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Abstract


We prove new and explicit formulas for the wave operators of Schrödinger operators inR3. These formulas
put into light the very special role played by the generator of dilations and validate the topological approach
of Levinson’s theorem introduced in a previous publication. Our results hold for general (not spherically
symmetric) potentials decaying fast enough at infinity, without any assumption on the absence of eigenvalue
or resonance at 0-energy.
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1 Introduction and main theorem
The purpose of this work is to establish explicit and completely new expressions for the wave operators of
Schrödinger operators in R3, and as a by-product to validate the use of the topological approach of Levinson’s
theorem.


The set-up is the standard one. We consider in the Hilbert spaceH := L2(R3) the free Schrödinger operator
H0 := −∆ and the perturbed Schrödinger operator H := −∆+V , with V a measurable bounded real function
on R3 decaying fast enough at infinity. In such a situation, it is well-known that the wave operators


W± := s- limt→±∞ eitH e−itH0 (1.1)


exist and are asymptotically complete [2, 21, 23], and as a consequence that the scattering operator S := W ∗
+W−


is a unitary operator in H. Moreover, it is also well-known that one can write time-independent expressions for
W± by using the stationary formulation of scattering theory (see [3, 19, 25]).


Among the many features of the wave operators, their mapping properties between weighted Hilbert spaces,
weighted Sobolev spaces and Lp-spaces have attracted a lot of attention (see for instance the seminal papers
[14, 27, 28, 30] and the preprint [5] which contains an interesting historical overview and many references).
Also, recent technics developed for the study of the wave operators have been used to obtain dispersive estimates
for Schrödinger operators [6, 7, 8, 29]. Our point here, which can be inscribed in this line of general works on
wave operators, is to show that the time-independent expressions for W± can be made completely explicit, up
to a compact term. Namely, if B(H) (resp. K (H)) denotes the set of bounded (resp. compact) operators in H,
and if A stands for the generator of dilations in R3, then we have the following result:
∗This work has been done during the stay of S. Richard in Japan and has been supported by the Japan Society for the Promotion of
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Theorem 1.1. Let V satisfy |V (x)| ≤ Const. (1 + |x|)−σ with σ > 7 for almost every x ∈ R3. Then, one has
in B(H) the equalities


W− = 1 + R(A)(S − 1) + K and W+ = 1 +
(
1−R(A)


)
(S∗ − 1) + K ′, (1.2)


with R(A) := 1
2


(
1 + tanh(πA)− i cosh(πA)−1


)
and K, K ′ ∈ K (H).


We stress that the absence of eigenvalue or resonance at 0-energy is not assumed. On the other hand, if
such an implicit hypothesis is made, then the same result holds under a weaker assumption on the decay of V
at infinity. We also note that no spherical symmetry is imposed on V .


Our motivation for proving Theorem 1.1 was the observation made in [16] (and applied to various situations
in [4, 10, 17, 20, 24]) that Levinson’s theorem can be reinterpreted as an index theorem, with a proof based on
an explicit expression for the wave operators. The main idea is to show that the wave operators belong to a
certain C∗-algebra. Once such an affiliation property is settled, the machinery of non-commutative topology
leads naturally to an index theorem. In its original form, this index theorem corresponds to Levinson’s theorem;
that is, the equality between the number of bound states of the operator H and an expression (trace) involving
the scattering operator S. For more complex scattering systems, other topological equalities involving higher
degree traces can also be derived (see [15] for more explanations).


For the scattering theory of Schrödinger operators in R3, the outcomes of this topological approach have
been detailed in [18]: It has been shown how Levinson’s theorem can be interpreted as an index theorem, and
how one can derive from it various formulas for the number of bound states of H in terms of the scattering oper-
ator and a second operator related to the 0-energy. However, a technical argument was missing, and an implicit
assumption had to be made accordingly. Theorem 1.1 makes this implicit assumption no longer necessary, and
thus allows one to apply all the results of [18] (see Remark 2.8 for some more comments).


Let us now present a more detailed description of our results. As mentioned above, our goal was to obtain
an explicit formula for the wave operators, as required by the C∗-algebras framework. However, neither the
time dependant formula (1.1), nor the stationary approach as presented for instance in [25], provided us with a
sufficiently precise answer. This motivated us to show in Theorem 2.6 of Section 2 that the difference W−−1 is
unitarily equivalent to a product of three explicit bounded operators. The result is exact and no compact operator
as in the statement of Theorem 1.1 has to be added. In addition, each of the three operators is either an operator
of multiplication by an operator-valued function, or a simple function of the generator of dilation in L2(R+).
For these reasons, we expect that the formula of Theorem 2.6 might have various applications, as for example
for the mapping properties of W−. Finally, the commutation of two of the three operators reveals the presence
of the scattering operator up to a compact term, as stated in Theorem 1.1. One deduces from this new expression
for W− the corresponding expression for W+.


