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SZEGÖ LIMIT THEOREM ON THE LATTICE


JITENDRIYA SWAIN AND M KRISHNA


Abstract. In this paper, we prove a Szegö type limit theorem on ℓ2(Zd).
We consider operators of the form H = ρ∆+|ξ|k, 0 ≤ ρ, 0 < k < 2 on ℓ2(Zd)
and πλ the orthogonal projection of ℓ2(Zd) on to the space of eigenfunctions
of H with eigenvalues ≤ λ. We take A be a 0th order self adjoint pseudo
difference operator with symbol a(ξ, x) satisfying [A, H ](H + 1)−σ bounded
for some 0 < σ < 1


2 . Then for f ∈ C(R) and (ξ, x) ∈ Z
d × T


d,


lim
λ→∞


tr f(πλAπλ)


rank πλ


= lim
λ→∞


1


(2π)d


1


vol(h(ξ, x) ≤ λ)


∑


(ξ,x):h(ξ,x)≤λ


∫


f(a(ξ, x))dx


assuming one of the limits exists. The limits are invariant under compact
perturbation of A.


1. Introduction


Let ∆ be the discrete Laplacian on ℓ2(Zd) defined by ∆ =


d
∑


j=1


∆ξ
+
j ∆ξ


−
j , where


∆+
ξ and ∆−


ξ acting on u(ξ) as u(ξ+ ej)−u(ξ) and u(ξ)−u(ξ− ej) respectively


for ξ ∈ Zd and ej is a vector in Zd with 1 in jth place zero elsewhere. Let


|ξ| =
√


∑d
j=1 ξ


2
j and let V be a positive function on Zd such that V (ξ) =


|ξ|k, 0 < k < 2 for large |ξ|. We denote by V the operator of multiplication by


the function V (ξ) on ℓ2(Zd). Our choice of the normalization in the definition


of ∆ makes it a positive operator with purely absolutely continuous spectrum


in [0, 4d]. For this reason we add a constant 4d and normalize and it will not


affect the problem. We will stick to this normalization of discrete Laplacian


which we define explicitly as


(∆u)(ξ) =
d


∑


j=1


[u(ξ + ej) + u(ξ − ej)] + 2du(ξ).


We take V (ξ) as above with some 0 < k < 2, 0 ≤ ρ fixed and consider


(1.1) H = ρ∆ + V.
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It turns out that H is a pseudo difference operator with symbol h(ξ, x) =


2ρ
∑d


k=1 cos(xk) + V (ξ) + 2dρ where (ξ, x) ∈ Zd × Td.


The H is self adjoint on the domain {u ∈ ℓ2(Zd) : V u ∈ ℓ2(Zd)}, since ∆ is


bounded. It is easy to see that the resolvent (H − z)−1 is compact for some


(hence for all) z ∈ C+, so the spectrum of H is discrete and the multiplicity of


each eigen value is finite.


Let {(λi, ηi)} be the set of eigenvalues and eigenfunctions of H counted with


multiplicity. Let πλ denote the (finite rank) orthogonal projection of ℓ2(Z) on to


span{ηj : λj ≤ λ}. In this paper, we consider a Szegö type theorem associated


with H .


The classical theorem of Szegö is stated as follows: Let Pn be the orthogonal


projection of L2[0, 2π] onto the linear subspace spanned by the functions {eimθ :


0 ≤ m ≤ n; 0 ≤ θ < 2π}. For a positive function f ∈ C1+α[0, 2π], α > 0 the


operator Tf defined by the operator of multiplication by the function f on


L2[0, 2π] the following result holds


lim
n→∞


1


n+ 1
log detPnTfPn =


1


2π


∫ 2π


0


log f(θ)dθ.


The above result is well known as Szegö limit theorem. We refer to [7, 4] for


details and related results. In fact, Szegö limit theorem is a special case of a


more general result proved by Szegö (see [4]) in section 5.3 as follows. Let f


be a bounded, real valued integrable function and {λn
i }


n
i=1 be the eigenvalues


of PnTfPn. Then for any continuous function F on [inf f, sup f ] it was proved


in (see [4], sect. 5.3) that


lim
n→∞


1


n


n
∑


i=1


F (λn
i ) =


1


2π


∫ 2π


0


F (f(θ))dθ.


Notice that eimθ is an eigen function of ∆ = − d2


dx2 , one can view the above


results on L2[0, 2π] as a special cases of Szegö limit theorem for the Laplace-


Beltrami operator or more generally one can consider such results for pseudo


differential operators on compact manifolds.


We however consider such a result on ℓ2(Zd) in this paper. Consider H, πλ


on ℓ2(Zd) as stated earlier. Let A be a bounded, pseudo difference operator on
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ℓ(Zd) with symbol a(ξ, x). Then πλAπλ is a finite rank operator and hence its


spectral measure µλ can be defined as the sum of atomic measures supported


at its eigenvalues. (In [11], Zelditch considered a Schrödinger operator on Rn


of the form H = −1
2
∆+V , where V is a smooth positive function which grows


like V0|x|
k, k > 0.)


In the context of a pair of pseudo differential operators A,B with symbols


a(x, ξ), b(x, ξ) the Szegö type theorem is to compute a limit like


lim
λ→∞


Tr(πλf(B))


Tr(πλ)


where πλ is the orthogonal projection onto the spectral subspace {A ≤ λ} and


show that it equals


lim
λ→∞


∫


{(x,ξ):b(x,ξ)≤λ}
f(a(x, ξ)) dxdξ


∫


{(x,ξ):b(x,ξ)≤λ}
dxdξ


,


which is the main content of the theorems of Zelditch or Robert.


