context of the Hubbard model, see, e.g., [6, 7]. Note that the present results


do not apply when a kinetic energy of the type∑
x,y∈Λl, s∈{↑,↓}


J (|x− y|) a∗x,say,s , J : R+
0 → R ,


is added. Such a generalization is however possible and we postpone it to a separated paper. The second term of


(1.1) corresponds to the interaction between spins and the inhomogeneous magnetic field h. The third and fourth


terms represents the Hubbard–type (density–density) interactions. The fifth one is the BCS interaction written


in the x–space. The particular case we have in mind would be v (t, s) = κv (|t− s|) and Γ (t, s) = κΓ (|t− s|)
for continuous functions κv, κΓ ∈ C(R+


0 ;R) concentrated around 0 and t, s ∈ [−1/2, 1/2]d, but the result is


much more general. Note that neither the positivity (or negativity) of both functions v,Γ nor the positivity


(or negativity) of their Fourier transform is required. The model UStr
l is of interest as its homogeneous version


with constants µ, h,Γ ∈ R, v = 0 and λ ≥ 0 shows qualitatively the same density dependency of the critical


temperature observed in high–Tc superconductors [8, 9].


Note that the scaling factor 2−l used in (1.1) to define UStr
l means that the space scale of the inhomogeneity


(or the fluctuations of the interactions) involve a macroscopic number of lattice sites. This obviously does not


prevent the range of the interaction to be very small as compared to the side–length 2l of the box Λl. Similarly,


we model mesoscopic inhomogeneities by replacing the scaling factor 2−l with 2ηl2−l for some η ∈ (0, 1). It


means that – in the thermodynamic limit – the space scale of inhomogeneities is infinitesimal with respect to the


box side–length 2l whereas the lattice spacing is infinitesimal with respect to the space scale of inhomogeneities.


Indeed, the inhomogeneous BCS–like model UStr
l defined above is only a special example taken in the Banach


space of long–range inhomogeneous models treated here. The main feature of models in this Banach space is


that inhomogeneities of the short–range and long–range parts of the interactions are described by continuous


functions from a general topological space C1 to the one–site fermion algebra U{0}. Note also that square


integrability is required for the long–range part. This space of models includes, for instance, the celebrated


(reduced) BCS Hamiltonian represented in the momentum space. In particular, the usual kinetic energy is not


excluded in this case. Note again that the variational problem we derive for the pressure is different and easier


to handle with than the one resulting from [4] or the Duffield–Pulè method [5]. This application is explained in


Section 6.


We prove that the thermodynamic pressure results from a two–person zero–sum game, named here ther-


modynamic game following the terminology used in [10, Section 2.6]. Indeed, we recently studied in [10] a


Banach space of space homogeneous models for fermions or quantum spins on lattices with long–range inter-


actions and derived the precise structure of their (generalized) equilibrium states. These are governed by the


non–cooperative equilibria of a two–person zero–sum game, that is, the thermodynamic game. The results of


[10] are crucial here and we provide a rigorous extension of them to interactions with macroscopic fluctuations.


Microscopic and mesoscopic fluctuations are also treated here, but these two cases need further studies because


we impose periodicity. The mesoscopic case will be studied in more details in a separated paper.
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The method described in [10] provides a systematic way to study all correlation functions of space homoge-


neous long–range models by using the structure of (generalized) equilibrium states. Nevertheless, because of


the absence of space symmetries in inhomogeneous systems, it is not clear from the beginning what kind of


object the (generalized) (inhomogeneous) equilibrium states should be. Though, we can use results of [10] to


study correlation functions in large boxes. We thus go beyond previous works on inhomogeneous quantum spin


systems [4, 5].


The paper is organized as follows. In Section 2 we introduce the space of models and set up the problem.


Then, in Sections 3, 4, and 5 we study quantum systems with respectively periodic microscopic, macroscopic,


and periodic mesoscopic inhomogeneous interactions. Section 6 explains two applications on the BCS model


and the strong–coupling BCS–Hubbard model UStr
l with inhomogeneous magnetic field. Finally, Section 7 is an


appendix giving a short study on the thermodynamics of permutation invariant Fermi systems with long–range


interactions. The latter is based on [10, Chapter 5], but give further useful properties needed in our proofs.


Remark 1.1 (Quantum spin systems)


All results of this paper hold for quantum spin systems, but we concentrate our attention on fermion algebras.


They are indeed more difficult to handle because of the non–commutativity of elements on different lattice sites.


Remark 1.2 (Mixed inhomogeneities)


Our statements can also be extended to any physical system combining the three situations treated here (micro-


scopic, mesoscopic and macroscopic inhomogeneities).


2. Setup of the Problem


2.1 Lattices and Thermodynamic Limit


For simplicity we only consider D–dimensional cubic lattices L := ZD for D ∈ N. We consider a finite spin


set S and thus use a finite dimensional Hilbert space H with orthonormal basis {es}s∈S to represent states of a


particle in one arbitrary lattice site.


Then, the thermodynamic limit l → ∞ is defined via the sequence of cubic boxes


Λl := {x ∈ L : −2l−1 ≤ xj ≤ 2l−1 − 1, j = 1, . . . , D} ⊂ L (2.1)


of the lattice L with side–length 2l for l ∈ N.


2.2 Local Fermion Algebras


For every finite subset Λ ⊂ L, let UΛ ≡ UΛ (S) be the complex Clifford algebra with identity 1 and generators


{ax,s, a+x,s}x∈Λ,s∈S (annihilation and creation operators) satisfying the canonical anti–commutation relations


(CAR): 
ax,sax′,s′ + ax′,s′ax,s = 0 ,


a+x,sa
+
x′,s′ + a+x′,s′a


+
x,s = 0 ,


ax,sa
+
x′,s′ + a+x′,s′ax,s = δx,x′δs,s′1 .


(2.2)


The set UΛ is isomorphic to the algebra B(
∧
HΛ) of bounded linear operators on the fermion Fock space


∧
HΛ,


where


HΛ ≡ HΛ (S) :=
⊕
x∈Λ


Hx . (2.3)


Here, Hx is a copy of the finite dimensional Hilbert space H for every x ∈ L. The C∗–algebras UΛ for all


finite subsets Λ ⊂ L are called local fermion algebras of the lattice L. Note that we have canonical inclusions


UΛ ⊂ UΛ′ by identifying generators ax,s, a
+
x,s with x ∈ Λ ⊂ Λ′.
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Important transformations are the translations of local fermion algebras. The latter are the isomorphisms


αx : UΛ → UΛ+x of C∗–algebras uniquely defined by the condition


αx(ay,s) = ax+y,s , s ∈ S , y ∈ Λ (2.4)


for any fixed x ∈ L. Other useful transformations are the (gauge–) automorphisms σθ, θ ∈ R/(2πZ), of UΛ


which are uniquely defined by


σθ(ax,s) = eiθax,s , x ∈ L , s ∈ S . (2.5)


A special role is played by σπ. For any finite subset Λ ⊂ L, elements A,B ∈ UΛ satisfying σπ(A) = A and


σπ(B) = −B are respectively called even and odd, whereas elements A ∈ UΛ satisfying σθ(A) = A for all


θ ∈ [0, 2π) are called gauge invariant. The sub–algebra of even elements is thus defined by


U+
Λ := {A ∈ UΛ : A− σπ(A) = 0} ⊂ UΛ (2.6)


for any finite subset Λ ⊂ L.


States on local fermion algebras are linear functionals ρ ∈ U∗
Λ which are positive, i.e., for all A ∈ U , ρ(A∗A) ≥


0, and normalized, i.e., ρ(1) = 1. We denote by EΛ ⊂ U∗
Λ the set of all states on UΛ for any finite subset Λ ⊂ L.


2.3 Inhomogeneous Fermi Models


Such quantum systems are defined by an inhomogeneous local interaction, named here field, and an inhomo-


geneous long–range interaction. We start by describing the local interaction.


A field is a map ψ from a topological space C1 to the one–site C∗–algebra U{0} satisfying


ψ (t) = ψ (t)
∗ ∈ U+


{0} , t ∈ C1 .


The precise choice of the space C1 depends on the physical situation under consideration. In most cases of interest


this space is even compact. To be more concrete, for instance in Section 4, where macroscopic inhomogeneities


are considered, the topological space C1 is the D–dimensional unit cubic box [−1/2, 1/2]D with the usual metric


topology. We define next long–range interactions.


Let (A,A, a) be a separable measure space with A and


a : A → R+
0


being respectively some σ–algebra on A and some measure on A. The separability of (A,A, a) means, per


definition, that the space L2(A,C) ≡ L2(A, a,C) of square integrable complex valued functions on A is a


separable Hilbert space. Then, the Banach space of long–range interactions is the (real) space


L := L2(A,U+
{0})× L2(A,U+


{0}) (2.7)


of L2–interactions equipped with the norm


∥X∥L := ∥ϕa∥2 + ∥ϕ′a∥2 =


(∫
A
∥ϕa∥


2
U{0}


da (a)


)1/2


+


(∫
A


∥∥ϕ′a∥∥2U{0}
da (a)


)1/2


for any


X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L .


Two examples of such a space (A,A, a) are given in Section 6. For instance, in the case of the BCS model,


(A,A, a) can be chosen as A = R with da (a) = da being the usual Lebesgue measure. We are now in position


to define the Hamiltonian of inhomogeneous Fermi models.