As a conclusion, we emphasize once more that the present work validates the use of the topological ap-
proach of Levinson’s theorem, as presented in [18]. It also implicitly shows that this C∗-algebraic approach of
scattering theory leads to new questions and new results, as exemplified by the explicit formula presented in
Theorem 1.1.


Notations: N := {0, 1, 2, . . .} is the set of natural numbers, R+ := (0,∞), and S is the Schwartz space on
R3. The sets Hs


t are the weighted Sobolev spaces over R3 with index s ∈ R associated to derivatives and index
t ∈ R associated to decay at infinity [1, Sec. 4.1] (with the convention that Hs := Hs


0 and Ht := H0
t ). The


three-dimensional Fourier transform F is a topological isomorphism ofHs
t ontoHt


s for any s, t ∈ R. Given two
Banach spaces G1 and G2, B(G1,G2) (resp. K (G1,G2)) stands for the set of bounded (resp. compact) operators
from G1 to G2. Finally, ⊗ (resp. ¯) stands for the closed (resp. algebraic) tensor product of Hilbert spaces or of
operators.


2 New expressions for the wave operators
We start by introducing the Hilbert spaces we use throughout the paper; namely,H := L2(R3), h := L2(S2) and
H := L2


(
R+; h


)
with respective scalar product 〈 · , · 〉 and norm ‖ · ‖ indexed accordingly. The Hilbert space
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H hosts the spectral representation of the operator H0 = −∆ with domain D(H0) = H2, i.e., there exists a
unitary operator F0 : H → H satisfying


(F0H0f)(λ) = λ(F0f)(λ) ≡ (LF0f)(λ), f ∈ D(H0), a.e. λ ∈ R+,


with L the maximal multiplication operator in H by the variable in R+. The explicit formula for F0 is


(
(F0f)(λ)


)
(ω) =


(
λ
4


)1/4(Ff)(
√


λω) =
(


λ
4


)1/4(
γ(
√


λ)Ff
)
(ω), f ∈ S , λ ∈ R+, ω ∈ S2, (2.1)


with γ(λ) : S → h the trace operator given by
(
γ(λ)f


)
(ω) := f(λω).


The potential V ∈ L∞(R3;R) of the perturbed Hamiltonian H := H0 + V satisfies for some σ > 0 the
condition


|V (x)| ≤ Const.〈x〉−σ, a.e. x ∈ R3, (2.2)


with 〈x〉 :=
√


1 + x2. Since V is bounded, H is self-adjoint with domain D(H) = D(H0). Also, it is well-
known [21, Thm. 12.1] that the wave operators defined by (1.1) exist and are asymptotically complete if σ > 1.
In stationary scattering theory one defines the wave operators in terms of suitable limits of the resolvents of H0


and H on the real axis. We shall mainly use this second approach, noting that for this model both definitions for
the wave operators do coincide (see [25, Sec. 5.3]).


Now, we recall from [25, Eq. 2.7.5] that for suitable f, g ∈ H the stationary expressions for the wave
operators are given by


〈
W±f, g


〉
H =


∫


R
dλ lim


ε↘0


ε


π


〈
R0(λ± iε)f,R(λ± iε)g


〉
H ,


where R0(z) := (H0 − z)−1 and R(z) := (H − z)−1, z ∈ C \ R, are the resolvents of the operators H0


and H . We also recall from [25, Sec. 1.4] that the limit limε↘0


〈
δε(H0 − λ)f, g


〉
H with δε(H0 − λ) :=


ε
π R0(λ∓ iε)R0(λ± iε) exists for a.e. λ ∈ R and that


〈
f, g


〉
H =


∫


R
dλ lim


ε↘0


〈
δε(H0 − λ)f, g


〉
H .


Thus, taking into account the second resolvent equation, one infers that


〈
(W± − 1)f, g


〉
H = −


∫


R
dλ lim


ε↘0


〈
δε(H0 − λ)f,


(
1 + V R0(λ± iε)


)−1
V R0(λ± iε)g


〉
H .


We now derive new expressions for the wave operators in the spectral representation of H0; that is, for
the operators F0(W± − 1)F ∗


0 . So, let ϕ,ψ be suitable elements of H (precise conditions will be specified in
Theorem 2.6 below), then one obtains that


〈
F0(W± − 1)F ∗


0 ϕ,ψ
〉
H


= −
∫


R
dλ lim


ε↘0


〈
V


(
1 + R0(λ∓ iε)V


)−1
F ∗


0 δε(L− λ)ϕ, F ∗
0 (L− λ∓ iε)−1ψ


〉
H


= −
∫


R
dλ lim


ε↘0


∫ ∞


0


dµ
〈{


F0V
(
1 + R0(λ∓ iε)V


)−1
F ∗


0 δε(L− λ)ϕ
}
(µ), (µ− λ∓ iε)−1ψ(µ)


〉
h
.