To see the ideas involved in proving such a theorem, suppose (Ω,B) is a


measurable space and X is a non-negative measurable function. Let µ, ν be σ-


finite measures on Ω. Define ΩR = {ω : X(ω) < R} and suppose 0 < µ(ΩR) <


∞ for all large R. Define µR, R ∈ R+ on B by


µR(A) =
ν(A ∩ ΩR)


µ(ΩR)
, A ∈ B.


The question is to find if the vague limits of µR exist. To answer this question


one has to show that for each continuous function f of compact support, the


limits


lim
R→∞


∫


f(ω)dµR(ω)


exist. Given the structure of µR this is written as the limit of ratios of two


distribution functions on R+ namely


lim
R→∞


∫


f(ω)dµR(ω) = lim
R→∞


νf ◦X−1((0, R))


µ ◦X−1((0, R))
,


where dνf(ω) = f(ω)dν(ω).


Such limits are computed using Tauberian theorems where some transforms


of these measures are considered and limits taken for such transforms. While


Zelditch [11] used the Laplace transform (via Karamata’s Tauberian theorem
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([10],p-192), Robert [6] suggested the use of Stieltjes transform (via Keldysh


Tauberian theorem[1]). The application of Keldysh theorem requires one of


the measures µ or ν to be absolutely continuous. We don’t have this feature


in our problem, so we use the Tauberian theorem of Grishin and Poedintseva


(theorem 8,[5]).


Thus using the Stieltjes transform method and an appropriate Tauberian


theorem, the limit on the right hand side of the above equation is the same as


the limit


lim
λ→∞


∫


1
(w+λ)k dν


f ◦X−1(w)
∫


1
(w+λ)kdµ ◦X−1(ω)


,


for some k > −1, which is nothing but


lim
λ→∞


∫


f(ω) 1
(X(ω)+λ)k dν(ω)


∫


1
(X(ω)+λ)k dµ(ω)


,


for the same k, showing the existence of which is relatively easier.


This type of procedure also works for pseudo differential operators but in-


volves a bit more analysis involved in passing between operators and their


symbols and one actually shows the existence of the limits


lim
λ→∞


∫


f(b(x, ξ)) 1
(a(x,ξ)+λ)k dxdξ


∫


1
(a(x,ξ)+λ)k dxdξ


.


We do such an analysis in this paper for pseudo difference operators and


in addition, our proof also requires the use of an improved version of Laptev-


Safarov [2], [3] type estimate which essentially says that as λ→ ∞, the quan-


tities Tr(πλf(B))
Tr(πλ)


and Tr(f(πλBπλ))
Tr(πλ)


are the same. . The Laptev-Safarov result


requires that the commutator [A,H ] is bounded. Such an assumption implies,


in our case, that v(ξ) is a positive constant which makes the problem trivial.


The improved version of Laptev-Safarov theorem in the following:


Theorem 1.1. Let S be a positive selfadjoint operator and T be a bounded


selfadjoint operator in a Hilbert space. Let πλ be the spectral projection of


S corresponding to the interval [0, λ] and N(λ) be the counting eigenvalues


function with


Nǫ(λ) = sup
β≤λ


[N(β) −N(β − ǫ)].
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Assume that the commutator [S, T ] satisfies T̃ = [S, T ](S+ I)−σ is bounded for


some 0 < σ < 1/2. Then for any ǫ > 0 and for any function f ∈ C2(K) the


following inequality holds.


|tr πλf(T)πλ − tr f(πλTπλ)| ≤ (2‖T‖2 + Cǫ‖T̃‖2)Nǫ(λ)λ2σ max
K


|f
′′


|,


where K = [−‖T‖, ‖T‖] and the constant Cǫ depends on ǫ only.


In this paper, in our main Theorem 1.2, we present a Szegö type theorem for


H given in the equation (1.1) and A a zeroth order pseudo difference operator


relative to the symbol of H (see the next section for the definitions involved in


pseudo difference operator theory).


Consider πλ, {ηj} associated with H defined in the paragraphs following


equation (1.1) and let f ∈ C(R). Then let


µλ(f) =
∑


λj≤λ


(f(A)ηj , ηj) = Tr(πλf(A)πλ), νλ(f) =
µλ(f)


Tr(πλ)


µ(f) = lim
λ→∞


1


vol(h(ξ, x) ≤ λ)
×


∑


h(ξ,x)≤λ


∫


f(a(ξ, x))d̃x,


(1.2)


where d̃x(= dx/(2π)d) is the normalized invariant measure on Td.


We fix a ρ, k in the equation (1.1). The definitions for pseudo difference


operators are collected in the next section.


Theorem 1.2. Consider the positive self adjoint operator H given in equa-


tion (1.1) on ℓ2(Zd). Let A be a zeroth order pseudo difference operator such


that [A,H ](H + I)−σ is bounded for some 0 < σ < 1
2
. For f ∈ C(R) define


µλ(f), νλ(f), µ(f) as in equation (1.2). Then we have


(1.3) lim
λ→∞


νλ(f) = µ(f).


Remark. We need the restriction on k to be in the interval (0, 2) so that


we can find a σ ∈ (0, 1
2
) (depending on k) for which the relative boundedness


condition in the theorem is satisfied.
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2. Preliminaries


In this section we provide few definitions and notations which we will be


using frequently. We set 〈ξ〉 = (1 + |ξ|2)
1


2 .


Definition 2.1. Let m ∈ R, 0 ≤ δ, κ ≤ 1. Then Sm
κ,δ(Z


d,Td) consisting of those


functions a(ξ, x) which are smooth in x for all ξ ∈ Zd satisfying


|∂α
x ∆γ


ξa(ξ, x)| ≤ Caαγm〈ξ〉m−κ|γ|+δ|α|,


where ∆γ
ξ = ∆γ1


ξ1
∆γ2


ξ2
· · · ,∆γd


ξd
and ∆ξj


u(ξ) = u(ξ + ej) − u(ξ) for every x ∈


Td, α, γ ∈ Nd
0 and ξ ∈ Zd.


