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LOCAL BEHAVIOR NEAR QUASI–PERIODIC SOLUTIONS OF
CONFORMALLY SYMPLECTIC SYSTEMS


RENATO C. CALLEJA, ALESSANDRA CELLETTI, AND RAFAEL DE LA LLAVE


Abstract. We study the behavior of conformally symplectic systems near rotational
Lagrangian tori. We recall that conformally symplectic systems appear for example in
mechanical models including a friction proportional to the velocity.


We show that in a neighborhood of these quasi–periodic solutions (either transi-
tive tori of maximal dimension or periodic solutions), one can always find a smooth
symplectic change of variables in which the time evolution becomes just a rotation in
some direction and a linear contraction in others. In particular quasi–periodic solutions
of contractive (expansive) diffeomorphisms are always local attractors (repellors). We
present results when the systems are analytic, Cr or C∞. We emphasize that the results
presented here are non–perturbative and apply to systems that are far from integrable;
moreover, we do not require any assumption on the frequency and in particular we do
not assume any non–resonance condition.


We also show that the system of coordinates can be computed rather explicitly and
we provide iterative algorithms, which allow to generalize the notion of “isochrones”.
We conclude by showing that the above results apply to quasi–periodic conformally
symplectic flows.
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1. Introduction


The goal of this paper is to study the behavior of conformally simplectic (contrac-


tive without loss of generality) mappings and flows in the neighborhood of an invariant


torus, where the motion is equivalent to a rotation. In particular, we consider rotational


Lagrangian tori; the corresponding quasi–periodic solutions might be associated to a tran-


sitive torus of maximal dimension (whose solution corresponding to a non–resonant – i.e.,


irrational, eventually Diophantine – frequency vector fills densely the torus) or a peri-


odic torus (associated to a resonant frequency vector). These conformal systems appear


in mechanical systems affected by a friction proportional to the velocity (a very com-


mon modeling assumption). The persistence of quasi–periodic solutions in conformally


symplectic systems has been studied extensively. For our purposes, the most relevant


reference is [7], since we will use some of the results there and we adopt the geometric


point of view of that paper.


In this paper we show that, given a quasi–periodic solution, there is a neighborhood in


which the motion is conjugate to a very simple motion, namely a rotation in the angles


and a constant contraction in the actions (see Theorem 2 for a precise formulation).


In particular we show that all the maximal invariant tori (i.e., invariant tori with as


many frequencies as the number of degrees of freedom) of these conformally symplectic


systems are local attractors (or repellors).
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We would like to emphasize that the results of this paper are non–perturbative, they


apply to systems that are far from integrable and without any Diophantine condition on


the rotation. We just need to assume that a quasi–periodic solution exists. Of course, the


existence of quasi–periodic solutions can be established by a variety of methods, some of


which use Diophantine properties and proximity to integrable.


The method of proof starts by showing that a similar result is true infinitesimally. This


is the phenomenon of automatic reducibility observed in [7] which shows that, given a


quasi–periodic solution, there is a system of coordinates around the torus that makes the


linearized evolution to be just constant coefficients. Hence, in a small neighborhood, we


can get that the system (being close to the linearization) is close to a linear contraction


in the actions and a rotation.


Once we have that the system is close to a constant skew–product, we use a method


similar to the proof in [26] of Poincaré’s linearization theorem [24]. One small wrinkle


is that we need to use a deformation method as in [22, 27] to ensure that the change of


variables giving the linearization is symplectic.


In Section 4.2.1 we show how these arguments can be transformed into algorithms.


This also leads to some theoretical consequences such as 1) finite differentiable results,


2) relation with the theory of isochrones and perturbative expansion of the solution, 3)


an alternative proof of the convergence based on the majorant method.


Moreover, we also show that the results obtained here also apply to quasi–periodic


perturbations of systems with dissipation, which have been considered in the literature


([5, 13, 14]). However, our method does not require that the system is analytic or close


to the integrable case (see Section 5).


2. Definitions and statement of the results


In this section we provide the definitions of conformally symplectic systems and of


invariant tori; then we state the main result about a local model in the neighborhood of


an invariant attractor.


2.1. Conformally symplectic systems. LetM be a symplectic manifold of dimension


2n, endowed with the standard scalar product and a symplectic form Ω. We say that


f :M→M is a conformally symplectic diffeomorphism when


f ∗Ω = λΩ (2.1)
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for some λ real. Indeed, one can also assume that λ is a function, say λ :M→ R, but


we will always consider the case of λ constant. For continuous systems we say that the


flow ft :M→M is a conformally symplectic flow, when


f ∗t Ω = eηt Ω (2.2)


for some η real.


Remark 1. When n = 1, taking as Ω the area form, any mapping admits a non–constant


function λ. In these circumstances, there are results on linearization in neighborhoods,


but they require extra assumptions and they involve other considerations.


We will not consider the case of non–constant λ here, which can only happen when


n = 1; as it is well known ([3]), when n ≥ 2 and M is connected, conformally symplectic


systems occur only when λ is a constant function.


In [3] there are even more general definitions that are also called “conformally sym-


plectic”. In this paper, however, we will stick to the definitions (2.1), (2.2).