Using the short hand notation T (z) := V
(
1 + R0(z)V


)−1
, z ∈ C \ R, one thus gets the equality


〈
F0(W± − 1)F ∗


0 ϕ,ψ
〉
H


= −
∫


R
dλ lim


ε↘0


∫ ∞


0


dµ
〈{


F0 T (λ∓ iε)F ∗
0 δε(L− λ)ϕ


}
(µ), (µ− λ∓ iε)−1ψ(µ)


〉
h
. (2.3)


The next step is to exchange the integral over µ and the limit ε ↘ 0 in the previous expression. To do it
properly, we need a series of preparatory lemmas. First of all, we recall that for λ > 0 the trace operator γ(λ)
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extends to an element of B(Hs
t , h) for each s > 1/2 and t ∈ R and that the map R+ 3 λ 7→ γ(λ) ∈ B(Hs


t , h)
is continuous [12, Sec. 3]. As a consequence, the operator F0(λ) : S → h given by F0(λ)f := (F0f)(λ)
extends to an element of B(Hs


t , h) for each s ∈ R and t > 1/2, and the map R+ 3 λ 7→ F0(λ) ∈ B(Hs
t , h) is


continuous.
We shall now strengthen these standard results.


Lemma 2.1. Let s ≥ 0 and t > 3/2. Then, the functions


(0,∞) 3 λ 7→ λ±1/4F0(λ) ∈ B(Hs
t , h)


are continuous and bounded.


Proof. The continuity of the functions (0,∞) 3 λ 7→ λ±1/4F0(λ) ∈ B(Hs
t , h) follows from what has


been said before. For the boundedness, it is sufficient to show that the map λ 7→ λ−1/4‖F0(λ)‖B(Hs
t ,h) is


bounded in a neighbourhood of 0, and that the map λ 7→ λ1/4‖F0(λ)‖B(Hs
t ,h) is bounded in a neighbour-


hood of +∞. The first bound follows from the asymptotic development for small λ > 0 of the operator
γ(
√


λ) F ∈ B(Hs
t , h) (see [13, Sec. 5]) and the second bound follows from [26, Thm. 1.1.4] which im-


plies that the map λ 7→ λ1/4‖F0(λ)‖B(Hs
t ,h) is bounded on R+. Note that only the case s = 0 is presented in


[26, Thm. 1.1.4], but the extension to the case s ≥ 0 is trivial since Hs
t ⊂ H0


t for any s > 0.


One immediately infers from Lemma 2.1 that the function R+ 3 λ 7→ ‖F0(λ)‖B(Hs
t ,h) ∈ R is continuous


and bounded for any s ≥ 0 and t > 3/2. Also, one can strengthen the statement of Lemma 2.1 in the case of
the minus sign :


Lemma 2.2. Let s > −1 and t > 3/2. Then, F0(λ) ∈ K (Hs
t , h) for each λ ∈ R+, and the function


R+ 3 λ 7→ λ−1/4F0(λ) ∈ K (Hs
t , h) is continuous, admits a limit as λ ↘ 0 and vanishes as λ →∞.


Proof. The inclusion F0(λ) ∈ K (Hs
t , h) follows from the compact embedding Hs


t ⊂ Hs′
t′ for any s′ < s and


t′ < t (see for instance [1, Prop. 4.1.5]).
For the continuity and the existence of the limit as λ ↘ 0 one can use the same argument as the one used


in the proof of Lemma 2.1. For the limit as λ →∞, we define the regularizing operator 〈P 〉−s := (1−∆)−s/2


and then observe that λ−1/4F0(λ)〈P 〉−s = λ−1/4(1 + λ)−s/2F0(λ) for each λ ∈ R+ (see (2.1)). It follows
that limλ→∞ ‖λ−1/4F0(λ)‖B(Hs


t ,h) = 0 if and only if limλ→∞ ‖λ−1/4(1 + λ)−s/2F0(λ)‖B(Ht,h) = 0. So,
the claim follows from Lemma 2.1 (with the positive sign) as long as −1/4 − s/2 < 1/4, which is equivalent
to the condition s > −1.


From now on, we use the notation Cc(R+;G) for the set of compactly supported and continuous functions
fromR+ to some Hilbert space G. With this notation and what precedes, we note that the multiplication operator
M : Cc(R+;Hs


t ) → H given by


(Mξ)(λ) := λ−1/4F0(λ)ξ(λ), ξ ∈ Cc(R+;Hs
t ), λ ∈ R+, (2.4)


extends for s ≥ 0 and t > 3/2 to an element of B
(
L2(R+;Hs


t ),H
)
.