A field ψ and a long–range interaction X ∈ L allow us to define inhomogeneous Fermi models on every cubic


box Λl by the Hamiltonian


Ul : =
∑
x∈Λl


αx (ψ (gl (x))) (2.8)


+2−Dl
∫
A


∑
x,y∈Λl


Γa (gl (x) , gl (y)) αx((ϕa + iϕ′a)
∗)αy(ϕa + iϕ′a)da (a) .
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Note that Ul = U∗
l ∈ U+


Λl
must be an even, self–adjoint local element. Recall also that the cubic box Λl ⊂ L


is defined by (2.1) and thus has volume |Λl| = 2Dl, whereas the translation αx is the map uniquely defined by


(2.4) for every x ∈ L. It remains to define the maps gl and Γ.


Here, gl is some function from the cubic box Λl to the topological space C1 for every l ∈ N. This map


(together with the precise choice of C1) characterizes the type of inhomogeneity considered. For instance, to set


C1 ≡ [−1/2, 1/2]D and gl (x) ≡ 2−lx for all x ∈ Λl yields macroscopic inhomogeneities. The latter corresponds


to the situation in which the space scale of fluctuations of the interaction is macroscopic, but can be arbitrarily


small as compared to the side–length 2l of the box Λl.


The map


Γ : A× C1 × C1 → [−1, 1]


is, as a function


Γ (t, s) : a 7→ Γa (t, s)


on A for each fixed t, s ∈ C1, the pointwise limit of some sequence of step (elementary) measurable functions


from A to [−1, 1]. In particular, Γ (t, s) is a measurable function and we require that


Γa (t, s) = Γa (s, t) , t, s ∈ C1 , a ∈ A ,


in order to ensure the self–adjointness of Ul. We also assume the existence of a (measurable) function


γ : A× C1 → [−1, 1] ,


which, as a function


γ (t) : a 7→ γa (t)


on A for each fixed t ∈ C1, is also the pointwise limit of some sequence of step measurable functions from A to


[−1, 1], and of a decomposition A = A− ∪ A+ into two disjoint measurable components A− and A+ such that


Γa (t, s) = ±γa (t) γa (s) , t, s ∈ C1 , a ∈ A± . (2.9)


For the topological spaces C1 chosen below, we explain latter that this last assumption does not represent any


loss of generality in practice, but is technically convenient. See the beginning of Sections 3, 4 or 5. Note also


that some continuity of the function γa(·) will be imposed depending on the particular application.


The set A− is related to long–range attractions, whereas A+ refers to long–range repulsions. In particular,


there is no restriction on the sign of Γa (t, s) (or its Fourier transform). The most difficult case is of course the


one for which both the long–range attraction and the repulsion are taken into account. Therefore, without loss


of generality, we consider that ∫
A±


da (a) > 0 and ϕa + iϕ′a ̸= 0 (2.10)


in the sense of L2(A,C).


2.4 Thermodynamic Functions at Finite Volume


Given any local state ρ ∈ EΛl
on UΛl


, the energy observable Ul = U∗
l ∈ UΛl


fixes the finite volume free–energy


density


fl (ρ) := 2−Dlρ(Ul)− β−12−DlS(ρ) (2.11)


at inverse temperature β ∈ (0,∞) for any l ∈ N. The first term in fl is the mean energy per unit of volume of


the physical system found in the state ρ, whereas S is the von Neumann entropy defined, for all ρ ∈ EΛl
, by


S(ρ) := Trace∧HΛl
(η(dρ)) ≥ 0 . (2.12)


Here, η(ζ) := −ζ log(ζ) and dρ is the density matrix of ρ ∈ EΛl
.


The state of a system in thermal equilibrium and at fixed mean energy per volume maximizes the entropy,


by the second law of thermodynamics. Therefore, it minimizes the free–energy density functional fl. Such
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well–known arguments lead to the study of the variational problem inf fl (EΛl
). The value of this variational


problem is directly related to the so–called pressure pl as


pl ≡ pl (ψ, γ) := β−12−Dl lnTrace∧HΛl


(
e−βUl


)
= − inf fl (EΛl


) . (2.13)


The latter is named in the literature the passivity of Gibbs states. Indeed, the solution of this variational


problem is precisely the Gibbs state gl ≡ gl (ψ, γ) defined by the density matrix


dgl
:=


e−βUl


Trace∧HΛl
(e−βUl)


(2.14)


for any β ∈ (0,∞) and l ∈ N. The proof of this property is a consequence of Jensen’s inequality, see, e.g., [8,


Lemma 6.3] for the fermionic case or [11, Proposition 6.2.22] for the case of quantum spins.


2.5 Thermodynamic Game


This two–person zero–sum game is directly related to a method known in the mathematical physics literature


as the approximating Hamiltonian method. Indeed, inspired by the Bogoliubov theory of superfluidity and the


BCS theory [1, 2, 3], Bogoliubov Jr. in 1966 [12, 13] and Brankov, Kurbatov, Tonchev, Zagrebnov during the


seventies and eighties [14, 15, 16] introduced a general method to analyze – on the level of the pressure – the


Bogoliubov–type approximation in a systematic way. The pivotal ingredient is to find an approximating Hamil-


tonian depending on some parameters which have to be optimized. In our monograph [10] we strongly generalize


this approach by also giving results on equilibrium states1, and interpret the Bogoliubov–type approximation


in terms of a two–person zero–sum game, named thermodynamic game.


This game is defined via approximating interactions depending on two L2–functions of L2(A±,C). The


Hilbert spaces L2(A±,C) are respectively associated with long–range repulsions (+) and attractions (−) and


split the Full space L2(A,C) as
L2(A,C) = L2(A+,C)⊕ L2(A−,C) .


Recall indeed that A = A− ∪ A+ with A− and A+ being two disjoint measurable sets.


Then, generic approximating interactions are defined by


u ≡ u (ϕ, κ, c−, c+) = ϕ+ 2


∫
A
κaRe


{(
ϕa + iϕ′a


)∗
(ca,+ − ca,−)


}
da (a) (2.15)


for any c± ∈ L2 (A±,C), one–site self–adjoint even element ϕ = ϕ∗ ∈ U+
{0}, long–range interaction


X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L


and any measurable function κ from A to [−1, 1]. Approximating interactions u = u∗ ∈ U+
{0} are associated


with a perturbed free–energy defined by


f (ϕ, κ, c−, c+) : = −
∫
A+


|ca,+|2 da (a) +
∫
A−


|ca,−|2 da (a)


−β−1 lnTrace∧H{0}


(
e−βu(ϕ,κ,c−,c+)


)
. (2.16)


One important example which is directly related to the Hamiltonian Ul corresponds to the choice ϕ = ψ (t) and


κ = γ(t), where γ(t) stands for the measurable function A → [−1, 1] defined by a 7→ γa(t).


Now, we endow the topological space C1 with some fixed probability measure m and define, in the case the


integral below makes sense, the approximating free–energy functional


F (c−, c+) ≡ F (ψ, γ, c−, c+) :=


∫
C1


f (ψ (t) , γ(t), c−, c+) dm (t)


1Applied to lattice fermions or quantum spins our results are more general than [12, 13, 14, 15, 16] even on the level of the
pressure. See discussions in [10, Section 2.10] for more details.
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for any c± ∈ L2 (A±,C). This function is the gain/loss function of the (two–person zero–sum) thermodynamic


game defined by


Fψ,γ := inf
c−∈L2(A−,C)


sup
c+∈L2(A+,C)


F (ψ, γ, c−, c+) . (2.17)


Observe that, in general,


inf
c−∈L2(A−,C)


sup
c+∈L2(A+,C)


F (ψ, γ, c−, c+)


> sup
c+∈L2(A+,C)


inf
c−∈L2(A−,C)


F (ψ, γ, c−, c+) .


Thus, this game may have no conservative value and, in particular, no non–conservative equilibrium (i.e.,


the functional F (ψ, γ, ·, ·) has no saddle point, in general). However, the gain/loss function F (ψ, γ, ·, ·) can be


extended in order to have a conservative value. This procedure is standard in game theory and we consider, with


this aim, the space C(L2
−, L


2
+) of functions L


2(A−,C) → L2(A+,C) which are continuous with respect to the


weak topologies of L2(A+,C) and L2(A−,C). Then we define the extended gain/loss functional Fext (ψ, γ, ·, ·)
from L2(A−,C)× C(L2


−, L
2
+) to R by


Fext (ψ, γ, c−, r+) := F (ψ, γ, c−, r+(c−)) .


From Lasry’s theorem (see, e.g., [10, Theorem 10.51]), we have for the corresponding conservative value:


Fext
ψ,γ = inf


c−∈L2(A−,C)
sup


r+∈C(L2
−,L


2
+)


Fext (ψ, γ, c−, r+)


= sup
r+∈C(L2


−,L
2
+)


inf
c−∈L2(A−,C)


Fext (ψ, γ, c−, r+) = Fψ,γ .


It turns out that the extended thermodynamic game even possesses non–conservative equilibria, i.e., the func-


tional Fext (ψ, γ, ·, ·) has saddle points. This will be proven below. Note that the conservative value Fext
ψ,γ = Fψ,γ


of the (extended) thermodynamic game is, up to a minus sign, the thermodynamic limit l → ∞ of the pressure


pl (2.13). Indeed, we show in the next sections that this game governs the thermodynamics of the systems


defined by the Hamiltonian Ul.


