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ANDERSON LOCALIZATION FOR A CLASS OF MODELS


WITH A SIGN-INDEFINITE SINGLE-SITE POTENTIAL


VIA FRACTIONAL MOMENT METHOD


ALEXANDER ELGART, MARTIN TAUTENHAHN, AND IVAN VESELIĆ


Abstract. A technically convenient signature of Anderson localization
is exponential decay of the fractional moments of the Green function
within appropriate energy ranges. We consider a random Hamiltonian
on a lattice whose randomness is generated by the sign-indefinite single-
site potential, which is however sign-definite at the boundary of its sup-
port. For this class of Anderson operators we establish a finite-volume
criterion which implies that above mentioned the fractional moment de-
cay property holds. This constructive criterion is satisfied at typical
perturbative regimes, e. g. at spectral boundaries which satisfy ’Lifshitz
tail estimates’ on the density of states and for sufficiently strong dis-
order. We also show how the fractional moment method facilitates the
proof of exponential (spectral) localization for such random potentials.


1. Introduction


The addition of disorder can have a profound effect on the spectral and
dynamical properties of a self adjoint differential operator. In general terms,
the effect is that in certain energy ranges the absolutely continuous spectrum
of the Laplacian that describes the perfect crystal may be modified to consist
of a random dense set of eigenvalues associated with localized eigenfunctions.
Thus it affects various properties of the corresponding model: time evolution
(non–spreading of wave packets), conductivity (in response to electric field),
and Hall currents (in the presence of both magnetic and electric field). This
phenomenon, known as Anderson localization, was initially discussed in the
context of the conduction properties of metals, but the mechanism is of
relevance in a variety of other situations.


The first breakthrough in understanding the spectral properties of the
multidimensional Anderson model is associated with the seminal work of
Fröhlich and Spencer [12] that introduced the method of the multiscale anal-
ysis (MSA). Ten years later, Aizenman and Molchanov [4] realized how one
can greatly streamline the proof of the spectral localization for a standard
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Anderson model, deriving the machinery of what is now known as the frac-
tional moment method (FMM). Both methods were subsequently improved
and generalized in a number of papers, e.g. [11, 27, 13, 5, 8, 2, 3].


The standard Anderson model assumes that the values of the random
potential at different sites of the lattice are uncorrelated. Although it was
realized early on that both MSA and FMM work well for a more general class
of models where some correlations are permitted, the allowed randomness
features the so called monotonicity property. The simplest example of such
correlated randomness is an alloy-type model with a fixed sign single-site
potential of finite support. The hallmark of the monotone alloy-type model
is a regularity of the Green function under the local averages which leads to
the Wegner estimate used in MSA and to the a-priori bound, used in FMM.
Here the term a-priori bound means that the average of an fractional power
of the elements of the Green’s function is uniformly bounded.


There is no physically compelling reason for a random tight binding
model to have such monotonicity property, and one can ask the natural
question whether the Anderson localization can be established if one re-
linquishes it altogether. For alloy-type models on the continuum with a
sign-changing single-site potential localization has been derived via MSA,
e. g. in [16, 24, 18, 17], see also [22]. All these results are build on recov-
ering the monotonicity, one way or another. The recent preprint of Krüger
[19] establishes Anderson localization for non-monotone models on the lat-
tice. His proof relies on MSA and on the method of Bourgain [7] to obtain
certain Wegner-like estimates. The theorems of [19] address the strong dis-
order regime only, although it is likely that they hold (as usual for the MSA
method) in all situations where an appropriate initial scale decay estimate
for the resolvent can be established. In this paper we derive a general finite-
volume criterion applicable to the strong disorder as well as Lifshitz tail
regimes, and apply it to establish the Anderson localization in the former
one.


In this paper we investigate how far one can push the FMM for the non
monotone discrete alloy-type model. In general, we don’t expect that the
regularity of the Green function under the local averages survives the com-
plete relaxation of the monotonicity condition. It turns out, however, that
just monotonicity of the single-site potential at the boundary of its support
is sufficient to initiate FMM. This condition allows us to combine monotone
as well as non-monotone techniques to establish the local a-priori bound
of the fractional moment of the Green function, which is a cornerstone of
FMM.


As a consequence, we obtain a number of results that are parallel to
the ones established in the monotone case. In particular, we develop finite
volume criterion: A set of certain conditions which when satisfied by the
alloy-type model obtained by restricting the full operator to some finite
volume are sufficient to deduce the exponential decay of the typical Green
function.
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2. Model and results


Let d ≥ 1. For x ∈ Zd we recall the following standard norms |x|1 =∑d
i=1|xi| and |x|∞ = max{|x1|, . . . , |xd|}. For Γ ⊂ Zd we introduce the


Hilbert space `2(Γ) = {ψ : Γ → C :
∑


k∈Γ|ψ(k)|2 < ∞} with inner prod-


uct 〈φ, ψ〉 =
∑


k∈Γ φ(k)ψ(k). On `2(Zd) we consider the discrete random
Schrödinger operator


Hω := −∆ + λVω, λ > 0. (1)


Here, ω is an element of the probability space specified below, ∆ : `2
(
Zd
)
→


`2
(
Zd
)


denotes the discrete Laplace operator and Vω : `2
(
Zd
)
→ `2


(
Zd
)


is
a random multiplication operator. They are defined by


(∆ψ) (x) :=
∑
|e|1=1


ψ(x+ e) and (Vωψ) (x) := Vω(x)ψ(x)


and represent the kinetic energy and the random potential energy, respec-
tively. The parameter λmodels the strength of the disorder. We assume that
the probability space has a product structure Ω :=×k∈Zd R and is equipped
with the probability measure P(dω) :=


∏
k∈Zd µ(dωk) where µ is a probabil-


ity measure on R. Each element ω of Ω may be represented as a collection
{ωk}k∈Zd of real numbers, being the realization of a field of independent
identically distributed (i. i. d.) random variables, each distributed according
to µ. The symbol E{·} denotes the expectation with respect to the proba-
bility measure, i. e. E{·} :=


∫
Ω(·)P(dω). For a set Γ ⊂ Zd, EΓ{·} denotes the


expectation with respect to ωk, k ∈ Γ. That is, EΓ{·} :=
∫


ΩΓ
(·)
∏
k∈Γ µ(dωk)


where ΩΓ :=×k∈Γ R. Let the single-site potential u : Zd → R be a function
with finite and non-empty support Θ := suppu = {k ∈ Zd : u(k) 6= 0}. We
assume that the random potential Vω has an alloy-type structure, i. e. the
potential value


Vω(x) :=
∑
k∈Zd


ωku(x− k)


at a lattice site x ∈ Zd is a linear combination of the i. i. d. random variables
ωk, k ∈ Zd, with coefficients provided by the single-site potential. For this
reason we call the Hamiltonian (1) a discrete alloy-type model. The function
u(· − k) may be interpreted as a finite range potential associated to the
lattice site k ∈ Zd. We assume (without loss of generality) that 0 ∈ Θ.


Notice that the single-site potential u may change its sign. As a conse-
quence the quadratic form associated to Hω does not necessarily depend in
a monotone way on the random parameters ωk, k ∈ Zd. However, for our
main result we have to assume that u has fixed sign at the boundary of Θ,
see Assumption (A). For Λ ⊂ Zd we denote by ∂iΛ = {k ∈ Λ : #{j ∈ Λ :
|k − j|1 = 1} < 2d} the interior boundary of Λ and by ∂oΛ = ∂iΛc the
exterior boundary of Λ. Here Λc = Zd \ Λ denotes the complement of Λ.


Assumption (A).
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(A1) The measure µ has a bounded, compactly supported density ρ.
(A2) The function u satisfies u(k) > 0 for all k ∈ ∂iΘ.


Remark 2.1. (i) This assumption plays an instrumental role in the proof of
the uniform boundedness of fractional moments of the Green’s function
(a-priori bound), in the particular form presented in Lemma 3.1, and
thus also of our main result, Theorem 2.3.


(ii) Note that for models on Z Assumption (A2) can always be achieved
by taking a linear combination of several translates of the single site
potential. With these linear combinations one can work similarly as
with the original single site potential, cf. Section 5 in [10]. Actually,
in the one-dimensional setting a particularly transparent version of
our proof is available: The decoupling arguments of Section 4 in the
present paper are replaced by Lemma 3.3 of [10] which uses the special
structure of the relevant resolvent matrix elements.


(iii) For the purpose of comparison we present a different version of the
a-priori bound in the Appendix. It requires much milder conditions
on u. Unfortunatey, we do not see at the moment how it can be used
to complete the proof of exponential decay of fractional moments. See
the Appendix for more details.


For the operator Hω in (1) and z ∈ C\σ(Hω) we define the corresponding
resolvent by Gω(z) = (Hω − z)−1. For the Green function, which assigns to
each (x, y) ∈ Zd×Zd the corresponding matrix element of the resolvent, we
use the notation


Gω(z;x, y) :=
〈
δx, (Hω − z)−1δy


〉
.


For Γ ⊂ Zd, δk ∈ `2(Γ) denotes the Dirac function given by δk(k) = 1 for
k ∈ Γ and δk(j) = 0 for j ∈ Γ \ {k}. Let Γ1 ⊂ Γ2 ⊂ Zd. We define the


operator PΓ2
Γ1


: `2(Γ2)→ `2(Γ1) by


PΓ2
Γ1
ψ :=


∑
k∈Γ1


ψ(k)δk.


Note that the adjoint (PΓ2
Γ1


)∗ : `2(Γ1)→ `2(Γ2) is given by


(PΓ2
Γ1


)∗φ =
∑
k∈Γ1


φ(k)δk.


If Γ2 = Zd we will drop the upper index and write PΓ1 instead of PZd


Γ1
. For an


arbitrary set Γ ⊂ Zd we define the restricted operators ∆Γ, VΓ, HΓ : `2(Γ)→
`2(Γ) by ∆Γ := PΓ∆P ∗Γ , VΓ := PΓVωP


∗
Γ and


HΓ := PΓHωP
∗
Γ = −∆Γ + VΓ.