The next step is to deal with the limit ε ↘ 0 of the operator δε(L− λ) in Equation (2.3). For that purpose,
we shall use the continuous extension of the scalar product 〈 · , · 〉H to a duality 〈 · , · 〉Hs


t ,H−s
−t


between Hs
t and


H−s
−t .


Lemma 2.3. Take s ≥ 0, t > 3/2, λ ∈ R+ and ϕ ∈ Cc(R+; h). Then, we have


lim
ε↘0


∥∥F ∗
0 δε(L− λ)ϕ−F0(λ)∗ϕ(λ)


∥∥
H−s
−t


= 0.
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Proof. By definition of the norm of H−s
−t , one has


∥∥F ∗
0 δε(L− λ)ϕ−F0(λ)∗ϕ(λ)


∥∥
H−s
−t


= sup
f∈S , ‖f‖Hs


t =1


∣∣∣
〈
f, F ∗


0 δε(L− λ)ϕ−F0(λ)∗ϕ(λ)
〉
Hs


t ,H−s
−t


∣∣∣


= sup
f∈S , ‖f‖Hs


t
=1


∣∣∣∣∣
1
π


∫ ∞


0


dµ


〈
F0(µ)f,


ε


(µ− λ)2 + ε2
ϕ(µ)


〉


h


− 〈
F0(λ)f, ϕ(λ)


〉
h


∣∣∣∣∣


≤ sup
f∈S , ‖f‖Hs


t
=1


∣∣∣∣∣
1
π


∫ ∞


0


dµ


〈(
F0(µ)−F0(λ)


)
f,


ε


(µ− λ)2 + ε2
ϕ(µ)


〉


h


∣∣∣∣∣ (2.5)


+ sup
f∈S , ‖f‖Hs


t
=1


∣∣∣∣∣
1
π


∫ ∞


0


dµ


〈
F0(λ)f,


ε


(µ− λ)2 + ε2


(
ϕ(µ)− ϕ(λ)


)〉


h


∣∣∣∣∣ (2.6)


+ sup
f∈S , ‖f‖Hs


t
=1


∣∣∣∣∣
1
π


∫ ∞


0


dµ


〈
F0(λ)f,


ε


(µ− λ)2 + ε2
ϕ(λ)


〉


h


− 〈
F0(λ)f, ϕ(λ)


〉
h


∣∣∣∣∣ (2.7)


Clearly, the term (2.7) converges to 0 as ε ↘ 0, as expected. Furthermore, the term (2.5) converges to 0 as
ε ↘ 0 because of the continuity and the boundedness of the function λ 7→ ‖F0(λ)‖B(Hs


t ,h) (mentioned just
after Lemma 2.1) together with the boundedness of the map λ 7→ ‖ϕ(λ)‖h. Finally, the term (2.6) also converges
to 0 as ε ↘ 0 because of the continuity and the boundedness of the function λ 7→ ϕ(λ) ∈ h together with the
boundedness of the function λ 7→ ‖F0(λ)‖B(Hs


t ,h).


The next necessary result concerns the limits T (λ ± i0) := limε↘0 T (λ ± iε), λ ∈ R+. Fortunately, it is
already known (see for example [13, Lemma 9.1]) that if σ > 1 in (2.2) then the limit


(
1+R0(λ+ i0)V


)−1 :=
limε↘0


(
1 + R0(λ + iε)V


)−1 exists in B(H−t,H−t) for any t ∈ (1/2, σ− 1/2), and that the map R+ 3 λ 7→(
1+R0(λ+ i0)V


)−1 ∈ B(H−t,H−t) is continuous. Corresponding results for T (λ+ iε) follow immediately.
Note that only the limits from the upper half-plane have been computed in [13], even though similar results for
T (λ− i0) could have been derived. Due to this lack of information in the literature and for the simplicity of the
exposition, we consider from now on only the wave operator W−.


Lemma 2.4. Take σ > 5 in (2.2) and let t ∈ (5/2, σ − 5/2). Then, the function


R+ 3 λ 7→ λ1/4 T (λ + i0)F0(λ)∗ ∈ B(h,Hσ−t)


is continuous and bounded, and the multiplication operator B : Cc


(
R+; h


) → L2(R+;Hσ−t) given by


(Bϕ)(λ) := λ1/4 T (λ + i0)F0(λ)∗ϕ(λ) ∈ Hσ−t, ϕ ∈ Cc


(
R+; h


)
, λ ∈ R+, (2.8)


extends to an element of B
(
H , L2(R+;Hσ−t)


)
.