In particular, approximating (finite volume) equilibrium states are given by product states of the form


gl,c−,c+ ≡ gl,c−,c+, (ψ, γ) :=
⊗
x∈Λl


ωgl(x),c−,c+ ◦ α−x (2.18)


for all l ∈ N, where the parameters c− ≡ d− and c+ ≡ d+ = r+(d−) correspond to non–conservative equilibria


(d−, r+) of the game Fext
ψ,γ . Here, for all t ∈ C1, inverse temperatures β ∈ (0,∞) and parameters c± ∈ L2 (A±,C),


the functional ωt,c−,c+ is the Gibbs state on U{0} associated with the one–site Hamiltonian u (ψ (t) , γ (t) , c−, c+)


and thus defined by the density matrix


e−βu(ψ(t),γ(t),c−,c+)


Trace∧H{0}(e
−βu(ψ(t),γ(t),c−,c+))


. (2.19)


By [17, Theorem 11.2.], note that the tensor product in (2.18) is well–defined. Indeed, ωt,c−,c+ is an even state


as u ∈ U+
{0}, whereas ωgl(x),c−,c+ ◦ α−x is viewed as an even state on U{x} since αx is the translation map


U{0} → U{x} defined by (2.4) for every x ∈ L. We prove below that the product states gl,d−,d+ taken for any


solutions d± ∈ L2(A±,C) of the variational problem Fψ,γ minimize the free–energy density of the system in the


thermodynamic limit l → ∞.


3. Periodic Microscopic Fluctuations


3.1 Definitions


We start by analyzing the inhomogeneous model Ul, which is defined by (2.8), when the inhomogeneity is


microscopic and periodic. It means that the space scale of the fluctuations of the Hamiltonian is of the order
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of the size of the lattice spacing with some fixed periodicity. This situation is indeed easy to handle and a good


preparation to the macroscopic case treated thereafter.


With this aim, the topological space C1 will be in this section the D–dimensional cubic box Λn equipped with


the discrete topology for some fixed n ∈ N, see (2.1). The scale function gl ≡ g is the map from the box Λl to


C1 defined by


gl (x) = x mod
2nZ


≡ g (x) , x ∈ Λl , l ∈ N .


The probability measure m on the topological space C1 is here the counting measure defined by


m (Ω) = 2−Dn#(Ω) , Ω ⊂ C1 . (3.1)


Here, # (Ω) denotes the cardinality of the finite subset Ω ⊂ C1.


The choice C1 = Λn is technically convenient but the results below are also true for any finite box of the form


C1 = {1, · · · , L1} × · · · × {1, · · · , LD} ⊂ L := ZD .


Note additionally that all symmetric real–valued functions h(t, s) on C1 × C1 are finite sums of products of the


form ±f(t)f(s). Therefore, by redefining the measure space A, Assumption (2.9) on Γ does not represent any


loss of generality and is technically convenient.


3.2 Thermodynamics at Infinite Volume


We study now the thermodynamic properties of the inhomogeneous system defined by the Hamiltonian Ul.


In particular, we first prove that the thermodynamic game defined by (2.17) is directly related to the pressure


pl (2.13) in the thermodynamic limit l → ∞.


Theorem 3.1 (Thermodynamic limit of the pressure I)


For any field ψ and long–range interaction X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L,


lim
l→∞


pl = −Fψ,γ .


Proof. Take two integers l, n ∈ N with l ≥ n. Then, there exists an isomorphism ξ
(n)
l of C∗–algebras from


UΛl
≡ UΛl


(S) to UΛl−n
(Sn) for the spin set Sn := S×Λn. See Section 2.2 for the definition of these C∗–algebras.


The image of the Hamiltonian Ul ∈ UΛl
under the map ξ


(n)
l equals


V
(n)
l−n :=


∑
x∈Λl−n


αx(ψ̂) + 2−D(l−n)
∫
A


∑
x,y∈Λl−n


γ̂a αx((ϕ̂a + iϕ̂
′
a)


∗)αy(ϕ̂a + iϕ̂
′
a)da (a) , (3.2)


where γ̂ is the fixed measurable function defined by γ̂a := ±1 for a ∈ A± and


ψ̂ : =
∑
x∈Λn


ξ
(n)
l [αx (ψ (x))] , (3.3)


ϕ̂a : = 2−
Dn
2


∑
x∈Λn


ξ
(n)
l [γa (x) αx(ϕa)] , (3.4)


ϕ̂
′
a : = 2−


Dn
2


∑
x∈Λn


ξ
(n)
l


[
γa (x) αx(ϕ


′
a)
]
. (3.5)


The assertion then follows from Theorem 7.4. Note additionally that the pressure associated with V
(n)
l−n is


normalized with an inverse volume 2−D(l−n), whereas this inverse volume equals 2−Dl in pl (2.13). Therefore, in


the variational problem given by Theorem 7.4, one has to rescale the functions c± ∈ L2(A±,C) as c̃± = 2−
Dn
2 c±.


This rescaling allows to absorb the constants 2−
Dn
2 inside the approximating pressure and we get the probability


measure m defined by (3.1). We omit the details. 2
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Since the thermodynamic game resulting from Fψ,γ is pivotal, we now give its properties. Similar to (7.5),


(7.6) and (7.7), there are a L2–function d− ∈ L2(A−,C) and a (weak–norm continuous) map


r+ ≡ r+ (ψ, γ) : c− 7→ r+ (c−) (3.6)


from L2(A−,C) to L2(A+,C) such that


sup
c+∈L2(A+,C)


F(d−, c+) = inf
c−∈L2(A−,C)


sup
c+∈L2(A+,C)


F(c−, c+) (3.7)


and


F(d−, r+ (d−)) = sup
c+∈L2(A+,C)


F(d−, c+) . (3.8)


The solutions d− and


d+ := r+ (d−) ∈ L2(A+,C)


of (3.7) and (3.8) are extremely useful because they allow for instance the construction (2.18) of approximating


minimizers gl,d−,d+ of the finite volume free–energy density fl (2.11):


Proposition 3.2 (Approximating finite volume minimizers I)


For any field ψ and long–range interaction X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L,


lim
l→∞


{
fl(gl,d−,d+)− inf fl(EΛl


)
}
= 0 .


Proof. Note first that


gl,d−,d+ [αx(A)αy(B)] = gl,d−,d+ [αx(A)] gl,d−,d+ [αy(B)] , A,B ∈ U{0} ,


for all x, y ∈ Λl such that x ̸= y. Moreover, since d± ∈ L2(A±,C) solve the variational problems (3.7) and


(3.8), by using the corresponding Euler–Lagrange equations we arrive at


da,− + r+ (d−) = da,− + da,+ =


∫
C1


γa (t)ωt,d−,d+(ϕa + iϕ′a)dm (t) (3.9)


in the sense of L2(A,C). By using the additivity of the von Neumann entropy S (2.12) for product states as


well as


ωg(x),d−,d+


(
u (ψ (g (x)) , γ (g (x)) , d−, d+)


)
− β−1S(ωg(x),d−,d+)


= −β−1 lnTrace∧H{0}


(
e−βu(ψ(g(x)),γ(g(x)),d−,d+)


)
(passivity of Gibbs states) for any x ∈ Λl together with (3.7), (3.8) and the gap equation (3.9), we then get


fl
(
gl,d−,d+


)
= 2−Dl


∑
x∈Λl


gl,d−,d+


(
αx [u (ψ (g (x)) , γ (g (x)) , d−, d+)]


)
−β−12−DlS(gl,d−,d+)−


∫
A+


|da,+|2 da (a)


+


∫
A−


|da,−|2 da (a) + o(1)


= 2−Dl
∑
x∈Λl


f
(
ψ (g (x)) , γ (g (x)) , d−, d−


)
+ o(1)


= F (ψ, γ, d−, d+) + o(1) = Fψ,γ + o(1)


as l → ∞. See respectively (2.15) and (2.16) for the definitions of u and f. The proof now follows from the


passivity of Gibbs states (2.13) and Theorem 3.1. 2
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By using the isomorphism2 ξ
(n)
l from UΛl


≡ UΛl
(S) to UΛl−n


(Sn) together with Theorem 7.2, the sequence


{gl}l∈N of Gibbs states (2.14) has a priori weak∗–accumulation points which all belong to the set of (infinite


volume) equilibrium states. These equilibrium states are permutation invariant on the fermion algebra3 for a


spin set Sn := S× Λn. Therefore, we can assume without loss of generality the weak∗–convergence of {gl}l∈N.


By Theorems 7.2 and 7.7, we can derive all correlation functions from the explicit Gibbs product states gl,d−,d+ :


Theorem 3.3 (Correlation functions I)


For any field ψ and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L, there is a probability measure4 ν supported on the set C of


solutions of (3.7) such that, for any A1, . . . , Ap ∈ U{0} and x1, . . . , xp ∈ L with p ∈ N,


lim
l→∞


∣∣gl (αx1 (A1) · · ·αxp (Ap)
)


−
∫
C
gl,d−,r+(d−)


(
αx1 (A1) · · ·αxp (Ap)


)
dν(d−)


∣∣∣∣ = 0 .


Proof. By Theorem 7.5, the approximating minimizers gl,d−,d+ defined by (2.18) are the restriction on finite


volumes of the product states


ω⊗
2


Dn
2 d−,2


Dn
2 d+


|UΛl−n
(Sn) ◦ ξ


(n)
l .


Here, ω⊗
2


Dn
2 d−,2


Dn
2 d+


∈ E⊗
ψ̂,X̂


is constructed from ω
2


Dn
2 d−,2


Dn
2 d+


∈ Eψ̂,X̂ for l ≥ n, see (7.1). Here, ψ̂ is defined


by (3.3) and


X̂ := ({ϕ̂a}a∈A, {ϕ̂
′
a}a∈A) ∈ L ,


see (3.4) and (3.5). Therefore, we arrive at the assertion by using Theorems 7.2 and 7.7, provided one assumes


the weak∗–convergence of {gl}l∈N. 2


4. Macroscopic Fluctuations


4.1 Definitions


We study here fermion systems on lattices with macroscopic inhomogeneities. It means that the space scale


of fluctuations of the Hamiltonian Ul is of the order of the size of the box Λl.