Furthermore, we defineGΓ(z) := (HΓ−z)−1 andGΓ(z;x, y) :=
〈
δx, GΓ(z)δy


〉
for z ∈ C \ σ(HΓ) and x, y ∈ Γ. If Λ ⊂ Zd is finite, |Λ| denotes the number
of elements of Λ.
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In order to formulate our main results, let us define the specific localiza-
tion property we are interested in.


Definition 2.2. Let I ⊂ R. A selfadjoint operator H : `2(Zd) → `2(Zd)
is said to exhibit exponential localization in I, if the spectrum of H in I is
only of pure point type, i. e. σc(H) ∩ I = ∅, and the eigenfunctions of H
corresponding to the eigenvalues in I decay exponentially. If I = R, we say
that H exhibits exponential localization.


Our results are the following theorems.


Theorem 2.3. Let Γ ⊂ Zd, s ∈ (0, 1/3) and suppose that Assumption (A)
is satisfied. Then for a sufficiently large λ there are constants µ,A ∈ (0,∞),
depending only on d, ρ, u, s and λ, such that for all z ∈ C \ R and all
x, y ∈ Γ


E
{
|GΓ(z;x, y)|s/(2|Θ|)


}
≤ Ae−µ|x−y|∞ .


For x ∈ Zd and L > 0, we denote by ΛL,x = {k ∈ Zd : |x− k|∞ ≤ L} the
cube of side length 2L+ 1 centred at x.


Theorem 2.4. Let s ∈ (0, 1), C, µ,∈ (0,∞), and I ⊂ R be a interval.
Assume that


E
{
|GΛL,k


(E + iε;x, y)|s
}
≤ Ce−µ|x−y|∞


for all k ∈ Zd, L ∈ N, x, y ∈ ΛL,k, E ∈ I and all ε ∈ (0, 1]. Then Hω


exhibits exponential localization in I for almost all ω ∈ Ω.


Let us emphasize that this result does not rely on Assumption (A).
Putting together Theorem 2.3 and Theorem 2.4, we obtain exponential lo-
calization in the case of sufficiently large disorder.


Theorem 2.5. Let Assumption (A) be satisfied and λ sufficiently large.
Then Hω exhibits exponential localization for almost all ω ∈ Ω.


Theorem 2.3 concerns the exponential decay of an averaged fractional
power of the Green function. It applies to arbitrary finite Θ ⊂ Zd assuming
that u has fixed sign on the interior vertex boundary of Θ. In Section 5 we
provide a new variant of the proof that the exponential decay of an averaged
fractional power of the Green function imply exponential localization, which
is formulated in Theorem 2.4.


Theorem 2.3 and 2.5 concern localization properties in the strong disorder
regime. We also prove a so called finite volume criterion, which can be
used to establish exponential decay of an averaged fractional power of the
Green function at typical perturbative regimes. In particular, Theorem 2.3
follows from the finite volume criterion using the a-priori bound provided in
Section 3.


Theorem 2.6 (Finite volume criterion). Suppose that Assumption (A) is
satisfied, let Γ ⊂ Zd, z ∈ C \ R with |z| ≤ m and s ∈ (0, 1/3). Then there
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exists a constant Bs which depends only on d, ρ, u, m, s, such that if the
condition


bs(λ, L,Λ) :=
BsL


3(d−1)Ξs(λ)


λs/|Θ|


∑
w∈∂oWx


E
{
|GΛ\Wx


(z;x,w)|s/(2|Θ|)
}
< b


is satisfied for some b ∈ (0, 1), arbitrary Λ ⊂ Γ, and all x ∈ Λ, then for all
x, y ∈ Γ


E
{
|GΓ(z;x, y)|s/(2|Θ|)


}
≤ Ae−µ|x−y|∞ .


Here


A =
CsΞs(λ)


b
and µ =


|ln b|
L+ diam Θ + 2


,


with Cs inherited from the a-priori bound (Lemma 3.1). Here, the set Wx


is an certain annulus around x, defined precisely in Eq. (15) and the text
below, L ≥ diam Θ + 2 is some fixed number determining the size of the
annulus Wx, and Ξs(λ) = max{λ−s/2|Θ|, λ−2s}.


Remark 2.7 (Lifshitz-tail regime). Apart from the strong disorder regime, a
typical situation where the finite volume criterion can be verified are ener-
gies in a sufficiently small neighbourhood of a fluctuation boundary of the
spectrum.


By this we mean that there is an energy E0 ∈ R, a neighbourhood size
ε0 > 0, and a diameter scaling exponent D ∈ N such that for any power
k ∈ N there exists a finite Ck ∈ N and a scale L0 ∈ N, such that


∀ L > L0, ε ∈ (0, ε0) : P
{
ω | dist(σ(HΛL,0


), E0) < ε
}
≤ Ck εk LD. (2)


In this situation one can use the a-priori bound in Lemma 3.1 and Combes-
Thomas bound [9] along the lines of the argument carried out in Section
5 of [2] to establish the hypothesis of Theorem 2.6. Here a few more com-
ments are in order, since our model does not satisfy the stochastic regularity
assumptions on the random potential required in [2]. Combes-Thomas es-
timates are deterministic in nature, thus they remain unaffected by this
change. The mentioned regularity assumptions are needed to make sure
that an a-priori bound holds and that potential values at large distances are
independent. These two facts hold (for other reasons) for models considered
here. (Also, for our finite volume criterion one needs a larger value of ξ
compared to Theorem 5.3 in [2]. This is no obstacle since in the Lifshitz-
tail regime one can choose arbitrarily large ξ, by taking the power k in (2)
appropriately large.)


Our paper is organized as follows. In Section 3 we show the boundedness
of an averaged fractional power of the Green function, which is an important
ingredient of the finite volume criterion proven in Section 4. In Section 4
we prove the finite volume criterion and Theorem 2.3 which follows from
the a-priori bound and the finite volume criterion. In Section 5 we establish
Theorems 2.4 and 2.5.
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3. Boundedness of fractional moments


In this section we prove the boundedness of an averaged fractional power
of the Green function. The right hand side of the estimate depends in a
quantitative way on the disorder. In particular it implies that the bound gets
small in the high disorder regime. The estimate on the fractional moment
of the Green function is used iteratively in the next section, where we prove
exponential decay of the Green function.


In this section we consider the situation when Assumption (A) holds. Let
us define R = max{|inf supp ρ|, |sup supp ρ|} where ρ is the density of µ. Our
main result of this section is Lemma 3.1. In the proof we will use several
lemmata whose formulation is postponed to the second part of this section.


First, let us introduce some more notation. For x ∈ Zd we denote by
N (x) = {k ∈ Zd : |x − k|1 = 1} the neighborhood of x. For Λ ⊂ Zd and
x ∈ Zd we define Λ+ = Λ ∪ ∂oΛ, Λx = Λ + x = {k ∈ Zd : k − x ∈ Λ} and
uΛ


min = mink∈Λ|u(k)|.


Lemma 3.1 (A-priori bound). Let Assumption (A) be satisfied, Γ ⊂ Zd,
m > 0 and s ∈ (0, 1).


(a) Then there is a constant Cs, depending only on d, ρ, u, m and s, such
that for all z ∈ C \ R with |z| ≤ m, all x, y ∈ Γ and all bx, by ∈ Zd with
x ∈ Θbx and y ∈ Θby


EN
{∣∣GΓ(z;x, y)


∣∣s/(2|Θ|)} ≤ CsΞs(λ),


where Ξs(λ) = max{λ−s/(2|Θ|), λ−2s} and N = {bx, by}∪N (bx)∪N (by).
(b) Then there is a constant Ds, depending only on d, ρ, u and s, such that


for all z ∈ C \ R, all x, y ∈ Γ and all bx, by ∈ Zd with


x ∈ Θbx ∩ Γ ⊂ ∂iΘbx and y ∈ Θby ∩ Γ ⊂ ∂iΘby


we have


E{bx,by}
{∣∣GΓ(z;x, y)


∣∣s} ≤ Dsλ
−s.


Proof. First we prove (a). Fix x, y ∈ Γ and choose bx, by ∈ Zd in such a way
that x ∈ Θbx and y ∈ Θby . This is always possible, and sometimes even with
a choice bx = by. However, we assume bx 6= by. The case bx = by is similar
but easier. Let us note that Θbx and Θby are not necessarily disjoint. We


apply Lemma 3.8 with Λ1 = Θbx ∪Θby ∩ Γ and Λ2 = Λ+
1 ∩ Γ and obtain


PΓ
Λ1


(HΓ−z)−1(PΓ
Λ1


)∗ =
(
HΛ1−z+PΛ1∆P ∗∂oΛ1


(K−z)−1P∂oΛ1∆P ∗Λ1


)−1
(3)


where


K = H∂oΛ1 − P
Λ+


1
∂oΛ1


B
Λ+


1
Γ (P


Λ+
1


∂oΛ1
)∗.


We note that B
Λ+


1
Γ depends only on the potential values Vω(k), k ∈ Γ\Λ+


1 and
is hence independent of ωk, k ∈ {bx, by}∪N (bx)∪N (by). We also note that K
is independent of ωbx and ωby , and that the potential values Vω(k), k ∈ ∂oΛ1
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depend monotonically on ωk, k ∈ N (bx)∪N (by) =: N ′, by Assumption (A).
More precisely, we can decompose K : `2(∂oΛ1)→ `2(∂oΛ1) according to


K = A+ λ
∑
k∈N ′


ωkVk


with some A, Vk : `2(∂oΛ1) → `2(∂oΛ1) and the properties that A is inde-
pendent of ωk, k ∈ N ′, and V :=


∑
k∈N ′ Vk is diagonal and strictly positive


definite with V ≥ u∂
iΘ


min. We fix v ∈ N ′ and obtain with the transformation
ωv = ζv and ωi = ζv + ζi for i ∈ N ′ \ {v} for all t ∈ (0, 1)


EN ′
{∥∥(K − z)−1


∥∥t} =


∫
[−R,R]|N′|


∥∥(A− z + λ
∑
k∈N ′


ωkVk)
−1
∥∥t ∏


k∈N ′
ρ(ωk)dωk


≤ ‖ρ‖|N ′|−1
∞


∫
[−S,S]|N′|


∥∥(Ã+ ζvλV )−1
∥∥tρ(ζv)dζv


∏
i∈N ′\{v}


dζi (4)


where S = 2R and Ã = A − z + λ
∑


k∈N ′\{v} ζiVi. The monotone spectral


averaging estimate in Lemma 3.6 gives for t ∈ (0, 1)


EN ′
{∥∥(K − z)−1


∥∥t} ≤ ‖ρ‖|N ′|−1
∞ (4R)|N


′|−1(CW|∂oΛ1|‖ρ‖∞)t


(u∂
iΘ


minλ)t(1− t)
.