We note that conformally symplectic flows are generated by conformally symplectic vec-


tor fields. Taking derivatives of (2.2) with respect to time, using the definition of the


generator vector field Ft such that d
dt
ft = Ft ◦ ft, we obtain:


(ft)
∗(iFtdΩ + d(iFtΩ)) = ηeηtΩ ,


where iFt denotes the contraction with the vector field Ft. Using dΩ = 0 and (2.2), we


obtain


d(iFtΩ) = ηΩ . (2.3)


If furthermore Ω = dα, then (2.3) becomes d(iFtΩ) = d(ηα). Hence, iFtΩ = ηα + G, for


some function G with dG = 0. If we write G = dH, we obtain


iFtΩ = ηα + dH ; (2.4)


the vector fields satisfying (2.4) are called “exact conformally symplectic” fields. Clearly,


all exact conformally symplectic fields are conformally symplectic. The converse is not


necessarily true. Similarly, a diffeomorphism f is exact conformally symplectic, whenever


there exists a single–valued function P such that


f ∗α = λα + dP .


However, in this paper exactness will not play an important role.


We will henceforth assume |λ| < 1 or η < 0. The complementary cases |λ| > 1 and


η > 0 can be obtained by considering f−1 and f−t. We will not consider the case |λ| = 1
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(the symplectic case); indeed, the results obtained in this paper are not true for |λ| = 1


(it is well known that the coefficients of the Birkhoff normal forms near an invariant torus


are symplectic invariants). A very thorough discussion of Birkhoff normal forms near tori


in symplectic maps can be found in [15].


2.2. Invariant tori. Given ω ∈ Rn, we denote by Tω : Tn → Tn the shift


Tω(θ) = θ + ω .


We say that an embedding K : Tn → M (M of dimension 2n) defines a rotational


invariant torus for f , whenever the following invariance equation is satisfied:


f ◦K = K ◦ Tω . (2.5)


Similarly for flows the embedding K defines a rotational invariant torus when


ft ◦K = K ◦ Tωt . (2.6)


Note that if K is an embedding, then K = K(Tn) is a diffeomorphic copy of the torus.


2.2.1. Lagrangian properties of rotational tori in conformally symplectic mappings. We


say that a parameterized torus of dimension n is Lagrangian if


K∗Ω = 0 , (2.7)


which in coordinates is equivalent to


DKT (θ) J ◦K(θ) DK(θ) = 0 . (2.8)


We remark that tori that satisfy (2.7) are called isotropic in symplectic geometry.


When the dimension of the torus is half of the dimension of the phase space, they are


called Lagrangian.


We will now show in detail that all rotational invariant tori (of any dimension) are


isotropic. The reason why rotational tori are isotropic is that


(f ◦K)∗Ω = K∗f ∗Ω = λK∗Ω


(K ◦ Tω)∗Ω = T ∗ωK
∗Ω .


If the torus is a rotational torus, both items in the formula above are equal. Writing


A(θ) ≡ DKT (θ) J ◦K(θ) DK(θ) (A is the matrix representation of K∗Ω ), we obtain


λA(θ) = A(θ + ω) .


Hence, supθ |A(θ)| = |λ| supθ |A(θ)|; since |λ| 6= 1, it is easy to show that A ≡ 0.


We call attention to the fact that the argument above is much simpler than the better


known argument for symplectic maps, where, in order to conclude that that torus is







6 R. CALLEJA, A. CELLETTI, AND R. DE LA LLAVE


symplectic, one needs to assume that the rotation is not resonant (i.e. ω · k /∈ Z for all


k ∈ Zn − {0}) and that the mapping is exact symplectic. In the conformally symplectic


case, we do not need either of these assumptions.


Of course, when the frequency is not resonant, the motion on the torus is minimal (i.e.


all the orbits are dense). When there are some resonances, the torus consists of a family


of invariant tori each with minimal dynamics.


We emphasize that the results in this paper remain valid even in the case of resonant


tori. We just need that the torus is Lagrangian, which in our case is ensured by the fact


that the dimension of the torus is the same as the number of degrees of freedom.


2.3. Local models near an invariant torus. When considering the neighborhood


of an invariant torus, we can assume, without loss of generality, that the manifold M
coincides with a manifold M0 defined as


M0 ≡ Tn ×B ,


where B is a ball of Rn around zero. An important property of M0 is that it is an Eu-


clidean manifold, so that we can add vectors based at different points, compute averages


and perform operations that are useful for analysis, even if geometrically unnatural (and,


hence, not possible in arbitrary manifolds). Another important property of M0 is that


it has natural complex extensions, so that it will be easy to deal with analytic functions.


We considerM0 endowed with the Euclidean scalar product 〈, 〉 and we denote by J the


matrix corresponding to the symplectic matrix, namely if u, v ∈ TxM, then one has


Ω(u, v) = 〈J(x)u, v〉 .


We note that in M0 there is a standard symplectic form


Ω0 =
n∑
i=1


dAi ∧ dθi , (2.9)


where Ai are the coordinates in B ⊂ Rn and θi are the coordinates on Tn.


An important example of a conformally symplectic mapping with respect to Ω0 is given


by the mapping


f0(A, θ) = (λA, θ + ω) (2.10)


and similarly for flows we introduce


f 0
t (A, θ) = (eηtA, θ + ωt) . (2.11)


Notice that (2.10) and (2.11) provide a constant contraction in the actions and a rotation


by ω in the angles. For ρ > 0 we introduce the following complex domains of a torus Tn,
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of a set B and of a manifold M:


Tn
ρ ≡ {z = x+ iy ∈ Cn/Zn : x ∈ Tn , |yj| ≤ ρ , j = 1, ..., n}


Bρ ≡ {z = x+ iy ∈ Cn : x ∈ B , |yj| ≤ ρ , j = 1, ..., n}


Mρ = Tn
ρ ×Bρ .