With this aim, we consider the D–dimensional unit cubic box


C1 = [−1/2, 1/2]D


with the usual metric topology as the topological space C1. The scale function gl is then defined by


gl (x) = 2−lx ∈ C1 , x ∈ Λl , l ∈ N .


The probability measure m is the usual D–dimensional Lebesgue measure dDt on [−1/2, 1/2]D.


By using (continuous) partitions of unity of C1, note that continuous and symmetric real–valued functions


h(t, s) on C1×C1 can be arbitrarily well approximated (in the sense of uniform convergence) by sums of products


of the form ±f (t) f (s), where the function f is continuous on C1. Therefore, by redefining the measure space


A, Assumption (2.9) on Γ does not represent any loss of generality in the macroscopic case and is technically


convenient.


4.2 Thermodynamics at Infinite Volume


Like in Section 3.2 for the microscopic case, we first derive the thermodynamic limit l → ∞ of the pressure pl
(2.13) in order to relate the physical properties of the inhomogeneous macroscopic system to the thermodynamic


game defined by (2.17).


2See proof of Theorem 3.1.
3It is also known as the CAR algebra. See [10, Section 1.1] for more details.
4The Borel σ–algebra corresponds to the weak topology of L2(A−,C).
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Theorem 4.1 (Thermodynamic limit of the pressure II)


Assume that γ is a map from A to the Banach space C (C1; [−1, 1]) of continuous functions of C1 which is


the pointwise limit of some sequence of step measurable functions from A to C (C1; [−1, 1]). Then, for any


continuous field ψ and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L,


lim
l→∞


pl = −Fψ,γ .


Proof. For any continuous field ψ, any map γ : A → C (C1; [−1, 1]) and every n ∈ N, let ψ(n) and γ(n) be their


piecewise constant approximations defined by


ψ(n) (t) : =
∑
y∈Λn


ψ
(
2−ny


)
1
[
t ∈


(
2−nC1 + 2−ny


)]
(4.1)


γ(n)a (t) : =
∑
y∈Λn


γa
(
2−ny


)
1
[
t ∈


(
2−nC1 + 2−ny


)]
(4.2)


for all t ∈ C1 and a ∈ A. The piecewise constant approximation Γ(n) of Γ is then defined by


Γ(n)
a (t, s) := ±γ(n)a (t) γ(n)a (s) , t, s ∈ C1 , a ∈ A± .


Let p
(n)
l := pl(ψ


(n), γ(n)) be the pressure associated with the Hamiltonian U
(n)
l defined by (2.8) for the field


ψ(n) and the coupling function γ
(n)
a , see (2.13). Then, by simple computations (see, e.g., [10, Lemma 6.1]),


lim
n→∞


lim sup
l→∞


|p(n)l − pl| = 0 . (4.3)


On the other hand, one can verify the existence of two constants R± ∈ (0,∞) not depending on n ∈ N ∪ {∞}
such that


Fψ(n),γ(n) < inf
c−∈L2(A−,C)
∥c−∥2>R−


sup
c+∈L2(A+,C)


F(ψ(n), γ(n), c−, c+) (4.4)


whereas, for any c− ∈ L2(A−,C) such that ∥c−∥2 ≤ R−,


sup
c+∈L2(A+,C)


F(ψ(n), γ(n), c−, c+) > sup
c+∈L2(A+,C)
∥c+∥2>R+


F(ψ(n), γ(n), c−, c+) . (4.5)


Here, ψ(∞) := ψ and γ(∞) := γ. Meanwhile, using similar arguments as in [10, Lemma 6.1],


F (c−, c+) ≡ F (ψ, γ, c−, c+) = lim
n→∞


F(ψ(n), γ(n), c−, c+) (4.6)


uniformly in bounded sets of L2
±(A,C). Therefore we infer from (4.4)–(4.6) that


lim
n→∞


∣∣Fψ(n),γ(n) − Fψ,γ
∣∣ = 0 . (4.7)


Knowing (4.3) and this last limit, it remains to prove that, for each fixed n ∈ N,


lim
l→∞


p
(n)
l = Fψ(n),γ(n) . (4.8)


By rearranging lattice sites (see, e.g., (5.3) with η = 0 and Λ0 ≡ {0}), one directly shows this assertion from


Theorem 3.1. 2


By the uniform limit (4.6), the maps


c− 7→ F (ψ, γ, c−, c+) and c+ 7→ F (ψ, γ, c−, c+) (4.9)


inherit the weak lower (−) and upper (+) semi–continuities of the maps


c− 7→ F(ψ(n), γ(n), c−, c+) and c+ 7→ F(ψ(n), γ(n), c−, c+) , (4.10)
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respectively. As a consequence, by (4.4)–(4.5) and the compactness of closed balls of finite radius in the weak


topology (Banach–Alaoglu theorem) together with concavity arguments similar to [10, Lemma 8.3 (♯)], there


are a L2–function d− ∈ L2(A−,C) and a map


r+ ≡ r+ (ψ, γ) : c− 7→ r+ (c−)


from L2(A−,C) to L2(A+,C) satisfying (3.7) and (3.8) for this case. We also infer from (4.4) and (4.5) that all


such L2–functions d− ∈ L2(A−,C) and


d+ := r+(d−) ∈ L2(A+,C)


belong to some fixed closed ball of finite radius. One can also extend [10, Lemma 8.8] to this case in order


to show that the map r+ is weak–norm continuous, that is, continuous with respect to the weak topology on


L2(A−,C) and the norm topology on L2(A+,C).


Like in the microscopic case, the optimizing L2–functions d± ∈ L2(A±,C) allow the construction (2.18) of


approximating minimizers gl,d−,d+ of the finite volume free–energy density fl (2.11):


Proposition 4.2 (Approximating finite volume minimizers II)


Assume that γ is a map from A to the Banach space C (C1; [−1, 1]) of continuous functions of C1 which is


the pointwise limit of some sequence of step measurable functions from A to C (C1; [−1, 1]). Then, for any


continuous field ψ and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L,


lim
l→∞


{
fl(gl,d−,d+)− inf fl (EΛl


)
}
= 0 .


Proof. See the proof of Proposition 3.2, observing that the Euler–Lagrange equations for the present choice of


C1 = [−1/2, 1/2]D and dm (t) = dDt yield


da,− + da,+ = 2−Dl
∑
x∈Λl


γa (gl (x))ωgl(x),d−,d+(ϕa + iϕ′a) + o(1) (4.11)


in the sense of L2(A,C). 2


We denote by


g
(n)
l := gl(ψ


(n), γ(n)) , n ∈ N ,


the approximating Gibbs states associated with the piecewise constant approximations ψ(n), γ(n) of ψ, γ, see


(2.14) and (4.1)–(4.2). Then, assuming without loss of generality the weak∗–convergence of {g(n)l }l∈N, all


correlation functions of these Gibbs states are given by Theorem 3.3, when l → ∞. The latter implies the


following:


Theorem 4.3 (Approximated correlation functions II)


Assume that ψ is a continuous field and γ is a map from A to the Banach space C (C1; [−1, 1]) of contin-


uous functions of C1 which is the pointwise limit of some sequence of step measurable functions from A to


C (C1; [−1, 1]). Then, there is a probability measure5 ν supported on the set C of solutions of (3.7) such that,


for any A1, . . . , Ap ∈ U{0}, x1, . . . , xp ∈ L,


lim sup
l→∞


∣∣∣g(n)l


(
αx1 (A1) · · ·αxp (Ap)


)
−
∫
C
gl,d−,r+(d−)


(
αx1 (A1) · · ·αxp (Ap)


)
dν(d−)


∣∣∣∣ ≤ εn


with p, n ∈ N and εn → 0 as n→ ∞.


5The Borel σ–algebra corresponds to the weak topology of L2(A−,C).
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Proof. We start with some definitions related to ψ(n) (4.1) and γ(n) (4.2) for every n ∈ N ∪ {∞}, where


ψ(∞) := ψ and γ(∞) := γ. We denote by d
(n)
− and


r
(n)
+ := r+(ψ


(n), γ(n))


the solutions of the variational problems (3.7) and (3.8) for ψ(n) and γ(n) with r
(∞)
+ := r+. See also (3.6). By


(4.4)–(4.5), one has


∥d(n)− ∥2 ≤ R− (4.12)


for some constant R− ∈ (0,∞) not depending on n ∈ N ∪ {∞}. We also denote by


g
(n)
l,c−,c+


:= gl,c−,c+(ψ
(n), γ(n)) , n ∈ N , c± ∈ L2(A±,C) ,


the approximating minimizers (2.18) associated with ψ(n), γ(n).