We denote Sm
1,0(Z


d,Td) as simply Sm(Zd,Td) and call its elements as symbols


of orderm. If a ∈ Sm(Zd,Td) then the corresponding pseudo difference operator


A is given by


Au(ξ) =
1


(2π)d


∫


Tn


∑


η∈Zd


ei(ξ−η)·xa(ξ, x)u(η)dx.


More generally one can define a symbol class relative to another symbol. Let


h(ξ, x) be a smooth function on Zd × Td positive for large |ξ|. Then


Definition 2.2. Let m ∈ R. Then Sm(h,Zd,Td), the space of symbols of order


m relative to h consisting of those functions a(ξ, x) which are smooth in x for


all ξ ∈ Zd satisfying


|∂α
x ∆γ


ξa(ξ, x)| ≤ Caαγm(h(ξ, x))m−|γ|,


where ∆γ
ξ = ∆γ1


ξ1
∆γ2


ξ2
· · · ,∆γd


ξd
and ∆ξj


u(ξ) = u(ξ + ej) − u(ξ) for every x ∈


Td, α, γ ∈ Nd
0 and ξ ∈ Zd.


We will use the notation ∆ξj
for forward difference instead of ∆+


ξj
for con-


venience. Now we discuss some of the properties of pseudo difference calculus


which is developed by Ruzhansky and Turunen in [9]. The pseudo difference


operators are closed under composition.


Example 2.3. (i) The symbol a(x, ξ) = c
(1+|ξ|2)ℓ is in S0(Zd,Td) while the


symbol a1(x, ξ) = cos(ξ) is not in this symbol class, since the finite
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differences of a1 do not decay with |ξ|. Therefore also cos(ξ)
(1+|ξ|2)


is not in


this symbol class. However cos( 1
1+|ξ|2


) is in the symbol class.


(ii) Let p be a smooth function on Td and define a2 = a + p, with a given


above, then a2 ∈ S0(Zd,Td).


(iii) Let q(ξ) = |ξ|
m
2 . Then the symbol q ∈ Sm(Zd,Td).


If a and b are two symbols then we denote by ab̃ to mean that the difference


a−b ∈ S−∞(Zd,Td), which means that as a function of ξ it is finitely supported


in Zd. With this notation we recall a theorem on composition of two symbols


from [9].


Theorem 2.4. (Theorem 4.3, [9]) Let P and Q be pseudo difference operators


with symbols p(ξ, x) ∈ Sm1(Zd,Td) and q(ξ, x) ∈ Sm2(Zd,Td). Then PQ is a


pseudo difference operator with symbol r ∈ Sm1+m2(Zd,Td) and


r(ξ, x) ∼
∑


α


1


α!
∆α


ξ p(ξ, x)
∂α


∂xα
q(ξ, x)


where ∆γ
ξ = ∆γ1


ξ1
∆γ2


ξ2
· · · ,∆γd


ξd
.


Fix a ρ ∈ [0,∞), the operator H defined in equation (1.1) is a pseudo


difference operator with symbol h(ξ, x) = 2ρ
∑d


j=1 cosxj + V (ξ) + 2dρ. We


take a positive number λ and consider the pseudo difference operator H + λ


with symbol


(hλ,1)(ξ, x) = h(ξ, x) + λ.


Let hλ,m(ξ, x) denote the symbol of the operator (H + λ)m , the symbol


obtained using Theorem 2.4 . Then we find that for m = 2, the symbol hλ,2 of


the operator (H + λ)2 is given by


hλ,2(ξ, x) =
∑


α


1


α!
∆α


ξ hλ,1(ξ, x)
∂α


∂xα
hλ,1(ξ, x)


= (hλ,1)
2(ξ, x) +


∞
∑


|α|=1


1


α!
∆α


ξ hλ,1(ξ, x)
∂α


∂xα
hλ,1(ξ, x)
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But


hλ,2(ξ, x)


(hλ,1)2
≤ 1 + 2d


∞
∑


|α|=1


1


α!


|∆α
ξ hλ,1(ξ, x)|


h2
λ,1(ξ, x)


= 1 + 2d
∞


∑


|α|=1


1


α!
|
∑


γ≤α


(−1)|α−γ|


(


α


γ


)


|h0,1(ξ + γ, x)|


h2
λ,1(ξ, x)


≤ 1 + 2d
(e2 − 1)d


λ+ |ξ|k


By induction we extend the above argument to get the symbols associated with


higher powers of the operator H + λ.


We need to find symbols of inverses of pseudo difference operators. For large


λ the operator (H + λ) is invertible so the inverse operator (H + λ)−m is a


bounded pseudo difference operator with symbol hλ,−m and we describe now


the procedure to find an approximate expression for this symbol for large λ.


We note that the symbol hλ,−m+1 of the operator (H + λ)−m+1 is given by a


composition of the symbols hλ,−m and hλ,1 by using Theorem 2.4 and we can


write this as


(2.1) hλ,−m+1(ξ, x) = hλ,−m(ξ, x)hλ,1(ξ, x) + s1(ξ, x),


where s1(ξ, x) =
∑∞


|α|=1


1


α!
∆α


ξ hλ,−m(ξ, x)
∂α


∂xα
hλ,1(ξ, x). Since |


∂α


∂xα
hλ,1(ξ, x)| ≤


2d and |∆α
ξ hλ,1(ξ, x)| ≤


∑


γ≤γ


(


α
γ


)


|[h0,1(ξ + γ, x)]−m| (by Proposition 3.1 of


[9]), we have |s1(ξ, x)| ≤ 2d (e2−1)d


(λ+|ξ|k)m . Proceeding as above, the composition of


the pseudo difference operators corresponding to hλ,−m(ξ, x)hλ,1(ξ, x) (which


is the first term in the equation (2.1) ) and hλ,1(ξ, x) can be calculated with


reminder term s2(ξ, x). The remainder term s2(ξ, x) has a bound similar to


that of s1(ξ, x) for large λ. We repeat this process m − 1 times to obtain an


approximation for hλ,−1 which is the symbol of the operator (H + λ)−1.