Hence there is a constant C1(t) depending only on ρ, u, d, Λ1 and t, such
that


EN ′
{∥∥(K − z)−1


∥∥t} ≤ C1(t)


λt
. (5)


We use the notation uj for the translates of u, i. e. uj(x) = u(x − j) for


all j, x ∈ Zd, as well as for the corresponding multiplication operator. The
operator HΛ1 = −∆Λ1 + VΛ1 can be decomposed in HΛ1 = Ã′ + λωbxVx +
λωbyVy, where the multiplication operators Vx, Vy : `2(Λ1) → `2(Λ1) are


given by Vx(k) = ubx(k) and Vy(k) = uby(k), and where Ã′ = −∆Λ1 +
λ
∑


k∈Zd\{bx,by} ωkuk. Notice that Vx is invertible on Θbx and Vy is invertible


on Θby . Hence there exists an α ∈ (0, 1] such that Vx + αVy is invertible on
Λ1. By Eq. (3) and this decomposition we have for all t ∈ (0, 1)


E := E{bx,by}
{∥∥PΓ


Λ1
(HΓ − z)−1(PΓ


Λ1
)∗
∥∥t/|Λ1|


}
=


∫ R


−R


∫ R


−R


∥∥(A′ + λωbxVx + λωbyVy)
−1
∥∥t/|Λ1|ρ(ωbx)ρ(ωby)dωbxdωby ,


where


A′ = Ã′ − z + PΛ1∆P ∗∂oΛ1
(K − z)−1P∂oΛ1∆P ∗Λ1


.
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Notice that Ã′ and K are independent of ωbx and ωby . Set V := Vx+αVy. We
use the transformation ωbx = ζx, ωby = αζx + ζy and obtain by Lemma 3.4


E ≤ ‖ρ‖∞
∫ 2R


−2R


∫ 2R


−2R


∥∥(A′ + ζyλVy + ζxλV )−1
∥∥t/|Λ1|ρ(ζx)dζxdζy


≤ ‖ρ‖∞
∫ 2R


−2R


‖ρ‖t∞
(
‖A′ + ζyλVy‖+ 2Rλ‖V ‖


)t(|Λ1|−1)/|Λ1|


tt2−t(1− t)λt|detV |t/|Λ1|
dζy


≤
4R‖ρ‖t+1


∞
(
‖A′‖+ 2Rλ‖Vy‖+ 2Rλ‖V ‖


)t(|Λ1|−1)/|Λ1|


tt2−t(1− t)λt|detV |t/|Λ1|
.


The norm of A′ can be estimated as


‖A′‖ ≤ 2d+ (|Θ| − 1)‖u‖∞ +m+ (2d)2‖(K − z)−1‖.
For the norm of Vy and V we have ‖Vy‖ ≤ ‖u‖∞ and ‖V ‖ ≤ 2‖u‖∞. To
estimate the determinant of V we set vi = (u(i − bx), u(i − by))T ∈ R2 for
i ∈ Λ1, and r = (1, α)T ∈ R2. Then,


|detV | =
∏
i∈Λ1


∣∣u(i− bx) + αu(i− by)
∣∣ =


∏
i∈Λ1


‖vi‖
∣∣〈r, vi/‖vi‖〉∣∣.


Since we can choose α ∈ (0, 1] in such a way that the distance of r to each
hyperplane Hi = {x1, x2 ∈ R : u(i − bx)x1 + u(i − by)x2 = 0}, i ∈ Λ1, is at


least d0 =
√


2/(4(|Λ1|+ 1)), we conclude using ‖vi‖ ≥
√


2uΘ
min


|detV | ≥
∏
i∈Λ1


‖vi‖d0 ≥
(


uΘ
min


2(|Λ1|+ 1)


)|Λ1|


.


Putting all together we see that there are constants C2(t), C3(t) and C4(t)
depending only on ρ, u, d, m, Λ1 and t, such that


E ≤ C2(t)


λt
+
C3(t)


λt/|Λ1|
+
C4(t)


λt
‖(K − z)−1‖t


|Λ1|−1
|Λ1| . (6)


If we average with respect to ωk, k ∈ N (bx) ∪N (by) we obtain by Eq. (5)


EN (bx)∪N (by)


{
E
}
≤ C2(t)


λt
+


C3(t)


λt/‖Λ1‖
+
C4(t)C1(t(|Λ1| − 1)/|Λ1|)


λtλt(|Λ1|−1)/|Λ1|
.


Notice that 1 ≤ |Λ1| ≤ 2|Θ|. Now we choose t = s|Λ1|/(2|Θ|) and eliminate
Λ1 from the constants C1(t), C2(t), C3(t) and C4(t) by maximizing them
with respect to |Λ1| ∈ {1, . . . , 2|Θ|}. We obtain that there are constants


C̃1(s), C̃2(s) and C̃3(s), depending only on ρ, u, d, m, and s, such that


EN
{∥∥PΓ


Λ1
(HΓ − z)−1(PΓ


Λ1
)∗
∥∥ s


2|Θ|
}
≤ C̃1(s)


λ
s
|Λ1|
2|Θ|


+
C̃2(s)


λ
s


2|Θ|
+


C̃3(s)


λ
s


2|Λ1|−1
2|Θ|


≤ (C̃1(s) + C̃2(s) + C̃3(s))Ξs(λ).


In the last estimate we have distinguished the cases λ ≥ 1 and λ < 1 and
used the fact that 1 ≤ |Λ1| ≤ 2|Θ|. This completes the proof of part (a).
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To prove (b) we fix x, y ∈ Γ and bx, by ∈ Zd with x ∈ Θbx ∩Γ ⊂ ∂iΘbx and
y ∈ Θby ∩ Γ ⊂ ∂iΘby . We again assume bx 6= by. The case bx = by is similar
but easier. We apply Lemma 3.7 with Λ = (Θbx ∪Θby) ∩ Γ and obtain


PΓ
Λ (HΓ − z)−1(PΓ


Λ )∗ = (HΛ −BΛ
Γ − z)−1.


Notice that BΛ
Γ is independent of ωk, k ∈ {bx, by}. By assumption, the


potential values in Λ depend monotonically on ωbx and ωby . More precisely,
we can rewrite the potential in the form VΛ = A + ωbxλVx + ωbyλVy with
the properties that A is independent of ωk, k ∈ {bx, by}, and V = Vx + Vy
is strictly positive definite with V ≥ u∂iΘ


min. We proceed similarly as in Ineq.
(4) and obtain using Lemma 3.5


E{bx,by}
{∥∥PΓ


Λ (HΓ − z)−1(PΓ
Λ )∗
∥∥s} ≤ ‖ρ‖∞4R


(|Λ|u∂iΘ
min‖ρ‖∞)s


λs(1− s)
.


We estimate |Λ| ≤ 2|Θ| and obtain part (b). �


Remark 3.2. Note that even if Assuption (A) is not satisfied we obtain the
bound (6), namely


E{bx,by}
{∥∥PΓ


Λ1
(HΓ − z)−1(PΓ


Λ1
)∗
∥∥t/|Λ1|


}
≤ C2(t)


λt
+
C3(t)


λt/|Λ1|
+
C4(t)


λt
‖(K − z)−1‖t


|Λ1|−1
|Λ1| .


Next we state and prove the tools used in the proof of Lemma 3.1. The
first set of these auxiliary results concerns spectral averaging, both in the
monotone and in the non-monotone case. We start with an averaging lemma
for determinants.


Lemma 3.3. Let n ∈ N and A, V ∈ Cn×n be two matrices and assume that
V is invertible. Let further 0 ≤ ρ ∈ L1(R)∩L∞(R) and s ∈ (0, 1). Then we
have for all λ > 0 the bound∫


R
|det(A+ rV )|−s/n ρ(r)dr ≤ |detV |−s/n ‖ρ‖1−s


L1 ‖ρ‖s∞
2ss−s


1− s
(7)


≤ |detV |−s/n
(
λ−s‖ρ‖L1 +


2λ1−s


1− s
‖ρ‖∞


)
. (8)


Proof. Since V is invertible, the function r 7→ det(A + rV ) is a polynomial
of order n and thus the set {r ∈ R : A+ rV is singular} is a discrete subset
of R with Lebesgue measure zero. We denote the roots of the polynomial
by z1, . . . , zn ∈ C. By multilinearity of the determinant we have


|det(A+ rV )| = |detV |
n∏
j=1


|r − zj | ≥ |detV |
n∏
j=1


|r − Re zj |.
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The Hölder inequality implies for s ∈ (0, 1) that∫
R
|det(A+ rV )|−s/n ρ(r)dr ≤ |detV |−s/n


n∏
j=1


(∫
R
|r − Re zj |−sρ(r)dr


)1/n


.


For arbitrary λ > 0 and all z ∈ R we have∫
R


1


|r − z|s
ρ(r)dr =


∫
|r−z|≥λ


1


|r − z|s
ρ(r)dr +


∫
|r−z|≤λ


1


|r − z|s
ρ(r)dr


≤ λ−s‖ρ‖L1 + ‖ρ‖∞
2λ1−s


1− s
which gives Ineq. (8). We now choose λ = s‖ρ‖L1/(2‖ρ‖∞) (which min-
imises the right hand side of Ineq. (8)) and obtain Ineq. (7). �


The last lemma can be used to obtain bounds on averages of resolvents.