Observe that all correlation functions of the Gibbs states g
(n)
l are given by Theorem 3.3 in the limit l → ∞:


There is a probability measure ν(n) supported on the set C(n) of solutions of (3.7) (for ψ(n), γ(n) of course) such


that


lim
l→∞


∣∣∣g(n)l


(
αx1 (A1) · · ·αxp (Ap)


)
−
∫
C(n) g


(n)


l,d−,r
(n)
+ (d−)


(
αx1 (A1) · · ·αxp (Ap)


)
dν(n)(d−)


∣∣∣∣ = 0
(4.13)


for any A1, . . . , Ap ∈ U{0}, x1, . . . , xp ∈ L and p, n ∈ N.
Now, we analyze the integrand of (4.13). For every fixed n ∈ N ∪ {∞} and c− ∈ L2(A−,C), the L2–function


r
(n)
+ (c−) is the unique minimizer of the functional q


(n)
c− defined, for all c+ ∈ L2(A+,C), by


q(n)c− (c+) : =


∫
A+


|ca,+|2 da (a)


+β−1


∫
C1


lnTrace∧H{0}


(
e−βu(ψ


(n)(t),γ(n)(t),c−,c+)
)
dDt . (4.14)


For any c+ ∈ L2(A+,C) and t ∈ R, note that


∂2t


{
∥r(n)+ (c−) + t(c+ − r


(n)
+ (c−)∥22


}
= 2∥r(n)+ (c−)− c+∥22 . (4.15)


On the other hand, for any c+ ∈ L2(A+,C), the map


t 7→ β−1


∫
C1


lnTrace∧H{0}


(
e
−βu


(
ψ(n)(t),γ(n)(t),c−,r


(n)
+ (c−)+t(c+−r


(n)
+ (c−))


))
dDt


from R to R is a pressure. It is convex and smooth. In particular, we deduce from (4.15) and the convexity of


the previous map that


∂2t q
(n)
c−


(
r
(n)
+ (c−) + t(c+ − r


(n)
+ (c−)


)
≥ 2∥r(n)+ (c−)− c+∥22 .


We then integrate twice this inequality between 0 and t ∈ [0, 1] using that r
(n)
+ (c−) minimizes the functional


q
(n)
c− to obtain the bound


q(n)c− (c+)− q(n)c− (r
(n)
+ (c−)) ≥ ∥r(n)+ (c−)− c+∥22 (4.16)


for all c± ∈ L2(A±,C) and n ∈ N ∪ {∞}.
We meanwhile know that


lim
n→∞


|q(n)c− (c+)− q(∞)
c− (c+) | = 0 (4.17)


uniformly in c± ∈ L2(A±,C) on bounded sets. Similar to (4.5), r
(n)
+ (c−) belongs to some fixed bounded set


(independent of n), provided c− ∈ L2(A−,C) is also in a fixed bounded set. Thus, we infer from (4.17) that


lim
n→∞


{
inf


c+∈L2(A+,C)
q(n)c− (c+)− inf


c+∈L2(A+,C)
q(∞)
c− (c+)


}
= 0
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uniformly in c− ∈ L2(A±,C) on bounded sets. We then combine this last equation with (4.16) and (4.17) to


arrive at the limit


lim
n→∞


∥r(n)+ (c−)− r+(c−)∥2 = 0 . (4.18)


The latter is uniform for c− ∈ L2(A−,C) on bounded sets. By using the passivity of one–site Gibbs states, we


deduce from (4.18) that the function


c− 7→
(
g
(n)


l,c−,r
(n)
+ (c−)


− gl,c−,r+(c−)


)(
αx1 (A1) · · ·αxp (Ap)


)
(4.19)


converges to zero as n→ ∞, uniformly in x1, . . . , xp ∈ L, l ∈ N, and in c− ∈ L2(A−,C) within a fixed bounded


set.


Note also that the map


c− 7→ g
(n)


l,c−,r
(n)
+ (c−)


(
αx1 (A1) · · ·αxp (Ap)


)
is weak continuous for every n ∈ N ∪ {∞}. As a consequence, by (4.13), it suffices now to study the weak∗–


convergence of the probability measures {ν(n)}∞n=1.


For all n ∈ N, the probability measures ν(n) are all supported in a closed ball of L2(A−,C) with radius R−
because of (4.12). Therefore, we can identify the probability measures {ν(n)}∞n=1 with positive and normalized


functionals on a C∗–algebra CR− of continuous functions on this ball. Since the set of states on a C∗–algebra


with identity is weak∗–compact, the sequence {ν(n)}∞n=1 has weak∗–accumulation points. By separability of


L2(A−,C), it follows that any closed ball of finite radius is separable and weakly compact because of Banach–


Alaoglu theorem. In particular, the weak topology in any closed ball of finite radius in the Hilbert space


L2(A−,C) is metrizable, see, e.g., [10, Theorem 10.10]. Thus, by [18, p. 245, S (d)], the set of continuous


functions on such balls is itself separable. In particular, the set of states on CR− is sequentially compact


with respect to the weak∗–topology. Therefore, by the Riesz–Markov theorem, we can assume without loss of


generality that the sequence {ν(n)}∞n=1 converges to some probability measure ν in the weak∗–topology.


This last property, together with the uniform convergence of (4.19) to zero as n→ ∞, yields the limit stated


in the theorem with C replaced with the support Cν of ν. It thus remains to prove that Cν is contained in the


set C of solutions of (3.7).


Assume that ν is not supported on C. Then, because C is a closed set, there is a non–empty, closed, bounded


subset B of the complement of C with ν(B) > 0 and


B ∩ C(n) ̸= ∅


for n ∈ N sufficiently large. Recall that C(n) is the set of solutions of (3.7) (for ψ(n), γ(n)) and contains the


support of the probability measure ν(n). Now take any sequence {d(n)− }∞n=1 ⊂ B with d
(n)
− ∈ C(n) for n ∈ N


sufficiently large. Using (4.4) together with the compactness (Banach–Alaoglu theorem) and metrizability of


closed balls of finite radius in the weak topology, we can assume without loss of generality that {d(n)− }∞n=1


converges weakly to some d− ∈ B. The map


c− 7→ sup
c+∈L2(A+,C)


F(ψ, γ, c−, c+)


from L2
−(A,C) to R is lower semi–continuous in the weak topology because it is the supremum of a family


{c− 7→ F(ψ, γ, c−, c+)}c+∈L2(A+,C)


of lower semi–continuous functionals, see (4.9). Using this property together with (4.6) and (4.7), we find that


d− solves (3.7), i.e., d− /∈ B. Hence, the probability measure ν must be supported on the set of solutions of


(3.7), i.e., Cν ⊂ C. 2


By using the above result, expectation values derived from the original Gibbs state gl ≡ g
(∞)
l associated with


the Hamiltonian Ul can be deduced in various situations for specific A1, . . . , Ap ∈ U{0}, x1, . . . , xp ∈ L with


p, n ∈ N, in the sense that


gl
(
αx1 (A1) · · ·αxp (Ap)


)
= g


(n)
l


(
αx1 (A1) · · ·αxp (Ap)


)
+ o(1) .
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This can be performed by using Griffiths arguments [19, 20, 21], which are based on convexity and differentia-


bility properties of the pressure. See also [8, Appendix]. An example is given in Section 6.2.


5. Periodic Mesoscopic Fluctuations


5.1 Definitions


We conclude by studying the mesoscopic case. The complete analysis of this situation is the subject of a


further paper. Here, we restrict ourselves to the periodic case.


Set C1 = RD with the usual metric topology and define the scale function gl by


gl (x) = 2ηl2−lx ∈ C1 , x ∈ Λl , l ∈ N , η ∈ (0, 1) . (5.1)


The case η = 0 clearly corresponds to the macroscopic case, whereas η = 1 leads to a microscopic situation. We


now add a hypothesis which is not imposed in the macroscopic case: The field ψ and the map γ from A×C1 to


[−1, 1] are assumed to be both (1, . . . , 1)–periodic. The probability measure m is then defined in this periodic


mesoscopic situation by


m (Ω) =


∫
Ω∩[−1/2,1/2]D


dDt


for all Borel sets Ω ⊂ C1.


Note that Assumption (2.9) on Γ can again be used without loss of generality in this case.


5.2 Thermodynamics at Infinite Volume


The thermodynamic study of the inhomogeneous system in the periodic mesoscopic situation is quite similar to


the macroscopic case. In particular, in the same way we prove Theorem 4.1 one shows that the thermodynamic


game defined by (2.17) again gives the pressure in the thermodynamic limit:


Theorem 5.1 (Thermodynamic limit of pressure III)


Assume that γ is a map from A to the Banach space C (C1; [−1, 1]) of continuous functions of C1 which is


the pointwise limit of some sequence of step measurable functions from A to C (C1; [−1, 1]). Then, for any


continuous field ψ and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L,


lim
l→∞


pl = −Fψ,γ ,


where pl is the pressure defined by (2.13).


Proof. Since the field ψ and the map γ : A → C (C1; [−1, 1]) are assumed in this section to be both (1, . . . , 1)–


periodic, by the rescaling (5.1) all the information about the inhomogeneity remains inside each translated


box


Λl−[ηl] + 2l−[ηl]y , y ∈ Λ[ηl] . (5.2)


Therefore, for any continuous field ψ and γ : A → C (C1; [−1, 1]), we can use their piecewise constant and


(1, . . . , 1)–periodic approximations ψ(n) and γ(n) defined on the unit cell [−1/2, 1/2]
D


similarly as in (4.1)–


(4.2). Like in the macroscopic case (Theorem 4.1), we divide the |Λ[ηl]| = 2D[ηl] translated boxes (5.2) into


|Λn| = 2Dn smaller boxes. This strategy gets us to consider the Hamiltonian


W
(n)
l−n : =


∑
y∈Λ[ηl]


∑
x∈Λl−[ηl]−n


αx+2l−[ηl]y(ψ̃)


+2−D(l−n)
∫
A
da (a)


∑
y,y′∈Λ[ηl]


∑
x,x′∈Λl−[ηl]−n


γ̂a αx+2l−[ηl]y((ϕ̃a + iϕ̃
′
a)


∗)


αx′+2l−[ηl]y′(ϕ̃a + iϕ̃
′
a) , (5.3)
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where [z] is the integer part of z ≥ 0, γ̂ is the fixed measurable function defined by γ̂a := ±1 for a ∈ A± and


ψ̃ : =
∑
x∈Λn


α2l−[ηl]−nx


(
ψ(2−nx)


)
,


ϕ̃a : = 2−
Dn
2


∑
x∈Λn


γa(2
−nx) α2l−[ηl]−nx(ϕa) ,


ϕ̃
′
a : = 2−


Dn
2


∑
x∈Λn


γa(2
−nx) α2l−[ηl]−nx(ϕ


′
a) .