Notice that the symbol obtained composing hλ,−m and hλ,m is


1 +
m


∑


j=1


sj(ξ, x)h
m−j
λ,1 (ξ, x), with |sj(ξ, x)| ≤ 2d


(e2 − 1)d


(λ+ |ξ|k)m
j = 1, 2, · · · , m.


For large λ, |
∑m


j=1 sj(ξ, x)h
m−j
λ,1 (ξ, x)| ≤ C


∑m
j=1


1
λj = λm−1


λm(λ−1)
.
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Thus for large λ we have the approximations for the symbols as stated in the


following remark.


Remark 2.5. For large λ and m ∈ Z
+ we have


(i) hλ,m(ξ, x) ∼ hm
λ,1[1 +O(λ−1)]


(ii) hλ,−m(ξ, x) ∼ h−m
λ,1 [1 +O(λ−1)]


It is clear from the pseudo difference calculus that if p(ξ, x) is the symbol of a


pseudo difference operator P , then the symbol of P 2 is NOT p(ξ, x)2. However


there is a pseudo difference operator with symbol p(ξ, x)2. So to take care of


such possibilities we denote henceforth the operator associated with a symbol


p(ξ, x) as pW when there is no operator already associated with the symbol.


We have the following proposition.


Proposition 2.6. Let H = ρ∆ + |ξ|k, 0 ≤ ρ ≤ 1, k > 0 on ℓ(Zd) and let


hλ,1(ξ, x) be the symbol of H + λ. Let A be a 0th order pseudo difference


operator. Let m be a positive integer. Then


(i)
|tr ((H + λ)−m) − tr (h−m


λ,1 )W|


|tr ((h(ξ, x) + λ)−m)w|
→ 0 as λ→ ∞


(ii)
|tr (A(H + λ)−m) − tr (A(h−m


λ,1 )W|


|tr (A(h−m
λ,1 )W|


→ 0 as λ→ ∞,


Proof.


Using remark 2.5(ii) we have for large λ,


(2.2) (hm
λ,1)


W (h−m
λ,1 )W = I +BW


λ (ξ, x),


where Bλ(ξ, x)


=
∑m


j=1 sj(ξ, x)h
m−j
λ,1 (ξ, x).


Thus we have ‖BW
λ f‖2 ≤


C


λ
‖f‖2 for f ∈ S(Zd). So ‖BW


λ f‖2 → 0 as λ→ ∞


and hence ‖BW
λ ‖ → 0 as λ→ ∞.


We have the identity,


I +BW
λ = (H + λ)m(H + λ)−m +BW


λ
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which can be written as, using equation (2.2) and the fact that for large λ,


(hm
λ,1)


W ≈ (H + λ)m.


(2.3) (h−m
λ,1 )W − (H + λ)−m = (H + λ)−mBW


λ


Now composing the operator A from the left in equation 2.3, applying trace


and dividing by trA(H + λ)−m) we have


|
trA(h−m


λ,1 )W) − trA(H + λ)−m)


tr A(H + λ)−m)
| = |


tr [A(H + λ)−m)Bw
λ ]


tr A(H + λ)−m)
| ≤ ‖Bw


λ ‖ → 0


as λ → ∞. This proves (ii). Now (i) is a particular case of (ii) by replacing A


with the identity operator on ℓ2(Zd). �


In the next lemma we give a technical result, whose proof is easy from the


equivalence of the norms |ξ|∞(= maxk |ξi|) and |ξ|2(=
√


∑d
i=1 ξ


2
i ) for ξ ∈ Zd,


that says that for the purposes of proving the main theorems it is irrelevant


which of these two norms are used to define |ξ| in the definition of the operator


H in equation (1.1).


Lemma 2.7. Let hr(ξ, x) = 2ρ


d
∑


j=1


cosxj+|ξ|kr+2dρ, 0 ≤ ρ ≤ 1, k > 0, xj ∈ T,


ξ ∈ Zd and r = 2,∞. Define


ϕr(λ) =
1


(2π)d


∑


∫


hr(ξ,x)≤λ


dx, r = 2,∞.


Then d−
d
2ϕ∞(λ) ≤ ϕ2(λ) ≤ ϕ∞(λ) for large λ.


Before going in to Szegö theorem, we will introduce few definitions and the-


orems which can be found in [5].


Definition 2.8. Let f be a positive function on the half line [0,∞). Let S


denote the set of numbers α for which there exist numbers M and R such that


f(tr) ≤ Mtα for t ≥ 1 and r ≥ R. Then α(f) = inf S is called The upper


Matushevskaya index of f .
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Let G denote the set of numbers ζ for which there exist numbers M and R


such that f(tr) ≥ Mtζ for t ≥ 1 and r ≥ R. Then β(f) = supG is called The


lower Matushevskaya index of f .


Theorem 2.9. ([5],Theorem 2) Let m > −1. Assume that ϕ is positive mea-


surable function on [0,∞) that does not vanish identically in any neighbourhood


of infinity. Let Φ(r) =


∫ ∞


0


1


(1 + t
r
)m
dϕ(t). Then the functions ϕ and Φ have


same growth at infinity if and only if β(ϕ) > −1 and α(ϕ) < m.