Lemma 3.4. Let n ∈ N, A ∈ Cn×n an arbitrary matrix, V ∈ Cn×n an
invertible matrix and s ∈ (0, 1). Let further 0 ≤ ρ ∈ L1(R) ∩ L∞(R) with
supp ρ ⊂ [−R,R] for some R > 0. Then we have the bounds


‖V −1‖ ≤ ‖V ‖
n−1


|detV |
(9)


and∫ R


−R


∥∥(A+ rV )−1
∥∥s/nρ(r)dr ≤


‖ρ‖1−sL1 ‖ρ‖s∞ (‖A‖+R‖V ‖)s(n−1)/n


ss2−s(1− s) |detV |s/n
. (10)


Proof. To prove Ineq. (9) let 0 < s1 ≤ s2 ≤ . . . ≤ sn be the singular values
of V . Then we have


∏n
i=1 si ≤ s1s


n−1
n , that is,


1


s1
≤ sn−1


n∏n
i=1 si


. (11)


For the norm we have ‖V −1‖ = 1/s1 and ‖V ‖ = sn. For the determinant
of V there holds |detV | =


∏n
i=1 si. Hence, Ineq. (9) follows from Ineq.


(11). To prove Ineq. (10) recall that, since V is invertible, the set {r ∈
R : A+ rV is singular} is a discrete set. Thus, for almost all r ∈ [−R,R] we
may apply Ineq. (9) to the matrix A+ rV and obtain∥∥(A+ rV )−1


∥∥s/n ≤ (‖A‖+R‖V ‖)s(n−1)/n


|det(A+ rV )|s/n
.


Inequality (10) now follows from Lemma 3.3. �


The assumption that the single-site potential u is monotone at the bound-
ary allows us to use monotone spectral averaging at some stage. For this
purpose we cite a special case of [2, Proposition 3.1]. Recall, a densely de-
fined operator T on some Hilbert space H with inner product 〈·, ·〉H is called
dissipative if Im〈x, Tx〉H ≥ 0 for all x ∈ D(T ).
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Lemma 3.5. Let A ∈ Cn×n be a dissipative matrix, V ∈ Rn×n diagonal and
strictly positive definite and M1,M2 ∈ Cn×n be arbitrary matrices. Then
there exists a constant CW (independent of A, V , M1 and M2), such that


L
{
r ∈ R : ‖M1(A+ rV )−1M2‖HS > t


}
≤ CW‖M1V


−1/2‖HS‖M2V
−1/2‖HS


1


t
.


Here, L denotes the Lebesgue-measure and ‖·‖HS the Hilbert Schmidt norm.


As a corollary we have


Lemma 3.6. Let A ∈ Cn×n be a dissipative matrix, V ∈ Rn×n diagonal and
strictly positive definite and M1,M2 ∈ Cn×n be arbitrary matrices. Then
there exists a constant CW (independent of A, V , M1 and M2), such that∫


R
‖M1(A+ rV )−1M2‖sρ(r)dr ≤ (nCW‖M1V


−1/2‖‖M2V
−1/2‖‖ρ‖∞)s


1− s
.


Proof. First note that for a matrix T ∈ Cn×n we have ‖T‖ ≤ ‖T‖HS ≤√
n‖T‖. With the use of the layer cake representation, see e. g. [20, p. 26],


and Lemma 3.5 we obtain for all κ > 0


I =


∫
R
‖M1(A+ rV )−1M2‖sρ(r)dr =


∫ ∞
0


∫
R


1{‖M1(A+rV )−1M2‖s>t}ρ(r)drdt


≤ κ+


∫ ∞
κ
‖ρ‖∞nCW‖M1V


−1/2‖‖M2V
−1/2‖ 1


t1/s
dt


= κ+ ‖ρ‖∞nCW‖M1V
−1/2‖‖M2V


−1/2‖ s


1− s
κ(s−1)/s.


If we choose κ = (‖ρ‖∞nCW‖M1V
−1/2‖‖M2V


−1/2‖)s we obtain the state-
ment of the lemma. �


Note that all lemmata so far concerned finite dimensional matrices only.
In order to use them for our infinite dimensional operator Gω(z) we will ap-
ply a special case of the Schur complement formula (also known as Feshbach
formula or Grushin problem), see e. g. [6, appendix].


Lemma 3.7. Let Λ ⊂ Γ ⊂ Zd and Λ finite. Then we have for all z ∈ C \R
the identity


PΓ
Λ (HΓ − z)−1(PΓ


Λ )∗ =
(
HΛ −BΛ


Γ − z
)−1


,


where BΛ
Γ : `2(Λ)→ (Λ) is specified in Eq. (12). Moreover, the operator BΛ


Γ
is independent of Vω(k), k ∈ Λ.


Proof. An application of the Schur complement formula gives


PΓ
Λ (HΓ−z)−1(PΓ


Λ )∗ =
[
HΛ−z−PΓ


Λ ∆Γ(PΓ
Γ\Λ)∗


(
HΓ\Λ−z


)−1
PΓ


Γ\Λ∆Γ(PΓ
Λ )∗
]−1


,


compare, e. g., [6, Appendix]. For Λ ⊂ Γ ⊂ Zd we define


BΛ
Γ := PΓ


Λ ∆Γ(PΓ
Γ\Λ)∗


(
HΓ\Λ − z


)−1
PΓ


Γ\Λ∆Γ(PΓ
Λ )∗. (12a)
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For the matrix elements of BΛ
Γ one calculates


〈
δΛ
x , B


Λ
Γ δ


Λ
y


〉
=



0 if x 6∈ ∂iΛ ∨ y 6∈ ∂iΛ,∑


k∈Γ\Λ:
|k−x|=1


∑
l∈Γ\Λ:
|l−y|=1


GΓ\Λ(z; k, l) if x ∈ ∂iΛ ∧ y ∈ ∂iΛ. (12b)


GΓ\Λ is independent of Vω(k), k ∈ Λ. Thus it is BΛ
Γ likewise. �


Lemma 3.8. Let Γ ⊂ Zd and Λ1 ⊂ Λ2 ⊂ Γ. We assume that Λ1 and Λ2


are finite sets and that ∂iΛ2 ∩ Λ1 = ∅. Then we have for all z ∈ C \ R the
identity


PΓ
Λ1


(HΓ − z)−1
(
PΓ


Λ1


)∗
=
[
HΛ1 − z


− PΛ1∆P ∗Λ2\Λ1


(
HΛ2\Λ1


− z − PΛ2


Λ2\Λ1
BΛ2


Γ


(
PΛ2


Λ2\Λ1


)∗)−1
PΛ2\Λ1


∆P ∗Λ1


]−1
.


Proof. We decompose Λ2 = Λ1 ∪ (Λ2 \ Λ1) and notice that 〈δx, BΛ2
Γ δy〉 = 0


if x ∈ Λ1 or y ∈ Λ1 by Eq. (12b). Due to this decomposition we write


HΛ2 − z −B
Λ2
Γ as the block operator matrix


HΛ2 − z −B
Λ2
Γ =


 HΛ1 − z −PΛ1∆P ∗Λ2\Λ1


−PΛ2\Λ1
∆P ∗Λ1


HΛ2\Λ1
− z − PΛ2


Λ2\Λ1
BΛ2


Γ


(
PΛ2


Λ2\Λ1


)∗
 .


The Schur complement formula gives PΛ2
Λ1


(HΛ2 − z − B
Λ2
Γ )−1(PΛ2


Λ1
)∗ = S−1


where S equals


HΛ1 − z − PΛ1∆P ∗Λ2\Λ1


(
HΛ2\Λ1


− z − PΛ2


Λ2\Λ1
BΛ2


Γ


(
PΛ2


Λ2\Λ1


)∗)−1
PΛ2\Λ1


∆P ∗Λ1
.


Since PΛ2
Λ1


(HΛ2 − z−B
Λ2
Γ )−1(PΛ2


Λ1
)∗ = PΓ


Λ1
(HΓ− z)−1(PΓ


Λ1
)∗ by Lemma 3.7,


we obtain the statement of the lemma. �


4. Exponential decay of fractional moments through the
finite volume criterion


In this section we show that the so called finite volume criterion implies
exponential decay of the Green function. Together with the a-priori bound
from Lemma 3.1 this gives us Theorem 2.3, which will be proven at the end
of this section.


We shall consider “depleted” Hamiltonians to formulate a geometric re-
solvent formula. Such Hamiltonians are obtained by setting to zero the
“hopping terms” of the Laplacian along a collection of bonds. More pre-
cisely, let Λ ⊂ Γ ⊂ Zd be arbitrary sets. We define the depleted Laplace
operator ∆Λ


Γ : `2(Γ)→ `2(Γ) by


〈
δx,∆


Λ
Γδy
〉


:=


{
0 if x ∈ Λ, y ∈ Γ \ Λ or y ∈ Λ, x ∈ Γ \ Λ,〈
δx,∆Γδy


〉
else.
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In other words, the hopping terms which connect Λ with Γ \Λ or vice versa
are deleted. The depleted Hamiltonian HΛ


Γ : `2(Γ) → `2(Γ) is then defined
by


HΛ
Γ := −∆Λ


Γ + VΓ.


Let further TΛ
Γ := ∆Γ−∆Λ


Γ be the difference between the the “full” Laplace
operator and the depleted Laplace operator. For z ∈ C \ R and x, y ∈ Γ
we use the notation GΛ


Γ(z) = (HΛ
Γ − z)−1 and GΛ


Γ(z;x, y) =
〈
δx, G


Λ
Γ(z)δy


〉
.


To formulate a geometric resolvent formula we apply the second resolvent
identity and obtain for arbitrary sets Λ ⊂ Γ ⊂ Zd


GΓ(z) = GΛ
Γ(z) +GΓ(z)TΛ


Γ G
Λ
Γ(z) = GΛ


Γ(z) +GΛ
Γ(z)TΛ


Γ GΓ(z). (13)


For our purposes it will be necessary to use an iterated version of this for-
mula. Namely, the two applications of the resolvent identity give


GΓ(z) = GΛ
Γ(z) +GΛ


Γ(z)TΛGΛ
Γ(z) +GΛ


Γ(z)TΛGΓ(z)TΛGΛ
Γ(z). (14)


Remark 4.1. Notice thatGΛ
Γ(z;x, y) = GΛ(z;x, y) if x, y ∈ Λ, GΛ


Γ(z;x, y) = 0
if x ∈ Λ and y 6∈ Λ or vice versa, and that GΛ


Γ(z) = GΛc


Γ (z). If Γ \ Λ
decomposes into at least two components which are not connected, and x
and y are not in the same component, then we also have GΛ


Γ(z;x, y) = 0.