Proof. The continuity of the function λ 7→ λ1/4 T (λ + i0)F0(λ)∗ ∈ B(h,Hσ−t) follows from what has been
said before. For the boundedness, it is sufficient to show that the function


R+ 3 λ 7→ λ1/4
∥∥T (λ + i0)F0(λ)∗


∥∥
B(h,Hσ−t)


(2.9)


is bounded in a neighbourhood of 0 and in a neighbourhood of +∞.
For λ > 1, we know from [13, Lemma 9.1] that the function λ 7→ ‖T (λ + i0)‖B(H−t,Hσ−t) is bounded.


We also know from Lemma 2.1 that the function R+ 3 λ 7→ λ1/4‖F0(λ)∗‖B(h,H−t) is bounded. Thus, the
function (2.9) stays bounded in a neighbourhood of +∞.


For λ in a neighbourhood of 0, we use asymptotic developments for T (λ + i0) and F0(λ)∗. The de-
velopment for F0(λ)∗ (to be found in [13, Sec. 5]) can be written as follows. For each s ∈ R, there exist
γ∗0 , γ∗1 ∈ B(h,Hs


−t) such that


F0(λ)∗ =
(


λ
4


)1/4(
γ∗0 − iλ1/2γ∗1 + o(λ1/2)


)
in B


(
h,Hs


−t


)
as λ ↘ 0.
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The development for T (λ + i0) as λ ↘ 0 has been computed in [13, Lemmas 4.1 to 4.5]. It varies drastically
depending on the presence of 0-energy eigenvalue and/or 0-energy resonance. We reproduce here the most
singular behavior possible (cf. [13, Lemma 4.5]) :


T (λ + i0) = λ−1V P0V − iλ−1/2 C + O(1) in B(H1
−t;Hσ−t) as λ ↘ 0,


with P0 the orthogonal projection onto ker(H) and C ∈ B(H1
−t;Hσ−t). Now, using these expressions for


F0(λ)∗ and T (λ + i0), one can write λ1/4T (λ + i0)F0(λ)∗ as a sum of terms bounded in B(h,Hσ−t) as
λ ↘ 0 plus a term 1√


2
λ−1/2V P0V γ∗0 which is apparently unbounded. However, we know from the proof of


[13, Thm. 5.3] that P0V γ∗0 = 0. Thus, all the terms in the asymptotic development of λ1/4 T (λ + i0)F0(λ)∗


are effectively bounded in B(h,Hσ−t) as λ ↘ 0, and thus the claim about boundedness is proved. The claim
on the operator B is then a simple consequence of what precedes.


Remark 2.5. If one assumes that H has no 0-energy eigenvalue and/or no 0-energy resonance, then one can
prove Lemma 2.4 under a weaker assumption on the decay of V at infinity. However, even if the absence of
0-energy eigenvalue and 0-energy resonance is generic, we do not want to make such an implicit assumption in
the sequel. The condition on V is thus imposed adequately.


Before deriving our main result, we recall the action of the dilation group {U+
τ }τ∈R in L2(R+), namely,


(
U+


τ f
)
(λ) := eτ/2 f(eτ λ), f ∈ Cc(R+), λ ∈ R+, τ ∈ R,


and denote its self-adjoint generator by A+. We also introduce the function ϑ ∈ C(R) ∩ L∞(R) given by


ϑ(ν) :=
1
2
(
1− tanh(2πν)− i cosh(2πν)−1


)
, ν ∈ R. (2.10)


Finally, we recall that the Hilbert spaces L2(R+;Hs
t ) and H can be naturally identified with the Hilbert spaces


L2(R+)⊗Hs
t and L2(R+)⊗ h.


Theorem 2.6. Take σ > 7 in (2.2) and let t ∈ (7/2, σ − 7/2). Then, one has in B(H ) the equality


F0(W− − 1)F ∗
0 = −2πiM


{
ϑ(A+)⊗ 1Hσ−t


}
B, (2.11)


with M and B defined in (2.4) and (2.8).


The proof below consists in two parts. First, we show that the expression (2.3) is well-defined for ϕ and
ψ in dense subsets of H (and thus equal to


〈
F0(W± − 1) F ∗


0 ϕ, ψ
〉
H


due to the computations presented
at the beginning of the section). Second, we show that the expression (2.3) is equal to


〈 − 2πi M
{
ϑ(A+) ⊗


1Hσ−t


}
Bϕ,ψ


〉
H


.


Proof. Take ϕ ∈ Cc(R+; h) and ψ ∈ C∞c (R+) ¯ C(S2), and set s := σ − t > 7/2. Then, we have for each
ε > 0 and λ ∈ R+ the inclusions


gε(λ) := λ1/4 T (λ + iε)F ∗
0 δε(L− λ)ϕ ∈ Hs and f(λ) := λ−1/4F0(λ)∗ψ(λ) ∈ H−s .