Then, similar to Theorem 4.1, for any fixed n ∈ N, the corresponding pressure defined by


p
(n)
l := β−12−D(l−n) lnTrace∧HΛ


(
e−βW


(n)
l−n


)
= pl(ψ


(n), γ(n))


converges in the thermodynamic limit to


lim
l→∞


p
(n)
l = −Fψ(n),γ(n)


for any n ∈ N. Therefore, we deduce the assertion by combining this last limit with similar estimates to (4.3)


and (4.7). 2


Like in the microscopic and macroscopic situations, one shows that the local Gibbs states gl,d−,d+ (2.18) for


all l ∈ N are still approximating minimizers of the finite volume free–energy density in the mesoscopic case:


Proposition 5.2 (Approximating finite volume minimizers III)


Assume that γ is a map from A to the Banach space C (C1; [−1, 1]) of continuous functions of C1 which is


the pointwise limit of some sequence of step measurable functions from A to C (C1; [−1, 1]). Then, for any


continuous field ψ and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L,


lim
l→∞


{
fl
(
gl,d−,d+


)
− inf fl (EΛl


)
}
= 0 .


Other similar results to the macroscopic case (see Theorem 4.3) can be performed in the mesoscopic situation.


We refrain however from doing it. In fact, the periodic mesoscopic situation is a kind of “rearranging” of the


macroscopic case. See, e.g., proof of Theorem 5.1, in particular Equation (5.3). It is only discussed here in


order to give some intuition on this matter. A more general setting in which periodicity is not imposed will be


the subject of a separated paper.


6. Applications


6.1 The BCS Model


The reduced BCS Hamiltonian in the quasi–spin representation formulation equals


UBCSl :=
∑
k∈Λ∗


l


εkσ
z
k −


1


|Λl|
∑


k,k′∈Λ∗
l


U (k, k′)σ+
k σ


−
k′ (6.1)


with σ±
k := σxk ± iσyk. Here, σ


x
k, σ


y
k, σ


z
k are respectively the x, y, z components of the spin, the finite set


Λ∗
l :=


(
2−lπ


)
ZD ∩ [−π, π]D , l ∈ N , (6.2)


is the reciprocal lattice of (quasi–) momenta and


εk := D −
D∑
j=1


cos (kj) , k = (k1, . . . , kD) ∈ [−π, π]D
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is the usual kinetic energy of lattice particles. Note that the quasi–spin representation formulation of the BCS


Model is not necessary and we could directly use the fermionic setting. We only use it to be close to the setup


of [4, 5].


Because of the rescaling 2−l in the definition (6.2) of Λ∗
l , this example corresponds to a spin system with


macroscopic inhomogeneities as defined in Section 4.1 with C1 = [−π, π]D. Indeed, in this case


A = R , da (a) = da , ϕa = Re
(
f (a)σ+


0


)
, ϕ′a = Im


(
f (a)σ+


0


)
,


where da is the usual Lebesgue measure and f is any L2–function. The coupling function U (k, k′) is equal, for


k, k′ ∈ [−π, π]D, to


U (k, k′) :=


∫
A−


|f (a)|2 γa (k) γa (k′) da−
∫
A+


|f (a)|2 γa (k) γa (k′) da ,


where A− and A+ are any two disjoint measurable sets such that A− ∪ A+ = R and γ is any arbitrary map


from R to the Banach space C (C1; [−1, 1]) of continuous functions of C1 = [−π, π]D, which is the pointwise


limit of some sequence of step measurable functions from A to C (C1; [−1, 1]).


The thermodynamics of the BCS Hamiltonian at any inverse temperature β ∈ (0,∞) was rigorously analyzed


during the eighties [4, 5]. These studies were however only performed on the level of the pressure or the free–


energy density6. Moreover, the resulting variational problems are technically difficult to analyze. Indeed, [4]


yields an (infinite volume) pressure through two variational problems (∗) and (∗∗) over states on a much larger


algebra than the original observable algebra of the model. The proof of [5] starts with the use of some piecewise


constant approximations exactly as in the proof of Theorem 4.1, see [5, Eq. (2.3)]. But, the resulting variational


problem is again technically difficult to analyze. See, e.g., [5, Theorem 3] which gives the free–energy density


as a variational problem over three bounded functions of [−π, π]D analyzed in [5, Section 3].


By contrast, we directly infer from Theorem 4.1 that the thermodynamic limit of the pressure equals −FBCS


with


FBCS : = inf
c−∈L2(A−,C)


sup
c+∈L2(A+,C)


{
−
∫
A+


|ca,+|2 da+
∫
A−


|ca,−|2 da


−
∫
C1


p (t, c−, c+) d
Dt


}
. (6.3)


Here, for any inverse temperature β ∈ (0,∞), all functions c± ∈ L2(A±,C) and (quasi–) momenta t ∈ C1 =


[−π, π]D, the pressure


p (t, c−, c+) := β−1 lnTrace∧H{0}


(
e−βu(εtσ


z
0 ,γ(t),c−,c+)


)
explicitly equals


p (t, c−, c+) = β−1 ln


(
cosh


(
β


√
4 |ϑt,+ (c+)− ϑt,− (c−)|2 + ε2t


))
+ β−1 ln 2


with


ϑt,± (c±) :=


∫
A±


γa (t) |f (a)| ca,±da .


The basic properties of the explicit variational problem (6.3) follow easily from the results of Section 4.2. See,


e.g., (3.7)–(3.8) and the approximated gap equation (4.11), the thermodynamic limit of which is similar to [5,


Eq. (3.14)]. Moreover, Section 4.2 also gives approximating minimizers gl,d−,d+ (2.18) of the free–energy density


in finite boxes (Proposition 4.2) as well as approximated correlation functions (Theorem 4.3). The latter goes


beyond previous results [4, 5] on the BCS Model.


6These studies can nevertheless yield some information about expectation values by using Griffiths arguments [19, 20, 21]. See,
e.g., [5, Section 4].
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6.2 The Strong–Coupling BCS–Hubbard Model with Inhomogeneous Magnetic Field


This model is defined in a cubic box Λl by (1.1) with homogeneous chemical potential µ ∈ R, inhomogeneous


magnetic field h ∈ C([−1/2, 1/2]D;R), Hubbard–type interaction v = 0, λ ∈ R+
0 and BCS coupling constant


Γ ∈ R+
0 . Of course, our results still apply to the general model (1.1), but we restrict our application to this more


specific example because it can easily be studied. Indeed, its homogeneous version with constants µ, h,Γ ∈ R,
v = 0, λ ∈ R+


0 can explicitly be analyzed and qualitatively shows in the thermodynamic limit the same kind of


density dependency of the critical temperature observed in high–Tc superconductors [8, 9].


In order to use Griffiths arguments [19, 20, 21] we consider a perturbed version of the strong–coupling BCS–


Hubbard Model with inhomogeneous magnetic field. This perturbed model is defined by the Hamiltonian


UStr
l,Ω : = −µ


∑
x∈Λl


(nx,↑ + nx,↓) + 2λ
∑
x∈Λl


nx,↑nx,↓


−
∑
x∈Λl


[
h
(
2−lx


)
+ δχΩ


(
2−lx


)]
(nx,↑ − nx,↓)


−2−Dl
∑
x,y∈Λl


[
Γ + δ̃χΩ


(
2−lx


)
χΩ


(
2−ly


)]
a∗x,↑a


∗
x,↓ay,↓ay,↑


(6.4)


for real parameters µ, δ, δ̃ ∈ R, λ,Γ ≥ 0 and where h ∈ C(C1;R) and χΩ is the characteristic function of any


measurable subset


Ω ⊆ C1 = [−1/2, 1/2]D.


Recall that the operator a∗x,s (resp. ax,s) creates (resp. annihilates) a fermion with spin s∈ {↑, ↓} at lattice


position x ∈ ZD, D = 1, 2, 3, ..., whereas nx,s := a∗x,sax,s is the particle number operator at position x and spin


s. The case δ = δ̃ = 0 is the strong–coupling BCS–Hubbard model with inhomogeneous magnetic field which is


denoted here by UStr
l,∅ .


As explained in the introduction, the first term of the right hand side of (6.4) represents the strong coupling


limit of the kinetic energy, also called “atomic limit” in the context of the Hubbard model, see, e.g., [6, 7].


The one–site interaction with positive coupling constant λ ≥ 0 represents the (screened) Coulomb repulsion


as in the celebrated Hubbard model. The third term corresponds to the interaction between spins and the


inhomogeneous magnetic field


h
(
2−lx


)
+ δχΩ


(
2−lx


)
, x ∈ Λl .


The last term is the BCS interaction written in the x–space. In the BCS model (6.1) and for δ̃ = 0, it corresponds


to take U (k, k′) = Γ ∈ R+
0 for all k, k′ ∈ [−π, π]D.