Since Γ is not necessarily the whole lattice Zd, it may be that terms of
the type GΓ(z; i, j) occur for some Γ ⊂ Zd and some i 6∈ Γ or j 6∈ Γ. In this
case we use the convention that GΓ(z; i, j) = 0.


To formulate the results of this section we will need the following notation:
For finite Γ ⊂ Zd we denote by diam Γ the diameter of Γ with respect to
the supremum norm, i. e. diam Γ = supx,y∈Γ|x − y|∞. Let Γ ⊂ Zd, fix


L ≥ diam Θ + 2, let ΛL = [−L,L]d ∩ Zd be a cube of size 2L+ 1, let


B = ∂iΛL,


and define the sets


Λ̂x = {k ∈ Γ : k ∈ Θb for some b ∈ ΛL,x}


and


Ŵx = {k ∈ Γ : k ∈ Θb for some b ∈ Bx}. (15)


Recall that for Γ ⊂ Zd we denote by Γx = Γ + x = {k ∈ Zd : k − x ∈ Γ}
the translate of Γ. Hence (ΛL)x = ΛL,x and Ŵx is the union of translates


of Θ along the sides of Bx, restricted to the set Γ. For Γ ⊂ Zd we can now
introduce the sets


Λx := Λ̂+
x ∩ Γ and Wx = Ŵ+


x ∩ Γ


which will play a role in the assertions below.


Theorem 4.2 (Finite volume criterion). Suppose that Assumption (A) is
satisfied, let Γ ⊂ Zd, z ∈ C \ R with |z| ≤ m and s ∈ (0, 1/3). Then there
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exists a constant Bs which depends only on d, ρ, u, m, s, such that if the
condition


bs(λ, L,Λ) :=
BsL


3(d−1)Ξs(λ)


λ2s/(2|Θ|)


∑
w∈∂oWx


E
{
|GΛ\Wx


(z;x,w)|s/(2|Θ|)
}
< b (16)


is satisfied for some b ∈ (0, 1), arbitrary Λ ⊂ Γ, and all x ∈ Λ, then for all
x, y ∈ Γ


E
{
|GΓ(z;x, y)|s/(2|Θ|)


}
≤ Ae−µ|x−y|∞ .


Here


A =
CsΞs(λ)


b
and µ =


|ln b|
L+ diam Θ + 2


,


with Cs inherited from the a-priori bound (Lemma 3.1).


Remark 4.3. Note that Γ \Wx decomposes into two components which are
not connected, so that the sum in (16) runs over the sites r related to only one
of these components, which is always compact, regardless of the choice of Γ.
It then follows that in order to establish the exponential falloff of the Green
function it suffices to consider the decay properties of the Green function for
the Hamiltonians defined on finite sets. The finite volume criterion derives
its name from this fact.


The strategy for the proof is reminiscent of the one developed in [5] and
is aimed to derive a following bound on the average Green function.


Lemma 4.4. Let Γ ⊂ Zd, s ∈ (0, 1/3), m > 0, Assumption (A) be satisfied
and bs(λ, L,Λ) be the constant from Theorem 4.2. Then we have for all
x, y ∈ Γ with y 6∈ Λx and all z ∈ C \ R with |z| ≤ m the bound


E
{
|GΓ(z;x, y)|


s
2|Θ|
}
≤ bs(λ, L,Γ)


|∂oΛx|
∑


r∈∂oΛx


E
{
|GΓ\Λx


(z; r, y)|
s


2|Θ|
}
. (17)


Remark 4.5. Equation (17) with bs(λ, L,Γ) < b < 1 is akin to the statement
that the expectation E{|GΓ(z;x, ·)|s} is a strictly subharmonic function,
and thus, since it is also uniformly bounded by the a-priori bound from
Lemma 3.1, it decays exponentially. Indeed, since the sum is normalized
by the prefactor 1/|∂oΛx|, Ineq. (17) permits to improve the a-priori bound
by the factor bs(λ, L,Γ) < b. Furthermore, the inequality may be iterated,
each iteration resulting in an additional factor of bs(λ, L,Γ). Also note that
each iteration step brings in Green functions that correspond to modified
domains.


The finite volume criterion is a direct corollary of Lemma 4.4:


Proof of Theorem 4.2. Inequality (17) can be iterated as long as the re-


sulting sequences (x, r(1), . . . , r(n)) do not get closer to y than the distance


L̃ = L+ diam Θ + 2.
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If |x− y|∞ ≥ L̃, we iterate Ineq. (17) exactly b|x− y|∞/L̃c times, use the
a-priori bound from Lemma 3.1 and obtain


E
{∣∣GΓ(z;x, y)


∣∣ s
2|Θ|
}
≤ CsΞs(λ) · bb|x− y|∞/L̃c ≤ CsΞs(λ)


b
e−µ|x−y|∞ ,


with µ = |ln b|/L̃. If |x− y|∞ < L̃, we use Lemma 3.1 and see that


E
{∣∣GΓ(z;x, y)


∣∣s/(2|Θ|)} ≤ CsΞs(λ) ≤ CsΞs(λ)


b
e−µ|x−y|∞ . �


To facilitate the proof of Lemma 4.4 we introduce some extra notation
first. Namely, for a set Λ ⊂ Zd, we define the bond-boundary ∂BΛ of Λ as


∂BΛ =
{


(u, u′) ∈ Zd × Zd : u ∈ Λ, u′ ∈ Zd \ Λ, and |u− u′|1 = 1
}
.


Proof of Lemma 4.4. Fix x, y ∈ Γ with y 6∈ Λx and set n = 2|Θ|. It follows


from our definition, that the randomness of HΓ at sites ∂oŴx ∩ Γ does not
depend on the random variables ωb for any b ∈ Bx, and depends monoton-
ically on the random variables ωk for k ∈ ∂oBx (by Assumption (A)). A
similar statement holds for the randomness at sites ∂oWx ∩Γ. We also note
that x, y 6∈ Wx by our definition of L and since 0 ∈ Θ. We now choose
Λ = Ŵx in Eq. (14) and compute the Green function at (x, y):


GΓ(z;x, y) = GŴx
Γ (z;x, y) + 〈δx, GŴx


Γ (z)T Ŵx
Γ GŴx


Γ (z)δy〉


+ 〈δx, GŴx
Γ (z)T Ŵx


Γ GΓ(z)T Ŵx
Γ GŴx


Γ δy〉.


Using Remark 4.1 one can easily check that the first two contributions van-
ish, thus


GΓ(z;x, y) =
∑


(u′,u)∈∂BŴx
(v,v′)∈∂BŴx


GŴx
Γ (z;x, u)GΓ(z;u′, v)GŴx


Γ (z; v′, y). (18)


See Fig. 1 for the geometric setting and an illustration of Eq. (18). Note


that u, v′ ∈ ∂oŴx, while u′, v ∈ Ŵx. By construction, the set Γ \ Ŵx


decomposes into at least two components which are not connected: One of
them contains x, another y. More than two components may occur if Γ or Θ
are not connected, see again Fig. 1. By Remark 4.1, the summands in Eq.
(18) are only non-zero if u is in the x-component of Γ \ Ŵx and v′ is in the


y-component of Γ \ Ŵx. This leads us to the definition of a subset of ∂BŴx.


We say that (u, u′) ∈ ∂B
x Ŵx if (u, u′) ∈ ∂BŴx and u′ is in the x-component


of Γ \ Ŵx. For ∂B
y Ŵx, ∂B


xWx and ∂B
yWx we use the analogous definitions.


To get the estimate (17) we want to first average the fractional moment of
the Green function with respect to random variables {ωk}k∈B+


x
. Note that


Lemma 3.1 part (a) then guarantees that


EB+
x


{
|GΓ(z;u′, v)|s/n


}
≤ CsΞs(λ). (19)
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x


u
u′


v v′


y


Figure 1. Illustration of the geometric setting and Eq. (18)
in the case d = 2, Γ = {x ∈ Z2 : x1 ≥ 0}, x = 0 and
Θ = ([−2, 2]2 ∪ [4, 6]2) ∩ Z2. The light grey region is the set


Ŵx and the black square is the sphere Bx.


However, although the first and the last Green functions in (18) do not
depend on the random variables {ωk}k∈Bx , they still depend on the random
variables {ωk}k∈B+


x
. To factor out this dependence, we apply (13) again,


this time with Λ = Wx. Then we have for u, v′ as above the equalities


GŴx
Γ (z;x, u) =


∑
(w′,w)∈∂B


xWx


GWx
Γ (z;x,w)GŴx


Γ (z;w′, u)


and


GŴx
Γ (z; v′, y) =


∑
(r,r′)∈∂B


y Wx


GŴx
Γ (z; v′, r)GWx


Γ (z; r′, y).


Notice that for w and r′ as above, the Green functions GWx
Γ (z;x,w) and


GWx
Γ (z; r′, y) are independent of {ωk}k∈B+


x
. Putting everything together, we


obtain


EB+
x


{
|GΓ(z;x, y)|s/n


}
≤
∑
|GWx


Γ (z;x,w)|s/n |GWx
Γ (z; r′, y)|s/n


× EB+
x


{
|GŴx


Γ (z;w′, u)GΓ(z;u′, v)GŴx
Γ (z; v′, r)|s/n


}
, (20)
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where the sum on the right hand side runs over the bonds


(u′, u) ∈ ∂B
x Ŵx, (v, v′) ∈ ∂B


y Ŵx, (r, r′) ∈ ∂B
yWx, (w′, w) ∈ ∂B


xWx.