For analytic functions in a domain Mρ which extend continuously to the closure, we


introduce the standard norm


‖f‖Mρ = sup
z∈Mρ


|f(z)| ; (2.12)


similarly for functions with more components. It is standard that the space of analytic


functions in a domain extending to continuous functions in the boundary is a Banach


space endowed with this norm.


Having fixed the notations, we state the main result concerning the conjugation to a


rotation and a contraction near a rotational, Lagrangian invariant torus.


Theorem 2. Let (M,Ω) be a 2n–dimensional analytic symplectic manifold, f an an-


alytic conformally symplectic contractive diffeomorphism as in (2.1) (respectively, ft be


an analytic conformally symplectic flow as in (2.2)). Let ω ∈ Rn and assume that there


exists an analytic embedding K : Tn →M, such that (2.5) (respectively, (2.6)) and (2.8)


are satisfied. Then, there exists ρ > 0 and an analytic diffeomorphism g defined from


Mρ to a neighborhood of K = K(Tn) in such a way that:


g−1 ◦ f ◦ g =f0


g∗Ω0 =Ω


g(θ, 0) =K(θ) ,


(2.13)


where f0 is given in (2.10), Ω0 is given in (2.9) and, respectively, for flows we have


g−1 ◦ ft ◦ g =f 0
t


g∗Ω0 =eηtΩ


g(θ, 0) =K(θ) ,


where f 0
t , η are given in (2.11).


We remark that in Theorem 2 we do not impose any non–resonance condition on ω;


Theorem 2 applies even to ω ∈ Qn. There exist similar results for finite differentiable


mappings, which will be discussed and proved in Section 4.1. We notice that Theorem 2


implies that quasi–periodic solutions are local attractors.
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Remark 3. Notice that the solutions of the first equation in (2.13) are always non unique


in the following sense. Assume that g solves


f ◦ g = g ◦ f0 (2.14)


and define Aσ,µ(θ, s) ≡ (θ + σ, µs) for σ ∈ Tn, µ ∈ R. Note that, with this notation,


f0 = Aω,λ.


We note that these mappings A commute. Hence, we have:


f ◦ (g ◦ Aσ,µ) = g ◦ f0 ◦ Aσ,µ = (g ◦ Aσ,µ) ◦ f0 ,


namely, if g solves (2.14), so does g̃ ≡ g ◦ Aσ,µ for any σ ∈ Tn, µ ∈ R\{0}; moreover,


g̃ is a diffeomorphism. This non–uniqueness can be understood by saying that we can


choose the origin of the angle variables and the scale of the linear variables.


We will show later, at the end of Section 4.2.1 that, when ω is an irrational translation,


this is the only non–uniqueness of (2.14). The second condition of (2.13), g∗Ω0 = Ω,


fixes the parameter µ, while the origin of the phase remains arbitrary.


3. Proof of Theorem 2


The proof of Theorem 2 starts with the observation that the automatic reducibility


introduced in [7] provides an approximate solution of (2.13) (i.e., a solution up to O(A2)).


The second step consists in using a deformation method as in [22], [4] to modify the


first approximate conjugation (which is not necessarily symplectic), so that it is also


symplectic (the modification has to be done only to the high order terms to ensure that


it is still an approximate solution). After that, there are several standard methods to


show that we can use this approximate solution to construct a true solution.


In this section, we have chosen to present a method based on the pioneering work


described in [26]. It is interesting to note that, because of the conformal symplectic


properties, the map behaves very much like a one–dimensional map. Another standard


method, which could be useful in more complicated situations, is the deformation method


described in [4]. As we will see later, this method works also for Cr systems, r ∈ N, or


in C∞. Later, in Section 4.3 we will present a method based on the classic method of


majorants, which only works for analytic systems. The method of majorants was the


main tool available at the time of [24].


We note that the second step (getting the symplectic form to be Ω0) can be omitted


at the only price that we do not require that the symplectic form coincides with Ω0.
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We provide the proof of Theorem 2 for mappings; the proof for flows is a straightforward


extension of that for mappings and it is left to the reader.


3.1. A system of coordinates and an approximate solution of (2.13) in a neigh-


borhood of the torus. The goal of this section is to produce an approximate solution


of (2.13), see Lemma 5. This will be an almost immediate consequence of the following


Lemma 4 (see Section 3 of [7]), that we will use in a neighborhood of the torus.


Lemma 4. LetM be a symplectic manifold and let f be an analytic conformally symplec-


tic manifold with symplectic form Ω, such that f ∗Ω = λΩ with λ ∈ R, |λ| < 1. Assume


that K : Tn → M is an analytic embedding, that ω ∈ Rn is such that (2.5) holds and


that K(Tn) is a Lagrangian manifold.


Let us define the quantity


N(θ) = (DK(θ)T DK(θ))−1 (3.1)


and let


M̃(θ) = M(θ)


(
Id B(θ)
0 Id


)
, (3.2)


where


M(θ) = [DK(θ) | J−1 ◦K(θ)DK(θ)N(θ)] . (3.3)


Let B satisfy the equation


B(θ) + S(θ)− λB(θ + ω) = 0 , (3.4)


where


P (θ) = DK(θ)N(θ)


γ(θ) = DK(θ)T J−1 ◦K(θ)DK(θ)


S(θ) = P (θ + ω)T Df ◦K(θ) J−1 ◦K(θ)P (θ)− λN(θ + ω)T γ(θ + ω)N(θ + ω) .