This example on the lattice L := ZD is a Fermi system with macroscopic inhomogeneities as defined in Section


4.1. Indeed,


A = {a} , a (a) = 1 , ϕa = Re (a0,↓a0,↑) , ϕ′a = Im (a0,↓a0,↑) .


By approximating the characteristic function χΩ by continuous functions, using Theorem 4.1 and the gauge


invariance of the model we directly obtain that the thermodynamic limit of the pressure equals −FStr with


FStr := inf
r≥0


{
r −


∫
C1


p̃ (t, r) dDt


}
= r−


∫
C1


p̃ (t, r) dDt .


Here, for all t ∈ C1 = [−1/2, 1/2]D and order parameters r ∈ [0,∞),


p̃ (t, r) := β−1 ln
{
cosh (β [h (t) + δχΩ (t)]) + e−λβ cosh (βϵt,r)


}
+ µ+ β−1 ln 2


with


ϵt,r := {(µ− λ)2 + r(Γ + δ̃χΩ (t))}1/2 .


Using Griffiths arguments [19, 20, 21] and explicit computations of the derivative of the pressure with respect


to δ, δ̃ ∈ R, we can compute the (infinite volume) Cooper pair condensate density


rΩ := lim
l→∞


 1


|Ωl|2
∑


x,y∈Ωl


Trace∧HΛl


(
a∗x,↑a


∗
x,↓ay,↓ay,↑e


−βUStr
l,∅


)
Trace∧HΛl


(e−βU
Str
l,∅ )
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as well as the (infinite volume) magnetization density


mΩ := lim
l→∞


 1


|Ωl|
∑
x∈Ωl


Trace∧HΛl


(
(nx,↑ − nx,↓) e


−βUStr
l,∅


)
Trace∧HΛl


(e−βU
Str
l,∅ )



on the subset Ωl := 2lΩ ∩ Λl with 2−Dl |Ωl| = |Ω|+ o(1). Indeed, away from any critical point (defined by the


existence of a first order phase transition), the Cooper pair condensate density equals


rΩ =
r


|Ω|


∫
Ω


e−βλ sinh (βϵt,r)


2ϵt,r (cosh (βh (t)) + e−βλ cosh (βϵt,r))
dDt


whereas the magnetization density is equal to


mΩ =
1


|Ω|


∫
Ω


sinh (βh (t))


cosh (βh (t)) + e−βλ cosh (βϵt,r)
dDt .


In particular, in the limit (β → ∞) of low temperatures, one can verify that mΩ = O
(
e−βK


)
for someK ∈ (0,∞)


and rΩ = O (r) whenever


h (t) < hc := {(µ− λ)2 + rΓ}1/2 − λ .


However, a strong and local macroscopic magnetic field h
(
2−lx


)
> hc on some macroscopic domain Ωl = 2lΩ∩Λl


will become magnetized even if a global superconducting phase exists, that is, when r > 0. In this case,


rΩ = O
(
e−βK


)
and the local macroscopic magnetic field expels the Cooper pair condensate from the region


Ωl ⊂ Λl.


This last phenomenon is however more subtle in real superconductors because we do not take into account


the (full) Meißner effect. The latter is defined here by the existence of steady surface currents which annihilate


all the magnetization inside the bulk of the superconductor. The description of this finite volume effect needs


a more general free–energy density taking into account the magnetic energy, see, e.g., [22, Eq. (2.11)]. Such a


study is non–trivial and we will perform it later.


7. Appendix


For the reader’s convenience, we give a short complementary study of the thermodynamics of permutation


invariant Fermi systems with long–range interactions described in [10, Chapter 5]. We only focus on results


which are relevant for our present analysis.


First, a permutation invariant model is given by a self–adjoint even element ϕ = ϕ∗ ∈ U+
{0} and a long–range


interaction


X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L .


See (2.7) for the definition of the set L of long–range (permutation invariant) interactions. Its Hamiltonian is


defined in the box Λl, l ∈ N, by


Ûl :=
∑
x∈Λl


αx (ϕ) + 2−Dl
∫
A


∑
x,y∈Λl


γ̂aαx((ϕa + iϕ′a)
∗)αy(ϕa + iϕ′a)da (a)


with γ̂a being a fixed measurable function such that γ̂a = ±1 for any a ∈ A±. Like in Section 2.3 note that


A = A− ∪ A+ is decomposed into two disjoint measurable components A− and A+. To avoid trivial cases, we


also assume (2.10).


By [10, Corollary 5.9], the infinite volume pressure


Pϕ,X := lim
l→∞


{
β−12−Dl lnTrace∧HΛl


(
e−βÛl


)}
is given by a variational principle on the set E{0} of one–site states on U{0}:
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Theorem 7.1 (Thermodynamic limit of the pressure IV)


For any ϕ = ϕ∗ ∈ U+
{0} and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L,


Pϕ,X = − inf
ρ∈E{0}


{∫
A
γ̂a|ρ(ϕa + iϕ′a)|2da(a) + ρ(ϕ)− β−1S(ρ)


}
with S being the von Neumann entropy defined by (2.12).


Since the von Neumann entropy S is continuous, the (infinite volume) pressure Pϕ,X is given by an infimum


of a continuous functional over the compact and convex set E{0} of one–site states on U{0}. In particular, this


variational problem has a non–empty set Eϕ,X of minimizers. Each ω ∈ Eϕ,X turns out to be even (see Theorem


7.5), that is, ω = ω◦σπ with σπ defined by (2.5) for θ = π. Therefore, from [17, Theorem 11.2.], every minimizer


ω ∈ Eϕ,X uniquely defines a so–called product state ω⊗ satisfying


ω⊗(αx1(A1) · · ·αxn(An)) = ω(A1) · · ·ω(An) (7.1)


for all n ∈ N, A1, . . . , An ∈ U{0} and any x1, . . . , xn ∈ L such that xj ̸= xk for j ̸= k. We denote by E⊗
ϕ,X the set


of all product states constructed from Eϕ,X ⊂ E{0}. By [10, Corollary 5.10], this set completely characterizes


the equilibrium states in the thermodynamic limit of the model defined by the local element ϕ = ϕ∗ ∈ U+
{0} and


the long–range permutation invariant interaction X ∈ L:


Theorem 7.2 (Weak∗–limit of Gibbs equilibrium states)


For any ϕ = ϕ∗ ∈ U+
{0} and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L, the weak∗–accumulation points of Gibbs equilibrium


states with density matrices


e−βÛl


Trace∧HΛl
(e−βÛl)


, l ∈ N ,


belong to the weak∗–closed convex hull co(E⊗
ϕ,X) of the set E⊗


ϕ,X .


Remark 7.3 (Geometric structure of the set of equilibrium states)


As defined in [10, Definition 2.13], co(E⊗
ϕ,X) is the set of permutation invariant equilibrium states. By the


Størmer theorem in the lattice CAR–algebra version [10, Theorem 5.2], extreme states of the weak∗–compact


and convex set EΠ of permutation invariant states are product states and vice versa. In particular, the set of


permutation invariant equilibrium states is a face of EΠ.


To describe the set Eϕ,X explicitly it suffices to use the following equality∫
A±


|ρ(ϕa + iϕ′a)|2da(a) (7.2)


= sup
c±∈L2(A±,C)


{
−
∫
A±


|ca,±|2da(a) + 2


∫
A±


Re
(
ca,±ρ(ϕa + iϕ′a)


)
da(a)


}
for all one–site states ρ ∈ E{0}. Indeed, using this and Theorem 7.1 one gets


Pϕ,X = − inf
ρ∈E{0}


inf
c−∈L2(A−,C)


sup
c+∈L2(A+,C)


{
−
∫
A+


|ca,+|2da(a) +
∫
A−


|ca,−|2da(a)


+2


∫
A
Re


(
(ca,+ − ca,−) ρ(ϕa + iϕ′a)


)
da(a) + ρ(ϕ)− β−1S(ρ)


}
.


The two infima in Pϕ,X clearly commute with each other. Doing this, one can next use the von Neumann


min–max theorem to exchange the infimum over states and the supremum over L2(A+,C). In other words,


Pϕ,X = − inf
c−∈L2(A−,C)


sup
c+∈L2(A+,C)


inf
ρ∈E{0}


{
−
∫
A+


|ca,+|2da(a) +
∫
A−


|ca,−|2da(a)


+2


∫
A
Re


(
(ca,+ − ca,−) ρ(ϕa + iϕ′a)


)
da(a) + ρ(ϕ)− β−1S(ρ)


}
. (7.3)
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For more details, see [10, Chapter 8 and Theorem 10.50 ].


By using the passivity of Gibbs states (see Theorem 7.1 with X = 0 ∈ L) note that, for all c± ∈ L2(A±,C),


inf
ρ∈E{0}


{
2


∫
A
Re


(
(ca,+ − ca,−) ρ(ϕa + iϕ′a)


)
da(a) + ρ(ϕ)− β−1S(ρ)


}
= −β−1 lnTrace∧H{0}


(
e−βu(ϕ,1,c−,c+)


)
(7.4)


with u (ϕ, 1, c−, c+) being the one–site Hamiltonian (2.15). By (7.3), we obtain the following assertion:


Theorem 7.4 (Pressure and thermodynamic game)


For any ϕ = ϕ∗ ∈ U+
{0} and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L,


Pϕ,X = − inf
c−∈L2(A−,C)


sup
c+∈L2(A+,C)


f (ϕ, 1, c−, c+)


with f being the perturbed free–energy density (2.16).