To estimate the expectation of the product on the right hand side we note
that by Hölder inequality it suffices to show that each of the Green func-
tions raised to the fractional power 3s/n and averaged with respect to B+


x


is bounded in an appropriate way. For EB+
x


(|GΓ(z;u′, v)|3s/n) this follows


from the a-priory bound (19). For the remaining two Green functions it
seems at the first glance that we have a problem, since only we average
over {ωk}k∈B+


x
, and Lemma 3.1 in this context requires averaging with re-


spect to {ωk}k∈B++
x


. What comes to our rescue is Assumption (A), which


ensures that the dependence on {ωk}k∈B+
x


is actually monotone for these


Green functions, and the standard argument of [2] for the monotone case
establishes the required bounds. More precisely, we argue as follows. Since
w′, u ∈ Γ \ Ŵx, we have due to Remark 4.1 that


GŴx
Γ (z;w′, u) = GΓ\Ŵx


(z;w′, u).


Notice that w′, u ∈ ∂oŴx. Hence there are b1, b2 ∈ ∂oBx, such that w′ ∈
Θb1 ∩ (Γ \ Ŵx) ⊂ ∂iΘb1 and u ∈ Θb2 ∩ (Γ \ Ŵx) ⊂ ∂iΘb2 . For the Green
function at (v′, r) there exist b3, b4 ∈ ∂oBx with analoguous properties. Thus
we may apply Lemma 3.1 part (b) and obtain for all t ∈ (0, 1)


EB+
x


{
|GŴx


Γ (z;w′, u)|t
}
≤ Dtλ


−t and EB+
x


{
|GŴx


Γ (z; v′, r)|t
}
≤ Dtλ


−t.


The net result is a bound


EB+
x


{
|GŴx


Γ (z;w′, u)GΓ(z;u′, v)GŴx
Γ (z; v′, r)|s/n


}
≤ Esλ−


2s
n Ξs(λ)


where Es = max{D3s/n, C3s}. Substitution into Ineq. (20) leads to the
estimate


EB+
x


{
|GΓ(z;x, y)|s/n


}
≤ Esλ−


2s
n Ξs(λ)|∂B


x Ŵx||∂B
y Ŵx|


×
∑


(r,r′)∈∂B
y Wx


(w′,w)∈∂B
x Wx


|GWx
Γ (z;x,w)|s/n |GWx


Γ (z; r′, y)|s/n. (21)


Now we are in position to perform the expectation with respect to the rest
of random variables. Note that the two remaining Green functions in (21)
are stochastically independent. We take expectation in Ineq. (20) and use
Remark 4.1 to get


E
{
|GΓ(z;x, y)|s/n


}
≤ EsΦ̃(Θ, L)


λ2s/nΞ−1
s (λ)


·
∑


(r,r′)∈∂B
y Wx


E
{
|GΓ\Wx


(z; r′, y)|s/n
}


where


Φ̃(Θ, L) = |∂B
x Ŵx||∂B


y Ŵx|
∑


(w′,w)∈∂B
xWx


E
{
|GΓ\Wx


(z;x,w)|s/n
}
.
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Now we use the fact that each point of ∂oΛx shares the bond with at most
2d neighbors. Hence, if we set


Φ(Θ, L) = 4d2 |∂B
x Ŵx||∂B


y Ŵx||∂oΛx|
∑


w∈∂oWx


E
{
|GΓ\Wx


(z;x,w)|s/n
}
,


we have the estimate


E
{
|GΩ(z;x, y)|s/n


}
≤ EsΦ(Θ, L)


λ2s/nΞ−1
s (λ)


1


|∂oΛx|
∑


r∈∂oΛx


E
{
|GΓ\Λx


(z; r, y)|s/n
}
.


Finally, we can bound |∂B
x Ŵx|, |∂B


y Ŵx| and |∂oΛx| by Cd,ΘL
d−1 with a con-


stant Cd,Θ depending only on d and Θ. Lemma 4.4 now follows by putting
everything together. �


Proof of Theorem 2.3. Notice that by Assumption (A) the random potential
is uniformly bounded. Thus K := supω∈Ω‖Hω‖ < ∞. Choose M ≥ 1 and
m = K + M . For |z| ≤ m and each b ∈ (0, 1) we infer from the a-priori
bound (Lemma 3.1) that condition (16) from Theorem 4.2 is satisfied if λ
sufficiently large.


For |z| ≥ m we have dist(z, σ(HΓ)) ≥M ≥ 1 for all ω. A Combes-Thomas
argument (see [9], or Section 11.2 in [15] for an explicit calculation in the
discrete setting) gives the bound


|GΓ(z;x, y)| ≤ 2


M
e−γ|x−y|1


for |z| ≥ m and arbitrary x, y ∈ Γ, where γ := min
(
1, ln M


4d


)
. Now taking


first the fractional power and then the mathematical expectation gives the
desired estimate on E


{
|GΓ(z;x, y)|s/(2|Θ|)


}
. This finishes the proof. �


5. Exponential localization and application to the strong
disorder regime


In this section we prove exponential localization in the case of sufficiently
large disorder, i. e. that the continuous spectrum of Hω is empty almost
surely and that the eigenfunctions corresponding to the eigenvalues of Hω


decay exponentially at infinity.
The existing proofs of localization via the fractional moment method use


either the Simon Wolff criterion, see e. g. [21, 4, 5], or the RAGE-Theorem,
see e. g. [1, 14, 2]. Neither dynamical nor spectral localization can be directly
inferred from the behavior of the Green function using the existent methods
for our model. The reason is that the random variables Vω(x), x ∈ Zd, are
not independent, while the dependence of Hω on the i. i. d. random variables
ωk, k ∈ Zd, is not monotone.


However, for the discrete alloy-type model it is possible to show local-
ization using the multiscale analysis. The two ingredients of the multiscale
analysis are the initial length scale estimate and the Wegner estimate, com-
pare assumptions (P1) and (P2) of [27]. The initial length scale estimate is
implied by the exponential decay of an averaged fractional power of Green
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function, i. e. Theorem 4.2, using Chebyshev’s inequality. A Wegner esti-
mate for the models considered here was established in [25]. Thus a variant
of the multiscale analysis of [27] yields pure point spectrum with exponential
decaying eigenfunctions for almost all configurations of the randomness. We
say a variant, since in our case the potential values are independent only for
lattice sites having a minimal distance. It has been implemented in detail
in the paper [13] for random Schrödinger operators in the continuum, and
holds similarly for discrete models. See also [19] for a proof of localization
via MSA for a class of models including ours.


In [10] we have established a new variant for concluding exponential local-
ization from bounds on averaged fractional powers of Green function without
using the multiscale analysis. This is done by showing that fractional mo-
ment bounds imply the “typical output” of the multiscale analysis, i. e. the
hypothesis of Theorem 2.3 in [27]. Then one can conclude localization us-
ing existent methods. However, the assertions in [10] are tailored to the
one-dimensional discrete alloy-type model. In this section we present the
multidimensional extension of these results. Although the arguments are
similar to the ones in [10], we will give all the proofs for completeness.


For L > 0 and x ∈ Zd we denote by ΛL,x = {y ∈ Zd : |x − y|∞ ≤ L} the
cube of side length 2L + 1. Let further m > 0 and E ∈ R. A cube ΛL,x is
called (m,E)-regular (for a fixed potential), if E 6∈ σ(HΛL,x


) and


sup
w∈∂iΛL,x


|GΛL,x
(E;x,w)| ≤ e−mL.


Otherwise we say that ΛL,x is (m,E)-singular. The next Proposition states
that certain bounds on averaged fractional moments of Green function imply
the hypothesis of Theorem 2.3 in [27] (without applying the induction step
of the multiscale analysis).


Proposition 5.1. Let I ⊂ R be a bounded interval and s ∈ (0, 1). Assume
the following two statements:


(i) There are constants C, µ ∈ (0,∞) and L0 ∈ N0 such that


E
{
|GΛL,k


(E;x, y)|s
}
≤ Ce−µ|x−y|∞


for all k ∈ Zd, L ∈ N, x, y ∈ ΛL,k with |x− y|∞ ≥ L0, and all E ∈ I.
(ii) There is a constant C ′ ∈ (0,∞) such that


E
{
|GΛL,k


(E + iε;x, x)|s
}
≤ C ′


for all k ∈ Zd, L ∈ N, x ∈ ΛL,k, E ∈ I and all ε ∈ (0, 1] .


Then we have for all L ≥ max{8 ln(8)/µ, L0,−(8/5µ) ln(|I|/2)} and all
x, y ∈ Zd with |x− y|∞ ≥ 2L+ diam Θ + 1 that


P{∀E ∈ I either ΛL,x or ΛL,y is (µ/8, E)-regular}


≥ 1− 8|ΛL,x|(C|I|+ 4C ′|ΛL,x|/π)e−µsL/8.
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Proof. Set n = diam Θ + 1. Fix L ∈ N with L ≥ max{8 ln(8)/µ, L0} and
x, y ∈ Zd such that |x− y|∞ ≥ 2L+ n. For ω ∈ Ω and k ∈ {x, y} we define
the sets


∆k
ω := {E ∈ I : sup


w∈∂iΛL,k


|GΛL,k
(E; k,w)| > e−µL/8},


∆̃k
ω := {E ∈ I : sup


w∈∂iΛL,k


|GΛL,k
(E; k,w)| > e−µL/4},


and B̃k := {ω ∈ Ω : L{∆̃k
ω} > e−5µL/8}. (22)


For ω ∈ B̃k we have∑
w∈∂iΛL,k


∫
I
|GΛL,k


(E; k,w)|s/NdE ≥
∫
I


sup
w∈∂iΛL,k


|GΛL,k
(E; k,w)|s/NdE


> e−5µL/8e−µLs/4 > e−7µL/8.


Using L ≥ L0 and Hypothesis (i) of the assertion, we obtain


P{B̃k} < |ΛL,k| |I|Ce−µL/8.


For k ∈ {x, y} we denote by σ(HΛL,k
) = {Eiω,k}


|ΛL,k|
i=1 the spectrum of HΛL,k


.