Then, one has


Df ◦K(θ) M̃(θ) = M̃(θ + ω)


(
Id 0
0 λ Id


)
, (3.5)


MT J ◦K M = J0 , (3.6)


where


J0 =


(
0 Id
− Id 0


)
. (3.7)
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Proof. Let M and N be as in (3.3), (3.1). According to [7], one has that


Df ◦K(θ)M(θ) = M(θ + ω)


(
Id S(θ)
0 λ Id


)
.


From this relation we obtain:


Df ◦K(θ)M̃(θ) = M(θ + ω)


(
Id S(θ)
0 λ Id


)(
Id B(θ)
0 Id


)
= M̃(θ + ω)


(
Id −B(θ + ω)
0 Id


)(
Id S(θ)
0 λ Id


)(
Id B(θ)
0 Id


)
= M̃(θ + ω)


(
Id −λB(θ + ω) + S(θ) +B(θ)
0 λ Id


)
.


Defining B(θ) such that (3.4) is satisfied, then we obtain (3.5). Notice that (3.4) does


not involve zero divisors for any ω ∈ Rn and that it can be solved whenever |λ| 6= 1; on


the contrary, if |λ| = 1 there appear zero divisors and one needs to impose a constraint


on the frequency. Indeed, if |λ| < 1, an explicit solution of (3.4) is given by


B(θ) =
∑
j≥0


λjS(θ + jω) . (3.8)


Note that the formula (3.8) allows us to estimate the norm of the solution for any trans-


lation invariant norm (e.g., the analytic norms introduced in (2.12) or the Cr norm):


‖B‖ ≤
∑
j≥0


λj‖S ◦ Tjω‖ = (1− λ)−1‖S‖ .


This estimate will be used later in order to prove the convergence of the series. We


conclude by stating that (3.6) is a consequence of (3.1), (3.3), (3.7) and (2.8). �


Note that M̃(θ) is an analytic matrix valued function. The geometric meaning of


Lemma 4 is that around the points in K = K(Tn), we can find a frame of vectors


such that when we express a vector in this frame, the action of the derivative is just a


multiplication by the matrix


(
Id 0
0 λ Id


)
. The vectors which get transported by Df


are precisely the vectors in the tangent space to K. The existence of this frame is a


requirement considerably stronger than the assumptions in [11, 12], so that we will be


able to obtain stronger conclusions than those drawn in [11, 12, 19]. The following lemma


provides an approximate solution in the neighborhood of the invariant torus.


Lemma 5. With the notations of Lemma 4, consider the analytic diffeomorphism h :


M0 →M, defined by


h(θ, s) = K(θ) + [M̃(θ)]2 s ,
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where [M̃(θ)]2 denotes the second column of M̃(θ) in the block decomposition of (3.2).


Then, one has:


f ◦ h(θ, 0) = h(θ + ω, 0)


Df ◦ h(θ, 0) Dθh(θ, 0) = Dθh(θ + ω, 0)


h∗Ω = Ω0 +O(s2) . (3.9)


Proof. We note that for |s| sufficiently small, it is clear that h is a diffeomorphism into


the range, which is a consequence of the implicit function theorem, because


Dθh(θ, 0) = DK(θ)


Dsh(θ, 0) = [M̃(θ)]2 . (3.10)


The relations (3.9) are a consequence of (2.5), (3.5) and (3.10). In particular, the last


relation is true because Dh(θ, 0) = M(θ) and we have (3.6). �


3.2. Making the approximate conjugation symplectic. The goal of this section is


to prove the following Lemma 6, which is a simple consequence of Moser’s deformation


technique ([22]).


Lemma 6. Let Ω̃ be an analytic symplectic form, such that |(Ω̃ − Ω0)|(θ, s) = O(|s|2).


Then, there exists an analytic diffeomorphism k, defined as


k(θ, s) = (θ, s) +O(|s|2) (3.11)


in such a way that


(k−1)∗Ω̃ = Ω0 .


The proof of Lemma 6 follows by just going over the procedure of the deformation


method of the global Darboux theorem (see [22], [27]). The goal is to check that we


preserve the analyticity and the fact that (3.11) holds.


Proof. Following the deformation method of [22], [27], we set


Ωε = εΩ̃ + (1− ε)Ω0 , 0 ≤ ε ≤ 1 .


We note that Ωε = Ω0 + O(|s|2) uniformly in ε and, since the non–degeneracy is an


open condition, then Ωε is non degenerate for small s uniformly in ε. Note also that


dΩε = εdΩ̃ + (1− ε)dΩ0 = 0.


We now try to find a family of diffeomorphisms kε such that


k∗ε Ωε = Ω0 , k0 = Id . (3.12)
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We see that if we write
d


dε
kε = Fε ◦ kε


for a generator vector field Fε, then using Cartan’s magic formula (3.12) is equivalent to


d(iFεΩε) + iFε dΩε +
d


dε
Ωε = 0 ,


which provides


d(iFεΩε) + (Ω̃− Ω0) = 0 . (3.13)


Since Ωε is non degenerate and Ωε − Ω0 = O(|s|2), we obtain that we can find a unique


Fε, defined for |s| ≤ s0 for some s0 � 1, satisfying (3.13). This function Fε is uniformly


analytic in ε, namely Fε is analytic on Tn
ρ × Bρ and there it is uniformly bounded in ε.


Moreover, we have


|Fε(θ, s)| ≤ C|s|2 ∀θ ∈ Tn .