Definition 2.10. A function ϕ is said to be multiplicatively continuous at


infinity if it satisfies


lim
r→∞
τ→1


ϕ(τr)


ϕ(r)
= 1 and lim


τ→1
r→∞


ϕ(τr)


ϕ(r)
= 1.


Theorem 2.11. ([5],Theorem 8) Let ϕ and ψ be positive functions on [0,∞)


satisfying the following conditions:


(1) the functions ϕ and ψ do not vanish identically in any neighbourhood


of infinity;


(2) the function ϕ is multiplicatively continuous at infinity and β(ϕ) > −1;


(3) the function ψ is increasing;


(4) at least one of the inequalities α(ϕ) < m and α(φ) < m holds, where


m > −1;


(5) the functions


Φ(r) =


∫ ∞


0


1


(1 + u
r
)m
dϕ(u) and Ψ(r) =


∫ ∞


0


1


(1 + u
r
)m
dψ(u)


are finite and lim
r→∞


Ψ(r)


Φ(r)
= 1 then lim


r→∞


ψ(r)


ϕ(r)
= 1.


The above theorem derives asymptotic behaviour of ϕ, ψ from the asymptotic


behaviour of Φ,Ψ by assuming additional conditions on ϕ and ψ. we prove our


main theorem by using theorem 2.11 as an important tool.


Lemma 2.12. For ξ ∈ Zd, let |ξ| denote either of |ξ|∞, |ξ|2 and let h(ξ, x), φ(λ)


denote the corresponding hr(ξ, x), φr(λ), r = 2,∞ given in Lemma 2.7 with


0 ≤ ρ ≤ 1, k > 0. Then ϕ satisfies the following conditions:
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(1) the function ϕ do not vanish identically in any neighbourhood of infinity;


(2) the function ϕ is multiplicatively continuous at infinity and β(ϕ) > 1;


(3) α(ϕ) < m, where m ≥ d
k


+ 1.


Proof. We will give the proof for the case r = ∞ and the case r = 2 is similar.


We have by the definition of φ, setting c(x, ρ) = 2ρ
∑d


j=1 cos xj − 2dρ for ease


of writing,


(2π)d)φ(λ) =
∑


∫


V (ξ)≤(λ−c(x,ρ))+


dx.


Since V (ξ) = |ξ|k for large ξ, suppose it is so for |ξ| > R. Then the sum


∑


{ξ:V (ξ)≤(λ−c(x,ρ))+}


= O(Rd) +
∑


R<|ξ|≤(λ−c(x,ρ))
1
k
+


=
∑


|ξ|≤(λ−c(x,ρ))
1
k
+


+o(λ).


as λ goes to infinity. Therefore by direct computation,


(2π)d)ϕ(λ) =
∑


∫


|ξ|≤(λ−c(x,ρ))
1
k
+


dx+ o(λ)


=


∫


Td


(2[(λ− c(x, ρ))
1


k
+] + 1)ddx+ o(λ)


=


∫


Td


(2(λ− c(x, ρ))
1


k
+ − 2{(λ− c(x, ρ))


1


k
+} + 1)ddx+ o(λ)


= λ
d
k


∫


Td


(2(1 −
c(x, ρ)


λ
)


1


k
+ −


1


λ
{(λ− c(x, ρ))


1


k
+} +


1


λ
1


k


)ddx+ o(λ),(2.4)


where [p] denote the greatest integer function and {p} is the fractional part of


p.


Since the integrand is bounded for large λ and the integration is over a


compact set, it can be realised that ϕ(λ) behaves like constant times λ
d
k . We


need to show β(ϕ) > 1 and α(ϕ) < m, where m > −1. It is enough to show ϕ


and Φ have same growth at infinity. A straight forward computation gives


lim
r→∞


Φ(r)


ϕ(r)
= C


∫ ∞


0


u
d
k


(1 + u)m+1
du.


We notice that
u


d
k


(1 + u)m+1
converges if m ≥ d


k
+ 1. So if we choose m = d


k
+ 1,


we have 0 < lim
r→∞


Φ(r)


ϕ(r)
<∞. Thus ϕ and Φ have same growth at infinity. �
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For the following corollary recall the definition of ηj given before equation


(1.2) and take h(ξ, x) to be either of the hrs in the above lemma.


Corollary 2.13. Let


ψ(λ) =
∑


λj≤λ


〈ηj, ηj〉, ϕ(λ) =
1


(2π)d


∑


∫


h(ξ,x)≤λ


dx.


Then lim
λ→∞


ψ(λ)


ϕ(λ)
= 1


Proof. By lemma 2.12, it follows that ϕ(λ) satisfies all the assumptions of


theorem 2.11. Also Ψ(λ) = tr ((H + λ)−m) < ∞ and Φ(λ) = tr ([(h(ξ, x) +


λ)−m)]w) <∞. It follows from proposition 2.6 (ii) that lim
r→∞


Ψ(r)


Φ(r)
= 1 implying


lim
λ→∞


ψ(λ)


ϕ(λ)
= 1 �


3. Proof of Main Theorem


Our aim in this section is to prove the averaging theorem and then deduce


the Szegö Theorem from it. Before proving the averaging theorem, we need to


prove the following lemma.


Lemma 3.1. Let A be a bounded, positive self adjoint operator and H be pos-


itive self adjoint operator with discrete spectrum. Let EH(·) be the spectral


measure of H. Then


(i) tr (EH(·)A)


(ii) tr (EH(·))


are σ-finite measures.