We claim that for k ∈ {x, y},


ω ∈ Ω \ B̃k ⇒ ∆k
ω ⊂


|ΛL,k|⋃
i=1


[
Eiω,k − δ, Eiω,k + δ


]
=: Iω,k(δ), (23)


where δ = 2e−µL/8. Indeed, suppose that E ∈ ∆k
ω and dist


(
E, σ(HΛL,k


)
)
>


δ. Then there exists w ∈ ∂iΛL,k such that |GΛL,k
(E; k,w)| > e−µL/8. For


any E′ with |E −E′| ≤ 2e−5µL/8 we have δ − |E −E′| ≥ e−µL/8 ≥ 2e−3µL/8


since L > 8 ln(8)/µ. Moreover, the first resolvent identity and the estimate
‖(H −E)−1‖ ≤ dist(E, σ(H))−1 for selfadjoint H and E ∈ C \σ(H) implies


|GΛL,k
(E; k,w)−GΛL,k


(E′; k,w)| ≤ |E − E′| · ‖GΛL,k
(E)‖ · ‖GΛL,k


(E′)‖


≤ 1


2
e−µL/8,


and hence


|GΛL,k
(E′; k,w)| > e−µL/8


2
≥ e−µL/4


for L ≥ 8 ln(8)/µ. We infer that [E − 2e−5µL/8, E + 2e−5µL/8]∩ I ⊂ ∆̃k
ω and


conclude L{∆̃k
ω} ≥ 2e−5µL/8, since |I| ≥ 2e−5µL/8 by assumption. This is


however impossible if ω ∈ Ω \ B̃k by (22), hence the claim (23) follows.
In the following step we use Hypothesis (ii) of the assertion to deduce a


Wegner-type estimate. Let [a, b] ⊂ I with 0 < b − a ≤ 1. We denote by
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P[a,b](HΛL,x
) the spectral projection corresponding to the interval [a, b] and


the operator HΛL,x
. Since we have for any λ ∈ R and 0 < ε ≤ b− a


arctan


(
λ− a
ε


)
− arctan


(
λ− b
ε


)
≥ π


4
χ[a,b](λ),


one obtains an inequality version of Stones formula:


〈δx, P[a,b](HΛL,x
)δx〉 ≤


4


π


∫
[a,b]


Im
{
GΛL,x


(E + iε;x, x)
}


dE ∀ ε ∈ (0, b− a].


Using triangle inequality, |Im z| ≤ |z| for z ∈ C, Fubini’s theorem, |GΛL,x
(E+


iε;x, x)|1−s ≤ dist(σ(HΛL,x
), E+iε)s−1 ≤ εs−1 and hypothesis (ii) we obtain


for all ε ∈ (0, b− a]


E
{


TrP[a,b](HΛL,x
)
}
≤ E


{ ∑
x∈ΛL,x


4


π


∫
[a,b]


Im
{
GΛL,x


(E + iε;x, x)
}


dE
}


≤ εs−1


π/4


∑
x∈ΛL,x


∫
[a,b]


E
{∣∣GΛL,x


(E + iε;x, x)
∣∣s}dE


≤ 4π−1εs−1|ΛL,x| |b− a|C ′.


We minimize the right hand side by choosing ε = b − a and obtain for all
[a, b] ⊂ I with 0 < b− a ≤ 1 the Wegner estimate


E
{


TrP[a,b](HΛL,x
)
}
≤ 4π−1C ′|b− a|s|ΛL,x| =: CW|b− a|s|ΛL,x|. (24)


Now we want to estimate the probability of the event Bres := {ω ∈ Ω :
I ∩ Iω,x(δ) ∩ Iω,y(δ) 6= ∅} that there are “resonant” energies for the two
box Hamiltonians HΛL,x


and HΛL,y
. For this purpose we denote by Λ′L,x


the set of all lattice sites k ∈ Zd whose coupling constant ωk influences the
potential in ΛL,x, i. e. Λ′L,x = ∪x∈ΛL,x


{k ∈ Zd : u(x− k) 6= 0)}. Notice that


the expectation in Ineq. (24) may therefore be replaced by EΛ′L,x
. Moreover,


since |x−y|∞ ≥ 2L+n, the operator HΛL,y
and hence the interval Iω,y(δ) is


independent of ωk, k ∈ Λ′L,x. We use the product structure of the measure


P, Chebyshev’s inequality, and estimate (24) to obtain


PΛ′L,x
{Bres} ≤


|ΛL,y |∑
i=1


PΛ′L,x


{
ω ∈ Ω : Tr


(
PI∩[Ei


ω,y−2δ,Ei
ω,y+2δ](HΛL,x


)
)
≥ 1
}


≤
|ΛL,y |∑
i=1


EΛ′L,x


{
Tr
(
PI∩[Ei


ω,y−2δ,Ei
ω,y+2δ](HΛL,x


)
)}


≤ |ΛL,y|CW(4δ)s|ΛL,x|. (25)


Notice that 4δ ≤ 1, since L ≥ 8 ln 8. Consider now an ω 6∈ B̃x ∪ B̃y. Recall
that (23) tells us that ∆x


ω ⊂ Iω,x(δ) and ∆y
ω ⊂ Iω,y(δ). If additionally


ω 6∈ Bres then no E ∈ I can be in ∆x
ω and ∆y


ω simultaneously. Hence for
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each E ∈ I either ΛL,x or ΛL,y is (µ/8, E)-regular. A contraposition gives
us


P
{
∃E ∈ I, ΛL,x and ΛL,y is (µ/8, E)-singular


}
≤ P{B̃x}+ P{B̃y}+ P{Bres}


≤ 2|ΛL,x| |I|Ce−µL/8 + |ΛL,y|CW(4δ)s|ΛL,x|,


from which the result follows. �


In the proof of Proposition 5.1 its Hypothesis (ii) was only used to obtain
a Wegner estimate, i.e. Eq. (24). Hence, if we know that a Wegner estimate
holds for some other reason, e.g. from [25], we can relinquish the Hypothesis
(ii) and skip the corresponding argument in the proof of Proposition 5.1.
Specifically, the following assertion holds true:


Proposition 5.2. Let I ⊂ R be a bounded interval and s ∈ (0, 1). Assume
the following two statements:


(i) There are constants C, µ ∈ (0,∞) and L0 ∈ N0 such that


E
{
|GΛL,k


(E;x, y)|s
}
≤ Ce−µ|x−y|∞


for all k ∈ Zd, L ∈ N, x, y ∈ ΛL,k with |x− y|∞ ≥ L0, and all E ∈ I.
(ii) There are constants CW ∈ (0,∞), β ∈ (0, 1], and D ∈ N such that


P
{
σ(HΛL,0


) ∩ [a, b] 6= ∅
}
≤ CW|b− a|β LD


for all L ∈ N and all [a, b] ⊂ I.


Then we have for all L ≥ max{8 ln(2)/µ, L0,−(8/5µ) ln(|I|/2)} and all
x, y ∈ Z with |x− y|∞ ≥ 2L+ diam Θ + 1 that


P{∀E ∈ I either ΛL,x or ΛL,y is (µ/8, E)-regular}


≥ 1− 8(2L+ 1)d|(C |I|+ CWL
D)e−µβL/8.


Proof. We proceed as in the proof of Proposition 5.1, but replace Ineq. (25)
by


PΛ′L,x
{Bres} ≤


|ΛL,y |∑
i=1


PΛ′L,x


{
I ∩ σ(HΛL,x


) ∩ [Eiω,y − 2δ, Eiω,y + 2δ] 6= ∅
}


≤ |ΛL,y|CW(4δ)βLD


to obtain the desired bound. �


Remark 5.3. Note that the conclusions of Proposition 5.1 and 5.2 tell us that
the probabilities of {∀E ∈ I either ΛL,x or ΛL,y is (µ/8, E)-regular} tend to
one exponentially fast as L tends to infinity. In particular, for any p > 0
there is some L̃ ∈ N such that for all L ≥ L̃:


P{∀E ∈ I either ΛL,x or ΛL,y is (m,E)-regular} ≥ 1− L−2p.
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We will yield exponential localization from the estimates provided by
Proposition 5.1 / 5.2 using Theorem 2.3 in [27]. More precisely we need a
slight extension of the result, which can be proven with the same arguments
as the original result. What matters for the proof of Theorem 5.4 is that
there is an l0 ∈ N such that potential values at different lattice sites are
independent if their distance is larger or equal l0.


Theorem 5.4 ([27]). Let I ⊂ R be an interval and let p > d, L0 > 1,
α ∈ (1, 2p/d) and m > 0. Set Lk = Lαk−1, for k ∈ N. Suppose that for any
k ∈ N0


P{∀E ∈ I either ΛLk,x or ΛLk,y is (m,E)-regular} ≥ 1− L−2p
k


for any x, y ∈ Zd with |x − y|∞ ≥ 2Lk + diam Θ + 1. Then Hω exhibits
exponential localization in I for almost all ω ∈ Ω.


Proof of Theorem 2.4. We assume first that I is a bounded interval. Fix
E ∈ I, k ∈ Zd and L ∈ N. By the assumption of the theorem, Hypothesis
(ii) of 5.1 and thus a Wegner estimate hold. Therefore, for any L ∈ N and
any k ∈ Zd the probability of finding an eigenvalue of HΛL,k


in [a, b] ⊂ I
shrinks to zero as b− a→ 0. Hence E ∈ I is not an eigenvalue of HΛL,k


and
the resolvent of HΛL,k


at E is well defined for all ω ∈ ΩI , where ΩI is a set
of full measure. Lebesgues Theorem now gives


Ce−µ|x−y|∞ ≥ lim
ε→0


E
{
|GΛL,k


(E + iε;x, y)|s
}


= lim
ε→0


∫
ΩI


|GΛL,k
(E + iε;x, y)|sP(dω)


= E
{
|GΛL,k


(E;x, y)|s
}
. (26)


For sets of measure zero, the integrand in (26) may not be defined. How-
ever, for the bounds on the expectation value this is irrelevant. Hence the
assumptions of Proposition 5.1 are satisfied. Combining the latter with
Theorem 5.4 and Remark 5.3 we arrive to the desired result.


If I is an unbounded interval, we can cover it by a countable collection
of bounded intervals. In each of those, exponential localization holds by
the previous arguments for all ω outside a set of zero measure. Since the
collection of intervals is countable, we have exponential localizaition in I
almost surely. �


Proof of Theorem 2.5. We use Theorem 2.3 to verify that the hypothesis of
Theorem 2.4 is satisfied with I = R. This yields the desired result. �


Appendix A. A non-local apriori bound


An important step in the proof of exponential decay of fractional mo-
ments is the so called a-priori bound, i. e. a uniform bound on the expec-
tation value of a fractional power of Green’s function elements, which de-
pends in an appropriate way on the disorder. It was this step, where the
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boundary-monotonicity Assumption (A) enters the proof of decay of frac-
tional moments and exponential localization, as presented in the main body
of the paper.