By Gronwall’s inequality we conclude that k1 is defined in a small neighborhood of the


torus and it satisfies:


|k1(θ, s)− (θ, s)| ≤ C|s|2 ∀θ ∈ Tn .


Of course, k1 is also analytic since it is the solution of an analytic differential equation. �


If we apply Lemma 6 to the case Ω̃ = (h−1)∗Ω, where h is the local diffeomorphism


produced in Lemma 5, we obtain a diffeomorphism k. Then, one has that h̃ = k ◦ h
satisfies


h̃−1 ◦ f ◦ h̃ = f0 +O(|s|2)


(h̃−1)∗Ω = Ω0


(h̃−1 ◦ f ◦ h̃)∗Ω0 = λΩ0 . (3.14)


The first line in (3.14) is proven as follows. Let us first remark that for any v = v(θ), as


a consequence of (3.5) one has that


Df ◦K(θ) v(θ) = λ v(θ + ω) . (3.15)


Then, we prove that


f ◦ h̃ = h̃ ◦ f0 +O(|s|2) .


In fact, expanding the left hand side to the second order, one has


f ◦ h̃(θ, 0) +Df ◦ h̃(θ, 0) Dsh̃(θ, 0) s = h̃(θ, s) ◦ f0 +O(|s|2) ,


which, using Lemma 5, corresponds to


f ◦K(θ) +Df ◦K(θ) [M̃(θ)]2 s = K(θ + ω) + [M̃(θ + ω)]2 λ s+O(|s|2) ,
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which is true due to (2.5) and (3.15).


The second of (3.14) comes from applying Lemma 6 to Ω̃, while the third relation comes


from the first of (3.14).


3.3. End of the proof of Theorem 2. In this section we complete the proof of Theo-


rem 2. As it turns out, the method that was used in [26] for one–dimensional mappings


allows to prove our result. Let


f̃ = h̃−1 ◦ f ◦ h̃ . (3.16)


Remember that now we have two mappings in M0, namely f̃ and f0, which are defined


in (3.16) and (2.10), respectively. Both of them are λ–conformal for Ω0 and one has


|f0(θ, s)− f̃(θ, s)| = O(|s|2) ∀θ ∈ Tn .


Since f̃ is obtained from f through analytic changes of variables, which also preserve the


geometry, Theorem 2 will be established as soon as we produce an analytic symplectic


mapping that conjugates f̃ and f0 in a neighborhood of {s = 0} on M0. Both f̃ , f0 are


analytic and we can consider their extensions to Mρ.


Following [26] we consider


gj = f−j0 ◦ f̃ j .


Note that


f0 ◦ gj = f
−(j−1)
0 ◦ f̃ j−1 ◦ f̃ = gj−1 ◦ f̃ .


Furthermore, since both f̃ , f0 are λ–conformally symplectic for Ω0, then gj is symplectic


for Ω0 and we also have


gj({s = 0}) = {s = 0}


Dgj|{s=0} = Id .


Hence, as soon as we show that gj converges uniformly in Mρ to g (for some ρ > 0),


it will follow that the limit g satisfies that g is symplectic for Ω0 and that the following


relation holds true:


|g(θ, s)− (θ, s)| = O(|s|2) ∀θ ∈ Tn .


We notice that the argument for the convergence of gj is very similar to Cook’s method


in scattering theory (see [23] for developments of the analogy between scattering theory


and equivalence of dynamical systems). Then we have:


‖gj−1 − gj‖Mρ = ‖f−(j−1)
0 ◦ f̃ j−1 − f−(j−1)


0 ◦ (f0)
−1 ◦ f̃ ◦ f̃ j−1‖Mρ


≤ ‖f−(j−1)
0 − f−(j−1)


0 ◦ (f0)
−1 ◦ f̃‖f̃j−1(Mρ)


.
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We now observe that


f̃ j−1Mρ ⊂ M(λ+ε)j−1ρ ,


where ε = ε(ρ) decreases to zero as ρ tends to zero. Since f0 and f̃ are tangent, we have


that


‖f−1
0 ◦ f̃ − Id ‖M


(λ+ε)j−1ρ
≤ C(λ+ ε)2(j−1)ρ ,


for some constant C > 0.


By the mean value theorem, since Lip(f−1
0 ) ≤ λ−1, we have


‖gj−1 − gj‖Mρ ≤ Cλ−(j−1)(λ+ ε)2(j−1)ρ . (3.17)


The requirement that |λ+ ε| < 1 can be met by assuming that ρ is sufficiently small.


The sum of the above terms provides a geometric series which is absolutely convergent


(recall that |λ| < 1 and ε is arbitrarily small); this concludes the proof of Theorem 2.


Note also that the above argument shows that the gj’s also send bounded domains into


bounded domains.


4. Some complements and extensions of the proof


As it can be seen from the previous sections, the method of proof is very flexible and


it can lead to several other results with minor modifications, as we are going to describe


below.


4.1. Finite differentiable and C∞ results. Notice that the first two steps of the proof


(the automatic reducibility and the deformation to obtain the symplectic nature of the


conjugacy) require only that the maps have two derivatives. The conjugating maps thus


obtained loose two derivatives with respect to the original map.


As for the last step of the proof of Theorem 2, namely the scattering method described


in Section 3.3, it is also valid for finite differentiable maps or for C∞ maps (the latter


case was considered in [26]). In fact, we show now that an inequality of the type (3.17)


holds whenever the norm is computed over Cr(M) for some r > 0, instead than over the


space of analytic functions in Mρ.