Proof. The second item is obvious, the first item follows by writing tr (EH(·)A)


as tr (A
1


2 EH(·)A
1


2 ) using the properties of trace and the positivity of A. �


Lemma 3.2. Let a be a non-negative symbol in S0(Zd,Td) and A the associated


(0th order ) pseudo difference operator. Consider the operator H as in equation


(1.1) and its symbol h given there. Then
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(i) φ(λ) =
∑


∫


{(ξ,x):h(ξ,x)≤λ}
a(ξ, x) dx


(ii) ψ(λ) =
∑


∫


{(ξ,x):h(ξ,x)≤λ}
dx


are distribution functions of σ finite positive Borel measures.


Proof. We note that both φ and ψ are non-decreasing positive functions on


[0,∞) with φ(0) = ψ(0) = 0 and hence there are σ-finite measures with φ and


ψ as distribution functions. �


Now we are in a position to prove the averaging theorem.


Theorem 3.3. Let A be a bounded 0th order pseudo difference operator with


symbol a and H the operator given in equation (1.1) with k fixed. Suppose


m ≥ d
k


+ 1 and


lim
λ→∞


tr (A(H + λ)−m)


tr ((H + λ)−m)


exists (and nonzero) then the following limits exist and assumes the same value:


(i) lim
λ→∞


tr (πλAπλ)


rank πλ


(ii) lim
λ→∞


∑
∫


h(ξ,x)≤λ
a(ξ, x)d̃x


vol({(ξ, x) : h(ξ, x) ≤ λ})
where d̃x =


dx


2π
.


Proof. We first note that since a(ξ, x) is a bounded function, we can add


a constant c so that a(ξ, x) + c is positive and since the limits in items (i)


(respectively (ii)) exist iff the corresponding limits exit with A replaced by


A+ c (respectively a(ξ, x)+ c), we can take without loss of generality a(ξ, x) to


be a positive function and hence A to be a positive self adjoint bounded pseudo


difference operator in the argument below.


Assume that limλ→∞
tr (A(H+λ)−m)


tr (H+λ)−m exists (l 6= 0). By writing the spectral


theorem for H and using lemma 3.1, proposition 2.6 we have


lim
λ→∞


tr (A(H + λ)−m)


tr (H + λ)−m
= lim


λ→∞


tr (A
1


2 (H + λ)−mA
1


2 )


tr (H + λ)−m


= lim
λ→∞


∫ ∞


0


1


(x+ λ)m
d(tr (A


1


2 EH(x)A
1


2 )


∫ ∞


0


1


(x+ λ)m
d(tr (EH(x))


= l
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Then by using theorem 2.11 we have


(3.1) lim
λ→∞


tr (πλAπλ)
∑


∫


h(ξ,x)≤λ
d̃x


= l.


Again using proposition 2.6 we have


lim
λ→∞


tr (A(H + λ)−m)


tr (H + λ)−m
= lim


λ→∞


tr (A[(h+ λ)−m]W )


tr [(h + λ)−m]W


= lim
λ→∞


∑
∫ a(ξ, x)


(h(ξ, x) + λ)m
dx


∑
∫ 1


(h(ξ, x) + λ)m
dx


= lim
λ→∞


∫ ∞


0


1


(u+ λ)m
aoh−1(u)d(µoh−1)(u)


∫ ∞


0


1


(u+ λ)m
d(µoh−1)(u)


= l,


where µ is the product measure of counting measure on Zd and the normalized


invariant measure on Td. Again by using theorem 2.11 we have


(3.2) lim
λ→∞


∑
∫


h(ξ,x)≤λ
a(ξ, x)dx


∑
∫


h(ξ,x)≤λ
dx


= l.


By using equation (3.1) and (3.2), one has


lim
λ→∞


tr (πλAπλ)
∑


∫


h(ξ,x)≤λ
a(ξ, x)dx


= 1.


Then we have the equalities


lim
λ→∞


tr(πλAπλ)


rank πλ


= lim
λ→∞


tr (πλAπλ)
∑


∫


h(ξ,x)≤λ
a(ξ, x)dx


∑
∫


h(ξ,x)≤λ
a(ξ, x)dx


rank πλ


rank πλ
∑


∫


h(ξ,x)≤λ
dx


= lim
λ→∞


∑
∫


h(ξ,x)≤λ
a(ξ, x)dx


∑
∫


h(ξ,x)≤λ
dx


= lim
λ→∞


∑
∫


h(ξ,x)≤λ
a(ξ, x)d̃x


vol({(ξ, x) : h(ξ, x) ≤ λ})
.


�


Corollary 3.4. Let P be a polynomial on R. Then


lim
λ→∞


tr πλP(A)πλ


rank πλ
= lim


λ→∞


1


vol(h(ξ, x) ≤ λ)


∑


h(ξ,x)≤λ


∫


P (a(ξ, x))d̃x
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Proof. Notice that by the composition rule (theorem 2.4) of symbols, P (A) is a


pseudo difference operator with symbol P (a(ξ, x))+r−1(ξ, x), r−1 ∈ S−1(Zd,Td).


lim
λ→∞


tr πλP(A)πλ


rank πλ


= lim
λ→∞


1


vol(h(ξ, x) ≤ λ)


∑


h(ξ,x)≤λ


∫


P (a(ξ, x))d̃x


+ lim
λ→∞


1


vol(h(ξ, x) ≤ λ)


∑


h(ξ,x)≤λ


∫


r(ξ, x)d̃x


(3.3)


Since any r ∈ S−1(Zd,Td) satisfies |r(ξ, x)| ≤ C(〈ξ〉)−1, we have
∑


{ξ:h(ξ,x)≤λ}


C(〈ξ〉)−1


∫


∑


{ξ:h(ξ,x)≤λ}


d̃x
.