Here in the Appendix we present an alternative a-priori bound which
holds under much milder hypotheses on u, see (B) below. By ‘milder’ we
do not mean that this cover the class of models where (A) is satisfied, but
rather that it holds generically in the class of compactly supported single
site potentials.


Assumption (B).


(B1) The measure µ has a density ρ in the Sobolev space W 1,1(R).
(B2) The single site potential u satisfies u :=


∑
k∈Zd u(k) 6= 0.


Remark A.1. Note that without loss of generality (B2) can be replaced by
u > 0, since


Vω(x) :=
∑
k∈Zd


ωku(x− k) =
∑
k∈Zd


(
− ωk


) (
− u(x− k)


)
.


The purpose of this section is to prove


Theorem A.2. Let Λ ⊂ Zd finite, s ∈ (0, 1) and Assumption (B) be satis-
fied. Then we have for all x, y ∈ Λ and z ∈ C \ R


E
{∣∣GΛ(z;x, y)


∣∣s} ≤ 2s


1− s
(
u−1‖ρ′‖L1CWD


)s 1


λs


where D and CW are the constants from Eq. (28) and Lemma 3.5.


Remark A.3. This extends Theorem 2.3 of [23]. The drawback of the a-
priori bound based on Assumption (B) is that it is ‘non-local’ in the sense
that it requires averaging over the entire disorder present in the model. At
the moment we are not able to conclude exponential decay of fractional
moments relying in this version of the a-priori bound.


The proof relies on a special transformation of the random variables ωk,
k ∈ Λ+, where Λ+ = ∪k∈Λ{x ∈ Zd | u(x− k) 6= 0} denotes the set of lattice
sites whose coupling constant influences the potential in Λ.


Let n denote the diameter of Θ with respect to the `1-norm, i. e. n :=
maxi,j∈Θ|i− j|1. For x, y ∈ Zd we define αx,y : Zd → R+ by


αx,y(k) :=
1


2


(
e−c|k−x|1 + e−c|k−y|1


)
with c :=


1


n
ln


(
1 +


u


2‖u‖`1


)
. (27)


Notice that the `1-norm of αx,y is independent of x, y ∈ Zd, i. e.


D := D(n, ū, ‖u‖`1) :=
∑
k∈Z
|αx,y(k)| =


∑
k∈Zd


e−c|k|1 =


(
ec + 1


ec − 1


)d
. (28)


With the help of the coefficients αx,y(k), k ∈ Zd, we will define a linear
transformation of the variables ωk, k ∈ Λ+, where Λ+ denotes the set of
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lattice sites whose coupling constants influence the potential in Λ. Some
part of the “new” potential will then be given by W x,y : Zd → R,


W x,y(k) :=
∑
j∈Zd


αx,y(k)u(k − j), (29)


where indeed only the values k ∈ Λ are relevant. For our analysis it is
important that W x,y is positive and that W x,y(k) ≥ δ > 0 for k ∈ {x, y}
where δ is independent of Λ and x, y ∈ Λ. This is done by


Lemma A.4. Let Assumption (B) be satisfied. Then we have for all x, y, k ∈
Zd


W x,y(k) ≥ αx,y(k)
u


2
> 0.


In particular, W x,y(k) ≥ u/4 for k ∈ {x, y}.


A linear combination with appropriately chosen, exponentiall decaying
coefficients, resp. a convolution with an exponentially decreasing function is
useful also for other spectral averaging bounds. See [26] for an application in
the context of Gaussian random potentials in continuum space and Section
3 in [18] for abstract criteria, when monotone contributions can be extracted
from a general alloy-type potential.


Proof. Recall that n := maxi,j∈Θ|i − j|1 and that we have assumed 0 ∈ Θ.


For k ∈ Zd let Bn(k) = {j ∈ Zd : |j−k|1 ≤ n}. The triangle inequality gives
us for all k ∈ Zd


M = max
j∈Bn(k)


∣∣αx,y(k)− αx,y(j)
∣∣


≤ 1


2
max


j∈Bn(k)


∣∣e−c|k−x|1 − e−c|j−x|1
∣∣+


1


2
max


j∈Bn(k)


∣∣e−c|k−y|1 − e−c|j−y|1
∣∣.


Since R 3 t 7→ e−ct is a convex and strictly decreasing function, we have for
all k ∈ Zd


M ≤ 1


2


∣∣e−c|k−x|1 − e−c(|k−x|1−n)
∣∣+


1


2


∣∣e−c|k−y|1 − e−c(|k−y|1−n)
∣∣


≤ αx,y(k)(ecn − 1). (30)


We use Ineq. (30) and that u(k − j) = 0 for k − j 6∈ Θ, and obtain the
estimate


W x,y(k) =
∑
j∈Zd


αx,y(k)u(k − j) +
∑
j∈Zd


[
αx,y(j)− αx,y(k)


]
u(k − j)


≥ αx,y(k)u−
∑
j∈Zd


∣∣αx,y(k)− αx,y(j)
∣∣∣∣u(k − j)


∣∣
≥ αx,y(k)u− αx,y(k)(ecn − 1)‖u‖`1 .


This implies the statement of the lemma due to the choice of c. �
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Proof of Theorem A.2. Without loss of generality we assume z ∈ C− :=
{z ∈ C | =(z) < 0}. Fix x, y ∈ Λ and recall that Λ+ is the set of lattice
sites whose coupling constant influences the potential in Λ. We consider the
expectation


E = E
{∣∣GΛ(z;x, y)


∣∣s} =


∫
ΩΛ+


∣∣〈δx, (HΛ − z)−1δy
〉∣∣sk(ωΛ+)dωΛ+ ,


where ΩΛ+ = ×k∈Λ+R, ωΛ+ = (ωk)k∈Λ+ , k(ωΛ+) =
∏
k∈Λ+


ρ(ωk) and


dωΛ+ =
∏
k∈Λ+


dωk. Fix v ∈ Λ+. We introduce the change of variables


ωv = αx,y(v)ζv, and ωk = αx,y(k)ζv + αx,y(v)ζk


for k ∈ Λ+ \ {v}, where αx,y : Zd → R+ is defined in Eq. (27). With this
transformation we obtain


E =


∫
ΩΛ+


∣∣〈δx, (−∆Λ + λVΛ − z)−1δy
〉∣∣sk(ωΛ+)dωΛ+


=


∫
ΩΛ+


∣∣〈δx, (A+ ζvλW
x,y
)−1


δy
〉∣∣sk̃(ζΛ+)dζΛ+ , (31)


where ζΛ+ = (ζk)k∈Λ+ ,


k̃(ζΛ+) = |αx,y(v)||Λ+|ρ(αx,y(v)ζv)
∏


k∈Λ+\{v}


ρ(αx,y(k)ζv + αx,y(v)ζk),


dζΛ+ =
∏
k∈Λ+


dζk, A = −∆Λ− z+αx,y(0)
∑


k∈Λ+\{0} ζku(·− k) and W x,y :


`2(Λ) → `2(Λ) is the multiplication operator with multiplication function
given by Eq. (29). Notice that A is independent of ζ0 and W x,y is positive
by Lemma A.4. We use Fubini’s theorem to integrate first with respect to
ζv. Let Px, Py : `2(Λ) → `2(Λ) be the orthogonal projection onto the state
δx and δy, respectively. The layer cake representation, see e. g. [20, p. 26],
gives us


I =


∫
R


∣∣〈δx, (A+ ζvλW
x,y
)−1


δy
〉∣∣sk̃(ζΛ+)dζv


≤
∫ ∞


0


∫
R


1{‖Px(A+ζvλWx,y)−1Py‖s>t}k̃(ζΛ+)dζvdt.


We decompose the integration domain into [0, κ] and [κ,∞) with κ > 0. In
the first integral we estimate the characteristic function one. In the second
integral we estimate k̃(ζΛ+) ≤ supζv∈R k̃(ζΛ+) and then use Lemma 3.5. This
gives


I ≤ κ
∫
R
k̃(ζΛ+)dζv +


CWλ
−1


[W x,y(x)W x,y(y)]1/2
sup
ζv∈R


k̃(ζΛ+)


∫ ∞
κ


1


t1/s
dt. (32)


We use
∫∞
κ t−1/sdt = [s/(1 − s)]κ(s−1)/s, the fact that k̃ is a probability


density and the estimate supx∈R g(x) ≤ 1
2


∫
R|g
′(x)|dx for g ∈ W 1,1(R), and
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obtain from Ineq. (31) and Ineq. (32)


E ≤ κ+
CWλ


−1 s
1−sκ


s−1
s


[W x,y(x)W x,y(y)]1/2
1


2


∫
ΩΛ+


∣∣∣∣∂k̃(ζΛ+)


∂ζv


∣∣∣∣dζΛ+ .


For the partial derivative we calculate


∂k̃(ζΛ+)


∂ζ0
= |αi,j(v)||Λ+|


∑
l∈Λ+


αi,j(l)ρ′(ωl)
∏


k∈Λ+
k 6=l


ρ(ωk),


which gives (while substituting into original coordinates)


E ≤ κ+
CWλ


−1 s
1−sκ


s−1
s


[W x,y(x)W x,y(y)]1/2
1


2


∑
l∈Λ+


|αi,j(l)|
∫


ΩΛ+


|ρ′(ωl)|
∏


k∈Λ+
k 6=l


|ρ(ωk)|dωΛ+


≤ κ+
CWλ


−1 s
1−sκ


s−1
s


[W x,y(x)W x,y(y)]1/2
1


2
D‖ρ′‖L1 ≤ κ+


CWλ
−1 s


1−sκ
s−1
s


u/2
D‖ρ′‖L1 ,


where D is the constant from Eq. (28) and where we have used that W x,y(x)
and W x,y(y) are bounded from below by u/4 by Lemma A.4. If we choose
κ = (‖ρ‖L1CW λ−12D/u)s we obtain the statement of the theorem. �
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