Since f0 is an affine function, it is clear that ‖Df−j0 ‖C0 = λ−j and Dkf−j0 = 0 for


k ≥ 2. Using the above relations and that f0 is affine, we get:


‖gj − gj−1‖Cr(M) ≤ Cλ−(j−1)‖(f−1
0 ◦ f̃ − Id) ◦ f̃ j−1‖Cr(M) .
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Here and in what follows, we denote by C terms that are independent of j. To estimate


the expression above, we use Faa-Di-Bruno formula [2, 10, 1], as well as estimates for


derivatives of highly iterated functions [9, p. 574],[4].


We denote by γ ≡ f−1
0 ◦ f̃ − Id; by Faa-di-Bruno formula, we have:


Dk(γ ◦ f̃ j−1)


=
∑


m1+2m2+···kmk=k


C(k,m1, · · ·mk)(D
m1+···+mkγ) ◦ f̃ j−1(Df̃ j−1)⊗m1 · · · (Dkf̃ j−1)⊗mk ,


(4.1)


where C(k,m1, · · · ,mk) = k!/(m1! · · ·mk!). Our goal is to show that if we estimate


the C0 norm of all the terms on the right hand side of (4.1), we obtain series that are


summable in j when multiplied by the factor λ−(j−1). In this way, we will obtain that


λ−(j−1)Dk(γ ◦ f̃ j−1) can be summed in j.


The estimates of highly iterated functions in [9, p. 574] and [4], give the following


estimates (which are somewhat pessimistic):


‖Dlf̃ j−1‖C0(M) ≤ Cl(λ+ ε)j−1(j − 1)l+1 , l > 0 .


Hence, we can estimate the terms in the sum at the right hand side of (4.1) by


‖(Dm1+···+mkγ) ◦ f̃ j−1(Df̃ j−1)⊗m1 · · · (Dkf̃ j−1)⊗mk‖C0(M)


≤ C(λ+ ε)(j−1)
Pk
i=1mi(j − 1)(k+1)


Pk
i=1mi .


(4.2)


Of course, the dominant term in (4.2) is the exponential factor, while the polynomial


factor is subdominant. We note that since
∑k


i=1 imi = k, we have
∑k


i=1mi ≥ 2 except


in the case mk = 1,mk−1 = mk−2 = ... = m1 = 0. This establishes easily that (4.2) is


a series summable in j, except when mk = 1,mk−1 = mk−2 = ... = m1 = 0. This latter


case will require a more precise argument that we develop now.


When mk = 1,mk−1 = mk−2 = ... = m1 = 0, we observe that (4.2) is too conservative.


In this case, ‖(Dm1+···+mkγ) ◦ f̃ j−1‖C0(M) = ‖(Dγ) ◦ f̃ j−1‖C0(M) and we can estimate


‖(Dγ) ◦ f̃ j−1‖C0(M) ≤ C(λ+ ε)j−1 ,


because, as we have argued, γ vanishes up to second order and f j−1 is exponentially close


to the attractor. Hence, the C0 norm of the term at the right hand side of (4.1) corre-


sponding to mk = 1,mk−1 = mk−2 = ... = m1 = 0, which is just ‖(Dγ) ◦ f̃ j−1Df̃ j−1‖C0 ,


can be estimated by C(λ + ε)2(j−1)(j − 1)2, which gives rise to a convergent series in j


when multiplied by (λ+ ε)−(j−1).
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Therefore, we see that


‖γ ◦ f̃ j−1‖Cr(M) ≤ C(λ+ ε)2(j−1)(j − 1)2r


(we are very wasteful in the polynomial terms, to simplify the expressions, since the


exponential terms are subdominant and do not play any role) and, hence we obtain


‖gj − gj−1‖Cr(M) ≤ Cλ−(j−1)(λ+ ε)2(j−1)(j − 1)2r ,


which, together with the convergence in C0 – established in our study of the analytic


case – shows that gj converges in Cr.


We note that the ρ required in the above argument may depend on r. To establish


the C∞ result, we observe, following [26], that the domain where the series
∑


j ||gj −
gj−1||Cr(Mρ) converges is independent of r. Indeed, assume that we have the conjugacy


in an open set Ur around the torus. Using the invariance equation (2.13), we see that


g = f−1 ◦ g ◦ f0, so that we can extend the definition to f−1
0 (Ur). The extended function


is clearly as differentiable as g|Ur . Repeating the argument n times, we obtain that we


can define the function g in f−n0 (Ur) and that it is Cr there. Taking n sufficiently large,


we obtain Mρ ⊂ f−n0 (Ur).


4.2. Relation with the theory of isochrones. An important consequence of (2.13)


is that the stable manifolds (in the sense of the theory of normally hyperbolic manifolds)


admit a topological characterization.


In the theory of normally hyperbolic manifolds, the stable manifold at K(θ) is defined


as


W st
K(θ) ≡ {y ∈ Rn : |fn(y)− fn(K(θ))| ≤ Cε(λ+ ε)n, n > 0, 0 < ε� 1} .


Note that for general normally hyperbolic manifolds, W st
K(θ) is not a topological invariant


(it involves a rate of convergence, which is not a topological invariant).