The sum in the denominator has a higher growth as a function of λ than that


in the numerator, so as λ goes to infinity this quantity goes to zero point wise


in x and hence also its integral over Td. �


Corollary 3.5. Letf ∈ C(R). Then
µλ(f)


rank πλ


has a limit µ(f) as λ → ∞,


where µ(f), µλ(f) are defined in equation (1.2).


Proof. We note that rank(πλ) = tr (πλ). The eigen-values of πλAπλ are


bounded by ‖A‖ for all λ. Also the values of a(ξ, x) are bounded by some


constant C (say). Therefore any continuous function f ∈ C(R) can be approx-


imated uniformly on I = {|x| ≤ max(‖A‖, C)} by a polynomial. Then


lim
λ→∞


µλ(f)


rank πλ
= lim


λ→∞


∑


λj≤λ(f(A)ηj, ηj)


rank πλ


= lim
n,λ→∞


∑


λj≤λ(Pn(A)ηj, ηj)


rank πλ


= lim
n,λ→∞


1


vol(h(ξ, x) ≤ λ)


∑


h(ξ,x)≤λ


∫


Pn(a(ξ, x))d̃x


= lim
λ→∞


1


vol(h(ξ, x) ≤ λ)


∑


h(ξ,x)≤λ


∫


f(a(ξ, x))d̃x.


�
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We now prove theorem 1.1 before taking up the proof of the main theorem.


Proof of Theorem 1.1:


The proof is almost identical to that of the Laptev-Safarov proof in [3] with


mild modification to accommodate for the relative boundedness of T̃ . We shall


indicate the main steps of the proof.


Assume that [S, T ] is relatively bounded with respect to S . To prove the


above result it is sufficient to estimate ‖(I −πλ)Tπλ‖HS, where ‖ · ‖HS denotes


the Hilbert-Schmidt norm. Since


‖(I − πλ)Tπλ‖
2
HS ≤ 2(‖(I − πλ)Tπλ−ǫ‖


2
HS + ‖(I − πλ)T (πλ − πλ−ǫ)‖


2
HS)


and


‖(I − πλ)T (πλ − πλ−ǫ‖HS ≤ ‖T‖2Nǫ(λ),


we need to estimate ‖(I − πλ)Tπλ−ǫ‖HS only.


So by definition


‖(I − πλ)Tπλ−ǫ‖
2
HS =


∑


λk≥λ


∑


λj<λ−ǫ


|〈Tfj, fk〉|
2.


Since


〈Tfj, fk〉 = (λk − λj)
−1(λj + 1)σ〈T̃ (S + I)−σfj , fk〉,


where T̃ = [T, S], we have,


‖(I − πλ)Tπλ−ǫ‖
2
HS =


∑


λk≥λ


∑


λj<λ−ǫ


|〈Tfj, fk〉|
2


=
∑


λk≥λ


∑


λj<λ−ǫ


|(λk − λj)
−2(λj + 1)2σ||〈T̃ (S + I)−σfj , fk〉|


2


≤
∑


k


∑


λj<λ−ǫ


|(λ− λj)
−2(λj + 1)2σ]|〈T̃ (S + I)−σfj , fk〉|


2


≤ ‖T̃ (S + I)−σ‖2(λ+ 1)2σ
∑


λj<λ−ǫ


|(λ− λj)
−2|


= ‖T̃ (S + I)−σ‖2(λ+ 1)2σ


K∗


∑


k=1


1


|λ− kǫ|2
#{λj ∈ ((k − 1)ǫ, kǫ)}
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where in the penultimate step we used λk > λ to estimate the term and made a


lower bound on the summand for each collection of λj ’s in intervals of length ǫ


and we have taken K∗ so that λ− ǫ
2
≥ K∗ > λ− ǫ. The maximum value of the


counting measure as k varies is then estimated by Nǫ(λ) and the remaining sum


is uniformly bounded since it is essentially
∑


k 1/k2 so the estimate becomes


Nǫ(λ). So,


‖(I − πλ)Tπλ−ǫ‖
2
HS ≤ C‖T̃ (S + I)−σ‖2N ǫ


2
(λ)(λ+ 1)2σ.


�


Proof of Theorem 1.2 :


We prove the theorem for the case ρ = 1, the other cases are similar. We


take S to be H and T to be A for applying theorem 1.1, by using which we see


that the theorem follows if we show


Nǫ(λ)λ2σ


rank πλ
→ 0 as λ → ∞, where Nǫ is taken as in theorem 1.1. Denote PH≤β


to be orthogonal projection onto the spectral subspace H ≤ β.


ThenN(β) = tr PH≤β , We show that PH≤β ≤ PV ≤β and PP≤β−ǫ ≥ PV ≤β−4d−ǫ.


To show PH≤β ≤ PV ≤β it is enough to show Hβ := PH≤βℓ
2(Zd) ⊂ PV ≤βℓ


2(Zd) :=


H̃β.


Let u ∈ Hβ. Then 〈V u, u〉Zd ≤ 〈Hu, u〉Zd ≤ β‖u‖2
Zd. So V ∈ H̃β . Similarly


PP≤β−ǫ ≥ PV ≤β−4d−ǫ can be shown.


We get using equation (2.4) and Corollary 2.13 that for large β,


tr (PH≤β − PH≤β−ǫ)


rank (πλ)
≤


tr (PH≤β) − tr (PV≤β−4d−ǫ)


rank (πλ)


≤
β


d
k − (β − 4d− ǫ)


d
k


rank (πλ)


=
β


d
k − (β − 4d− ǫ)


d
k


λ
d
k


≤ C/λ,


where for the last estimate we use the binomial series to estimate the numerator


to have growth atmost of the order of λd/k−1.
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Then it follows that for 0 ≤ σ < 1
2
,


Nǫ(λ)(λ+ 1)2σ


Tr(πλ)
→ 0, as λ→ ∞.