It is relatively easy to check that these last variational problems over L2(A±,C) have optimizers d± ∈
L2(A±,C) satisfying


sup
c+∈L2(A+,C)


f (ϕ, 1, d−, c+) = inf
c−∈L2(A−,C)


sup
c+∈L2(A+,C)


f (ϕ, 1, c−, c+) (7.5)


and


f (ϕ, 1, d−, d+) = sup
c+∈L2(A+,C)


f (ϕ, 1, d−, c+) . (7.6)


See [10, Lemmata 8.3–8.4] for more details.


Observe that d+ is uniquely determined as a function of d−. More generally, the variational problem


sup
c+∈L2(A+,C)


f (ϕ, 1, c−, c+) = f(ϕ, 1, c−, r+ (c−))


defines a weak–norm continuous map


r+ ≡ r+ (ϕ, 1) : c− 7→ r+ (c−) (7.7)


from L2(A−,C) to L2(A+,C), see [10, Lemma 8.8]. In particular, d+ = r+ (d−). Define by


Cϕ,X :=
{
d− ∈ L2(A−,C) : f (ϕ, 1, d−, r+ (d−)) = −Pϕ,X


}
the non–empty set of solutions d− of the variational problem over L2(A−,C) in (7.5). Note that this set is


L2–norm bounded and weakly compact.


The von Neumann min–max theorem [10, Theorem 10.50] used in (7.3) also implies (see, e.g., [10, Section 9.1])


that the set Eϕ,X is completely characterized by the minimizers of the variational problem (7.4) for solutions


d− ∈ Cϕ,X and d+ := r+ (d−) of (7.5)–(7.6). Using the passivity of Gibbs states, we thus arrive at our next


statement:


Theorem 7.5 (Extremal equilibrium states)


For any ϕ = ϕ∗ ∈ U+
{0} and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L,


Eϕ,X =
{
ωd−,r+(d−) : d− ∈ Cϕ,X


}
,


where ωc−,c+ is the Gibbs state with density matrix


e−βu(ϕ,1,c−,c+)


Trace∧H{0}(e
−β(u(ϕ,1,c−,c+)))


for any c± ∈ L2(A±,C). In particular, any minimizer ω ∈ Eϕ,X is an even state.
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Observe that the variational problem (7.2) has of course a unique maximizer da,± (ρ) := ρ(ϕa + iϕ′a) in


L2(A±,C). It is thus easy to see that any solution d− ∈ Cϕ,X and ωd−,d+ ∈ Eϕ,X satisfy the Euler–Lagrange


equation


da,− + da,+ = ωd−,d+(ϕa + iϕ′a) (7.8)


in the sense of L2(A,C). Recall that d+ := r+ (d−). This equation is also named gap equation by analogy with


the BCS theory [1, 2, 3] for conventional superconductors. Indeed, within this theory, the existence of a non–zero


solution d− implies a superconducting phase as well as a gap in the spectrum of the effective (approximating)


BCS Hamiltonian. The equation satisfied by d− ∈ Cϕ,X is called gap equation in the Physics literature because


of this property.


The gap equation (7.8) is quite useful. For instance, it allows to show that the sets Cϕ,X and Eϕ,X are


homeomorphic:


Lemma 7.6 (Homeomorphism between Cϕ,X and Eϕ,X)


For any ϕ = ϕ∗ ∈ U+
{0} and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L, the map


d− 7→ ωd−,r+(d−)


from the set Cϕ,X equipped with the weak topology to the finite dimensional set Eϕ,X is a homeomorphism (with


respect to the unique locally convex topology of Eϕ,X ⊂ U∗
{0}).


Proof. We first remark that this map must be a bijection because of (7.8). The continuity of its inverse also


results from (7.8). It remains to prove its continuity.


By separability of L2(A,C), observe that the weak topology of Cϕ,X is metrizable. It thus suffices to consider


convergent sequences (instead of general nets) in Cϕ,X to prove continuity. Take any sequence


{d(n)− }∞n=0 ⊂ Cϕ,X ⊂ L2(A−,C)


of L2–functions weakly converging to d
(∞)
− . Since the set Cϕ,X is weakly compact, d


(∞)
− ∈ Cϕ,X . Moreover,


the map r+ from L2(A−,C) to L2(A+,C) defined by (7.7) is weak–norm continuous, see [10, Lemma 8.8].


Consequently, the sequence


{r+(d(n)− )}∞n=0 ⊂ L2(A+,C)


of L2–functions converges in norm to r+(d
(∞)
− ). The weak convergence of {d(n)− }∞n=0 also yields the norm


convergence of the interaction


Φ
(n)
− :=


∫
A−


d
(n)
a,−(ϕa + iϕ′a)da(a) ∈ U+


{0} , n ∈ N , (7.9)


towards


Φ
(∞)
− :=


∫
A−


d
(∞)
a,− (ϕa + iϕ′a)da(a) ∈ U+


{0} .


This can be seen as follows.


Recall that the set Cϕ,X is norm bounded and observe also that the set of measurable step functions with


support of finite measure is dense in L. Thus, by the Cauchy–Schwarz inequality, for any ε > 0, there are N step


functions defined by φk, φ
′
k ∈ U+


{0} for all a ∈ Ik, with N ∈ N and Ik ∈ A satisfying Ik ⊂ A− and a (Ik) < ∞
for k ∈ {1, . . . , N}, such that∥∥∥∥∥


∫
A−


d
(n)
a,−(ϕa + iϕ′a)da(a)−


N∑
k=1


φk


∫
Ik


d
(n)
a,−da(a)


∥∥∥∥∥ ≤ ε


uniformly in n ∈ N ∪ {∞}. Therefore, the weak convergence of {d(n)− }∞n=0 to d
(∞)
− yields the norm convergence


of Φ
(n)
− to Φ


(∞)
− . The same obviously holds true for


Φ
(n)
+ :=


∫
A+


r+(d
(n)
− )(ϕa + iϕ′a)da(a) ∈ U+


{0} , n ∈ N ∪ {∞} ,
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by weak–norm continuity of the map r+.


Now, let the free–energy density f (∞) be defined, for all ρ ∈ E{0}, by


f (∞) (ρ) := 2ρ(Re(Φ
(∞)
+ )− Re(Φ


(∞)
− )) + ρ(ϕ)− β−1S(ρ) .


We infer from the passivity of Gibbs states that, for any n ∈ N ∪ {∞},


f (∞)(ω
d
(n)
− ,r+(d


(n)
− )


) = −β−1 lnTrace∧H{0}


(
e
−βu


(
ϕ,1,d


(n)
− ,r+(d


(n)
− )


))
+2ω


d
(n)
− ,r+(d


(n)
− )


(Re(Φ
(∞)
+ )− Re(Φ


(n)
+ ))


+2ω
d
(n)
− ,r+(d


(n)
− )


(Re(Φ
(n)
− )− Re(Φ


(∞)
− )) .


The map


U 7→ β−1 lnTrace∧H{0}


(
e−βU


)
from U+


{0} to R is Lipschitz continuous. Because of the norm convergence of Φ
(n)
± to Φ


(∞)
± , it is then straight-


forward to see that


lim
n→∞


f (∞)(ω
d
(n)
− ,r+(d


(n)
− )


) = inf f (∞)
(
E{0}


)
(7.10)


= −β−1 lnTrace∧H{0}


(
e
−βu


(
ϕ,1,d


(∞)
− ,r+(d


(∞)
− )


))
.


By compactness of the set E{0}, the sequence


{ω
d
(n)
− ,r+(d


(n)
− )


}∞n=0 ⊂ E{0} (7.11)


has accumulation points. On the other hand, the functional f (∞) is continuous and has


ω
d
(∞)
− ,r+(d


(∞)
− )


∈ E{0} (7.12)


as unique minimizer on E{0}. By (7.10), it follows that the sequence (7.11) must converge to (7.12) as n→ ∞.


2


Finally, recall that the set Cϕ,X is weakly compact which, by Lemma 7.6, implies the weak∗–compactness of


E⊗
ϕ,X . Therefore, we infer from [23, Proposition 1.2] that, for any ϖ ∈ co(E⊗


ϕ,X), there is a probability measure,


i.e., a normalized positive Borel regular measure, ν̃ϖ on co(E⊗
ϕ,X) such that


ν̃ϖ(E⊗
ϕ,X) = 1 and ϖ =


∫
E⊗
ϕ,X


dν̃ϖ(ω
⊗) ω⊗.


Going back to the set Cϕ,X by using Lemma 7.6 we give a complete characterization of the set co(E⊗
ϕ,X) of


equilibrium states:


Theorem 7.7 (Structure of the set of equilibrium states)


For any ϖ ∈ co(E⊗
ϕ,X), there is a probability measure7 νϖ supported on the set Cϕ,X such that


νϖ(Cϕ,X) = 1 and ϖ =


∫
Cϕ,X


dνϖ(d−) ω
⊗
d−,r+(d−) .


Here, ϕ = ϕ∗ ∈ U+
{0} and X := ({ϕa}a∈A, {ϕ′a}a∈A) ∈ L.


7The Borel σ–algebra corresponds to the weak topology of L2(A−,C).
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of the “Inneruniversitäre Forschungsförderung” of the Johannes Gutenberg University in Mainz.


References


[1] Cooper, L.N.: Bound Electron Pairs in a Degenerate Fermi Gas. Phys. Rev 104, 1189–1190 (1956)


[2] Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Microscopic Theory of Superconductivity. Phys. Rev. 106,


162–164 (1957)


[3] Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of Superconductivity. Phys. Rev. 108, 1175–1204 (1957)


[4] Raggio, G.A., Werner, R.F.: The Gibbs variational principle for inhomogeneous mean field systems. Helv.


Phys. Acta 64, 633–667 (1991)
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