In our case, we have the following equalities; in particular, note that the last one shows


that, for our systems, W st
K(θ) has a topological characterization:


W st
K(θ) ≡ {y ∈ Rn : |fn(y)− fn(K(θ))| ≤ Cε(λ+ ε)n, n > 0, 0 < ε� 1}


= {y ∈ Rn : |fn(y)− fn(K(θ))| ≤ Cλn, n > 0}


= {y ∈ Rn : λ−n|fn(y)− fn(K(θ))| → C, n > 0}


= {y ∈ Rn : |fn(y)− fn(K(θ))| → 0 , n→ +∞} .


(4.3)


Note that (4.3) states that the set of points whose orbits converge to the orbit of K(θ)


is the same as the set of points whose orbits converge exponentially fast with multiplier
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λ to the orbit of K(θ). Furthermore, according to (4.3) the optimal exponential rate is


reached (i.e., no polynomial corrections are needed) and indeed, the rate is optimal.


Remark 7. We note that a corollary of the above argument is that for all v ∈ TxW st
K(θ):


lim
n→∞


|Dfn(x)v|1/n = λ ,


so that λ is the Lyapunov number along the directions of the stable manifold.


There are, of course, other directions that have Lyapunov multiplier 1 and these are


all the Lyapunov multipliers that appear in the system.


Let us denote by W st,loc
K(θ) the intersection of the connected component of the stable


manifold including the torus with a neighborhood of the torus (say s ≤ s0 for some s0


small). Taking into account that


fn(g(θ, s)) = g(fn0 (θ, s)) = g(θ + nω, λns) ,


we obtain that W st,loc
K(θ) can be characterized as the image of vertical lines (i.e., holding θ


fixed) under the map g:


W st,loc
K(θ) = {g(θ, s) : s ∈ Rn} . (4.4)


Of course, for general normally hyperbolic manifolds, there could be points whose orbits


converge sub–exponentially (e.g. polynomially) or it could happen that there are no


points which converge to the optimal exponential rate (e.g. they could converge as


λnnp).


The reason why (4.3), (4.4) are true is that a similar set of equivalences holds true


for the map f0 (this uses the fact that the map f0 is the product of a rotation and a


contraction). For f0 the set of points whose orbit converges to the orbit of θ is precisely


the points with the same θ. The orbits of these points converge locally with the optimal


exponential rate.


Once we know that this characterization is true for the map f0, we observe that since


g is a diffeomorphism, it preserves not only the fact that orbits converge, but also the


rates of convergence.


Remark 8. The geometric meaning of W st
K(θ) is the set of points which asymptotically


have the same phase as the point K(θ). Therefore, for limit cycles these sets were named


isochrones in [28], where their importance in biology is also presented. The relation of


isochrones to stable manifolds was pointed out in [16]. Our results show that the concept


of isochrones can also be extended to quasi–periodic solutions of conformally symplectic


systems.
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4.2.1. Computational aspects. An important practical consequence of (4.3) is that g sat-


isfies some functional equations (2.13) that make its computation possible. Indeed, the


case of limit cycles has been considered in [17, 20] and related algorithms have been


presented in [21] for the symplectic case. We observe that, if we write


g(θ, s) =
∑
`∈Z+


g`(θ)s
`


and if we substitute this expansion in (2.13), equating terms of the same order in s, we


obtain


f ◦ g0 = g0 ◦ Tω
Df ◦ g0 g1 = λg1 ◦ Tω
...


Df ◦ g0 g` = λ`g` ◦ Tω + S` , ` ≥ 2 ,


(4.5)


where S` is a polynomial expression in g1, · · · , g`−1. It is a rather explicit expression,


because it is obtained by applying the chain rule. In practice, each expression in (4.5)


can be readily computed using the methods of automatic differentiation ([6], [18]). Hence,


one can consider (4.5) as a recursive set of equations. We can assume inductively that


g0, g1, . . . .g`−1 are known and then use the third equation of (4.5) to find g`. As we


will see, the equations for ` = 0, 1 are special, but then there is a systematic unique


solution for all ` ≥ 2. Notice also the similarity of this procedure with the Lindstedt


series which appear in Celestial Mechanics. However, in contrast with the Lindstedt


series, the estimate of our series is elementary, since they do not contain small divisors


(for example, the classical majorant method suffices as we are going to describe below).


The first equation of (4.5) admits a solution showing that we can take g0 to be the


parameterization K of an invariant torus. When ω is irrational, once we choose the torus


to study, the only free choice is the origin of coordinates, so that there is uniqueness


up to a translation. As indicated in the automatic reducibility procedure described in


Lemma 4, the second equation of (4.5) admits the solution g1 = J−1 ◦ g0 Dg0 N ; such


solution is unique up to a multiple.


The equations for ` ≥ 2 are readily solvable as we will show. We note that using the


automatic reducibility and writing g` = M̃u` with M̃ as in (3.2), we obtain that the last


equation in (4.5) becomes


Df ◦ g0 M̃u` = λ`M̃ ◦ Tω u` ◦ Tω + S` , (4.6)
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where the only unknown is now u`. Using (3.2) and (3.5), the equation (4.6) becomes(
Id 0
0 λ Id


)
u` − λ`u` ◦ Tω = M̃−1 ◦ TωS` . (4.7)


We can write the equation (4.7) as a system of two equations using the component


notation u` =


(
(u`)1


(u`)2


)
. We obtain that (4.7) is equivalent to


(u`)1 − λ`(u`)1 ◦ Tω =
(


(M̃)−1 ◦ TωS`
)


1


λ(u`)2 − λ`(u`)2 ◦ Tω =
(


(M̃)−1 ◦ TωS`
)


2
.