It follows that the expression (2.3) is equal to


−
∫


R
dλ lim


ε↘0


∫ ∞


0


dµ
〈
T (λ + iε)F ∗


0 δε(L− λ)ϕ, (µ− λ + iε)−1 F0(µ)∗ψ(µ)
〉
Hs,H−s


= −
∫


R+


dλ lim
ε↘0


∫ ∞


0


dµ


〈
gε(λ),


λ−1/4µ1/4


µ− λ + iε
f(µ)


〉


Hs,H−s


.
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Now, using the formula (µ − λ + iε)−1 = −i
∫∞
0


dz ei(µ−λ)z e−εz and then applying Fubini’s theorem,
one obtains that


lim
ε↘0


∫ ∞


0


dµ


〈
gε(λ),


λ−1/4µ1/4


µ− λ + iε
f(µ)


〉


Hs,H−s


= −i lim
ε↘0


∫ ∞


0


dz e−εz


〈
gε(λ),


∫ ∞


0


dµ ei(µ−λ)z λ−1/4µ1/4f(µ)
〉


Hs,H−s


= −i lim
ε↘0


∫ ∞


0


dz e−εz


〈
gε(λ),


∫ ∞


−λ


dν eiνz


(
ν + λ


λ


)1/4


f(ν + λ)
〉


Hs,H−s


. (2.12)


Furthermore, the integrant in (2.12) can be bounded independently of ε ∈ (0, 1). Indeed, one has
∣∣∣∣∣ e−εz


〈
gε(λ),


∫ ∞


−λ


dν eiνz


(
ν + λ


λ


)1/4


f(ν + λ)
〉


Hs,H−s


∣∣∣∣∣


≤ ∥∥gε(λ)
∥∥
Hs


∥∥∥∥
∫ ∞


−λ


dν eiνz


(
ν + λ


λ


)1/4


f(ν + λ)
∥∥∥∥
H−s


, (2.13)


and we know from Lemma 2.3 and the paragraph following it that gε(λ) converges to g0(λ) := λ1/4 T (λ +
i0)F ∗


0 (λ)ϕ(λ) in Hs as ε ↘ 0. Therefore, the family ‖gε(λ)‖Hs (and thus the r.h.s. of (2.13)) is bounded by a
constant independent of ε ∈ (0, 1).


In order to exchange the integral over z and the limit ε ↘ 0 in (2.12), it remains to show that the second
factor in (2.13) belongs to L1(R+, dz). For that purpose, we denote by hλ the trivial extension of the function
(−λ,∞) 3 ν 7→ (


ν+λ
λ


)1/4
f(ν + λ) ∈ H−s to all of R, and then note that the second factor in (2.13) can be


rewritten as (2π)1/2‖(F ∗
1 hλ)(z)‖H−s , with F1 the one-dimensional Fourier transform. To estimate this factor,


observe that if P1 denotes the self-adjoint operator −i∇ on R, then
∥∥(


F ∗
1 hλ


)
(z)


∥∥
H−s


= 〈z〉−2
∥∥(


F ∗
1 〈P1〉2hλ


)
(z)


∥∥
H−s


, z ∈ R+ .


Consequently, one would have that ‖(F ∗
1 hλ)(z)‖H−s ∈ L1(R+, dz) if the norm


∥∥(
F ∗


1 〈P1〉2hλ


)
(z)


∥∥
H−s


were
bounded independently of z. Now, if ψ = η⊗ξ with η ∈ C∞c (R+) and ξ ∈ C(S2), then one has for any x ∈ R3


(
f(ν + λ)


)
(x) =


1
4π3/2


η(ν + λ)
∫


S2
dω ei


√
ν+λω·x ξ(ω).


Therefore, one has


(
hλ(ν)


)
(x) =


{
1


4π3/2


(
ν+λ


λ


)1/4
η(ν + λ)


∫
S2 dω ei


√
ν+λω·x ξ(ω) ν > −λ


0 ν ≤ −λ,
(2.14)


which in turns implies that ∣∣{(
F ∗


1 〈P1〉2hλ


)
(z)


}
(x)


∣∣ ≤ Const.〈x〉2,
with a constant independent of x ∈ R3 and z ∈ R+. Since the r.h.s. belongs to H−s for s > 7/2, one
concludes that


∥∥(
F ∗


1 〈P1〉2hλ


)
(z)


∥∥
H−s


is bounded independently of z for each ψ = η ⊗ ξ, and thus for each
ψ ∈ C∞c (R+)¯C(S2) by linearity. As a consequence, one can apply Lebesgue dominated convergence theorem
and obtain that (2.12) is equal to


−i


〈
g0(λ),


∫ ∞


0


dz


∫


R
dν eiνz hλ(ν)


〉


Hs,H−s


.