�


Remark 3.6. The above limits are the same if A is replaced by A+B for any


compact operator B on ℓ2(Zd).


Proof. To prove the above result, enough to show limλ→∞
tr (πλA


nπλ)


tr (πλ)
=


limλ→∞
tr (πλ(A + B)nπλ)


tr (πλ)
for any compact operator B on ℓ2(Zd). Notice that


(A+B)n = An+ terms with factor ApBn−p or BpAn−p where p ∈ {1, 2 · · · , n}.


Since the class of compact operators form a two sided ideal of the class of


bounded operators (A + B)n = An+ a compact operator. We show that for


any compact operator T , limλ→∞
tr (T(H+λ)−m)
tr ((H+λ)−m)


= 0.


Since T is a compact operator, for given ǫ > 0 there exist a finite rank


operator Tn such that ‖Tn − T‖ < ǫ for n ≥ N0. Consider


tr (T(H + λ)−m)


tr ((H + λ)−m)
=


tr (Tn(H + λ)−m)


tr ((H + λ)−m)
+


tr ((T − Tn)(H + λ)−m)


tr ((H + λ)−m)


≤
tr (Tn(H + λ)−m)


tr ((H + λ)−m)
+ ‖T − Tn‖


≤
tr (Tn(H + λ)−m)


tr ((H + λ)−m)
+ ǫ


We will show that
tr (T(H + λ)−m)


tr ((H + λ)−m)
→ 0


for each fixed finite rank T . Then the result follows.


Since T is a finite rank operator, its range is finite dimensional. Let {ψn :


n = 1, . . . , N} be an orthonormal basis for the range of T . Then we have, using


the positivity of H for the last inequality,


|tr (T(H + λ)−m)| = |
∑N


n=1〈(H + λ)−m)ψn, Tψn〉|


= |
∑N


n=1


∫


Spec(H)
1


(x+λ)m d〈ψn, EH(x)Tψn〉| ≤
N‖T‖
λm .


19







So for such a finite rank T


|
tr (T(H + λ)−m)


tr ((H + λ)−m)
| ≤ CN


1


λmtr ((H + λ)−m)


= CN
1


λm
∑


i∈N


1


(λi + λ)m


≤ CN
1


λm
∑


λi≤λ


1


(λi + λ)m


≤
CN2m


N(λ)


where N(λ) is the total number of eigen values of H in (0, λ) which goes to ∞


as λ goes to ∞, so this term goes to zero for each fixed N as λ→ ∞.


Therefore limλ→∞
tr (A(H+λ)−m)
tr ((H+λ)−m)


= limλ→∞
tr (Ã(H+λ)−m)
tr ((H+λ)−m)


, where Ã = A + B.


Now applying theorem lemma 3.1, proposition 2.6 and theorem 2.11 individu-


ally to both the limits, we have limλ→∞
tr (πλA


nπλ)


tr (πλ)
= limλ→∞


tr (πλ(Ã)nπλ)


tr (πλ)
.


�


Example 3.7. Let W be a bounded function on Zd. Let A be the operator of


multiplication by the functionW on ℓ2(Zd) andH = ρ∆+|ξ|k, 0 ≤ ρ ≤ 1, k > 0


with ∆ defined as in the equation 1.1. Then it is clear that H is a positive


operator and a simple estimate of the resolvent shows that it has purely discrete


spectrum.


The commutator [A,H ] = [∆, V ] is bounded and hence also [A,H ](H+ I)−σ


for any σ > 0. Therefore in this case the conclusions of theorems 1.1 is valid.


However without additional conditions on W the theorem 1.2 is not clear.


Example 3.8. Let W and ∆ be defined as in the previous example. Let


A = ∆ + W and H = ρ∆ + |ξ|k for 0 ≤ ρ, 0 < k < 2. Then the com-


mutator [A,H ] = [A, ρ∆] + [A, |ξ|k] turns out to be [∆, |ξ|k] up to an addi-


tion of a bounded operator. This term behaves like C|ξ|k−1. If k ≤ 1, this


is bounded. On the other hand we have as operators [A,H ](H + I)−σ ∼
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|ξ|k−1(|ξ|k)−σ + Bounded operator. Therefore the condition for the bound-


edness of this operator is that k− 1− kσ ≤ 0. Clearly if k ∈ (0, 2) we can find


a σ ∈ (0, 1
2
) so that this condition is satisfied, while for k ≥ 2 we cannot find


any σ ∈ (0, 1/2). This forces the condition on k.


Example 3.9. Let W be defined as before. Let A = P (∆) + V and H =


ρ∆ + |ξ|k for 0 ≤ ρ, 0 < k < 2, where P (∆) is a real polynomial in ∆. Then


by using the previous argument we have [A,H ](H + I)−σ ∼ |ξ|k−1(H + I)−σ+


is a bounded operator for some σ in (0, 1
2
) if k ∈ (0, 2).


References


1. Keldysh, M. V. On a Tauberian theorem, Trudy Mat. Inst. Stekloc. 38, (1951), 77-86.
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7. G. Szegö, On certain Hermitian forms associated with the Fourier series if positive


function, comm. Sem. Math. Univ. Lund. (1952), 228–238.
8. M. Taylor, ‘’Pseudo differential operators,“Princeton univ. press, Princeton, 1980.
9. M. Ruzhansky and V. Turunen, Quantization of Pseudo-differential operators on the


torus, Journ. Four. Anal. Appl., 16(2010), 943-982.
10. D. Widder, The Laplace Transform, Princeton Univ. press (1941).
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