With this equality, one has concluded the first part of the proof; that is, one has justified the equality between
the expression (2.3) and


〈
F0(W± − 1)F ∗


0 ϕ,ψ
〉
H


on the dense sets of vectors introduced at the beginning of
the proof.
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The next task is to show that
〈
F0(W±− 1)F ∗


0 ϕ,ψ
〉
H


is equal to
〈− 2πiM


{
ϑ(A+)⊗ 1H−s


}
Bϕ, ψ


〉
H


.
For that purpose, we write χ+ for the characteristic function for R+. Since hλ has compact support, we obtain
the following equalities in the sense of distributions (with values in H−s) :


∫ ∞


0


dz


∫


R
dν eiνz hλ(ν) =


√
2π


∫


R
dν


(
F ∗


1 χ+


)
(ν)hλ(ν)


=
√


2π


∫ ∞


−λ


dν
(
F ∗


1 χ+


)
(ν)


(
ν + λ


λ


)1/4


f(ν + λ)


=
√


2π


∫


R
dµ


(
F ∗


1 χ+


)(
λ(eµ−1)


)
λ e5µ/4 f(eµ λ) (eµ λ := ν + λ)


=
√


2π


∫


R
dµ


(
F ∗


1 χ+


)(
λ(eµ−1)


)
λ e3µ/4


{(
U+


µ ⊗ 1H−s


)
f
}
(λ).


Then, by using the fact that F ∗
1 χ+ =


√
π
2 δ0 + i√


2π
Pv 1


( ·) with δ0 the Dirac delta distribution and Pv the
principal value, one gets that


∫ ∞


0


dz


∫


R
dν eiνz hλ(ν) =


∫


R
dµ


(
πδ0(eµ−1) + iPv


e3µ/4


eµ−1


) {(
U+


µ ⊗ 1H−s


)
f
}
(λ).


So, by considering the identity


e3µ/4


eµ−1
=


1
4


(
1


sinh(µ/4)
+


1
cosh(µ/4)


)


and the equality [11, Table 20.1]


(
F1ϑ̄


)
(ν) :=


√
π


2
δ0


(
eν −1


)
+


i


4
√


2π
Pv


(
1


sinh(ν/4)
+


1
cosh(ν/4)


)
,


with ϑ defined in (2.10), one infers that
〈
F0(W− − 1)F ∗


0 ϕ,ψ
〉
H


= i


∫


R+


dλ


〈
g0(λ),


∫


R
dµ


{
πδ0


(
eµ−1


)


+
i


4
Pv


(
1


sinh(µ/4)
+


1
cosh(µ/4)


)}{(
U+


µ ⊗ 1H−s


)
f
}
(λ)


〉


Hs,H−s


= i
√


2π


∫


R+


dλ


〈
g0(λ),


∫


R
dµ


(
F1ϑ̄


)
(µ)


{(
U+


µ ⊗ 1H−s


)
f
}
(λ)


〉


Hs,H−s


.


Finally, by recalling that
{
ϑ(A+) ⊗ 1H−s


}
f = 1√


2π


∫
R dµ


(
F1ϑ̄


)
(µ)


(
U+


µ ⊗ 1H−s


)
f , that g0(λ) = (Bϕ)(λ)


and that f = M∗ψ, one obtains


〈
F0(W− − 1)F ∗


0 ϕ,ψ
〉
H


= 2πi


∫


R+


dλ
〈
(Bϕ)(λ),


{(
ϑ(A+)∗ ⊗ 1H−s


)
M∗ψ


}
(λ)


〉
Hs,H−s


=
〈− 2πiM


{
ϑ(A+)⊗ 1H−s


}
Bϕ,ψ


〉
H


.


This concludes the proof, since the sets of vectors ϕ ∈ Cc(R+; h) and ψ ∈ C∞c (R+) ¯ C(S2) are dense in
H .


We now derive a technical lemma which will be essential for the proof of Theorem 1.1.
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Lemma 2.7. Take s > −1 and t > 3/2. Then, the difference
{
ϑ(A+)⊗ 1h


}
M −M


{
ϑ(A+)⊗ 1Hs


t


}


belongs to K
(
L2(R+;Hs


t ), H
)
.


Proof. (i) The unitary operator G : L2(R) → L2(R+) given by


(G f)(λ) := λ−1/2f
(
ln(λ)


)
, f ∈ C∞c (R), λ ∈ R+,


satisfies (G ∗ U+
τ G f)(x) = f(x + τ) and (G ∗ eiτ ln(L) G f)(x) = eiτx f(x) for each x, τ ∈ R, with L the


maximal multiplication operator in L2(R+) by the variable in R+. It follows that G ∗A+G = P1 on D(P1) and
that G ∗ ln(L) G = X1 on D(X1), with P1 and X1 the self-adjoint operators of momentum and position in
L2(R).


Now, take f1, f2 two complex-valued continuous functions on R having limits at ±∞; that is, f1, f2 ∈
C([−∞,∞]). Then, a standard result of Cordes implies the inclusion [f1(P1), f2(X1)] ∈ K


(
L2(R)


)
(see


for instance [1, Thm. 4.1.10]). Conjugating this inclusion with the unitary operator G , one thus infers that[
f1(A+), f3(L)


] ∈ K
(
L2(R+)


)
with f3 := f2 ◦ ln ∈ C([0,∞]).


(ii) We know from Lemma 2.2 and Definition (2.4) that


(Mξ)(λ) := m(λ)ξ(λ), ξ ∈ Cc(R+;Hs
t ), λ ∈ R+,


with m ∈ C
(
[0,∞];K (Hs


t , h)
)
. We also know that the algebraic tensor product C([0,∞]) ¯ K (Hs


t , h) is
dense in C


(
[0,∞];K (Hs


t , h)
)
, when C


(
[0,∞];K (Hs


t , h)
)


is equipped with the uniform topology (see [22,
Thm. 1.15]). So, for each ε > 0 there exist n ∈ N∗, aj ∈ C([0,∞]) and bj ∈ K (Hs


t , h) such that such that∥∥M −∑n
j=1 aj(L) ⊗ bj


∥∥
B(L2(R+;Hs


t ),H )
< ε. Therefore, in order to prove the claim, it is sufficient to show


that the operator


{
ϑ(A+)⊗ 1h


}
{


n∑


j=1


aj(L)⊗ bj


}
−


{
n∑


j=1


aj(L)⊗ bj


}
{
ϑ(A+)⊗ 1Hs


t


}
=


n∑


j=1


[
ϑ(A+), aj(L)


]⊗ bj (2.15)


is compact. But, we know that bj ∈ K (Hs
t , h) and that


[
ϑ(A+), aj(L)


] ∈ K
(
L2(R+)


)
due to point (i). So,


it immediately follows that the operator (2.15) is compact, since finite sums and tensor products of compact
operators are compact operators (see [9, Thm. 2]).


Before giving the proof of Theorem 1.1, we recall the action of the dilation group {Uτ}τ∈R in H, namely,
(
Uτf


)
(x) := e3τ/2 f(eτ x), f ∈ Cc(R3), x ∈ R3, τ ∈ R,


and denote its self-adjoint generator by A. The image F0R(A)F ∗
0 of R(A) := 1


2


(
1+tanh(πA)−i cosh(πA)−1


)
in B(H ) can be easily computed. Indeed, one has the decomposition F0 = U F , with U : H → H given by(
(U f)(λ)


)
(ω) :=


(
λ
4


)1/4
f(
√


λω) for each f ∈ S , λ ∈ R+ and ω ∈ S2. Furthermore, one has the identities
FAF ∗ = −A on D(A) and U AU ∗ = 2A+ ⊗ 1h on D(A+ ⊗ 1h). Therefore, one obtains that


F0R(A)F ∗
0 = ϑ(A+)⊗ 1h.


Proof of Theorem 1.1. Set s = 0 and t ∈ (7/2, σ − 7/2). Then, we deduce from Theorem 2.6, Lemma 2.7 and
the above paragraph that


W− − 1 = −2πiF ∗
0 M


{
ϑ(A+)⊗ 1Hσ−t


}
BF0


= −2πiF ∗
0


{
ϑ(A+)⊗ 1h


}
MBF0 + K


= R(A)F ∗
0 (−2πiMB)F0 + K,
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with K ∈ K (H). Comparing −2πiMB with the usual expression for the scattering matrix S(λ) (see for
example [13, Eq. (5.1)]), one observes that −2πiMB =


∫ ⊕
R+


dλ
(
S(λ) − 1


)
. Since F0 defines the spectral


representation of H0, one obtains that


W− − 1 = R(A)(S − 1) + K. (2.16)


The formula for W+ − 1 follows then from (2.16) and the relation W+ = W−S∗.


Remark 2.8. Formulas (1.2) were already obtained in [18] under an implicit assumption. The only difference
is that the operator R(A) is replaced in [18] by an operator ϕ(A) slightly more complicated. The resulting
formulas for the wave operators differ by a compact term, but compact operators do not play any role in
the algebraic construction (both expressions for the wave operators belong to the C∗-algebra constructed in
[18, Sec. 4] and thus coincide after taking the quotient by the ideal of compact operators). Consequently, the
topological approach of Levinson’s theorem presented in [18] also applies here, with the implicit assumption
no longer necessary.
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