(4.8)


Note that the second equation of (4.8) is equivalent to


(u`)2 − λ`−1(u`)2 ◦ Tω = λ−1
(


(M̃)−1 ◦ TωS`
)


2
.


We see that for ` ≥ 2, both equations in (4.8) admit a unique solution similar to that


in (3.8). Therefore, we see that, once we choose u1 (and, of course, u0), then all the


coefficients u`, ` ≥ 2, are uniquely determined. Furthermore, we have recursive bounds


‖u`‖Mρ ≤ C‖S`‖Mρ . (4.9)


We therefore, conclude that the only solutions of the conjugacy equation are obtained


just by changing the origin in the equation or by scaling the linear coordinates. These


are the non–uniqueness that we had already observed in Remark 3.


Remark 9. Notice that, as a corollary of the uniqueness, we obtain that for analytic


systems all solutions of the conjugacy equation which have the appropriate scale factor


are automatically symplectic. The reason is that we have established in Theorem 2 that


there exists a symplectic solution; the solutions with a different scale factor cannot be


symplectic. It is possible to give a geometric proof of this fact, which has the advantage


that it applies also to finite differentiable maps. One can really understand this because we


can construct the conjugacy also by h = limj→∞ hj ≡ limj→∞ f
−j
0 ◦D(h◦f j)◦f j. Imposing


that Dh ◦ f satisfies (3.6), we obtain h∗jΩ = Ω0 and hence the symplectic property.


4.3. Convergence of the series by the majorant method. For the sake of com-


pleteness, we present the proof of the convergence of the perturbative series developed


in (4.5) using the method of majorants; this was the method of proof that was used in


[24] (see also [25]). It is a general method to show convergence of formal solutions of


functional equations. It was widely used at the time of [24], but it was superseded by


techniques based on implicit function methods, so it has sort of disappeared. Of course,
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one can also give a treatment of the convergence of our problem using implicit func-


tion theorems in Banach spaces too. Since the proof of convergence in our problem is


only moderately more complicated than the case of the one–dimensional map in [24], we


decided to include also a presentation of the majorant method.


Of course, at the time of [24], the method was used for numerical series and the goal


was to estimate the absolute value. With a modern perspective, it is straightforward to


remark that one can use it also for series of functions in a Banach space, and the role of


the absolute value is taken by the norm.


The goal of the majorant method is to estimate a recursion of the form generated by


(4.8), namely


u` = Γ`(u1, . . . , u`−1) , (4.10)


where u` are functions in a Banach space and Γ` is a polynomial. We expand Γ` as


Γ`(u1, . . . , u`−1) =
∑
k


a`k1...k`−1
uk11 . . . u


k`−1


`−1


where a`k1...k`−1
are multilinear operators.


In our application, the polynomial Γ` is obtained from (4.8) as D−1
b ((M̃)−1 ◦ TωS`),


where Db is given by Dbu = bu− λ`u ◦ Tω. We take b = 1 in the first component, b = λ


in the second component and S` is the coefficient of order ` in the Taylor expansion


(compare with (4.5)). The important point is that, for ` ≥ 2, D−1
b is a bounded operator


and that the bound is independent of `.


The majorant method is based on the following elementary general result that we will


later apply in our case for appropriate choices of the majorant recurrence.


Proposition 10. Assume that we can find a sequence of real polynomials Υ`, ` ≥ 2, with


positive coefficients, say Υ`(σ1, . . . , σ`−1) =
∑


k b`k1...k`−1
σk11 . . . σ


k`−1


`−1 , such that Υ` is a


majorant of Γ`, namely


|a`k1...k`−1
| ≤ b`k1...k`−1


.


Assume that σ1 ≥ ||u1||. Denote by σ` the solution of the recursion:


σ` = Υ`(σ1, . . . , σ`−1) , ` ≥ 2 ;


then, the solutions of the recursion (4.10) satisfy the inequality


||u`|| ≤ σ` . (4.11)


Proof. The proof of Proposition 10 is clearly by induction, using that Υ` is monotone


in all its arguments. By definition, (4.11) holds true for ` = 1. For ` ≥ 2, assume that
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‖uj‖ ≤ σj for 1 ≤ j ≤ `− 1; then, one has


‖u`‖ = ‖Γ`(u1, ..., u`−1)‖


≤
∑
k


|a`k1...k`−1
| σk11 . . . σ


k`−1


`−1


≤
∑
k


b`k1...k`−1
σk11 . . . σ


k`−1


`−1


= Υ`(σ1, . . . , σ`−1) ≡ σ` .


�


To prove the convergence of the solution of (4.8) using Proposition 10 we make some


choices for the majorant Υ`, so that we can show that ||u`|| ≤ σ`, where σ` ≤ η` for


some η ∈ R+. Equivalently (by Cauchy bounds), we show that σ(z) =
∑


j≥1 σjz
j is an


analytic function in a neighborhood of z = 0.


To this end, the first observation is that, because f is analytic, then for some µ ∈ R+,


we have for α = (α1, ..., αn) ∈ Zn
+ and for all θ ∈ Tρ:


1


α!
|(Dαf) ◦K(θ)| ≤ µ|α| .


Since S` is the sum of terms composed by the above derivative of f ◦ K times some


powers of uj, applying the triangle inequality in the sum of terms defining the expression


of S`, due to (4.9) we see that we can take Υ` to be the coefficient of order ` in z in the


expansion of ∑
n≥2


µn(
∑
j≥1


σjz
j)n =


(µ
∑


j≥1 σjz
j)2


1− µ
∑


j≥1 σjz
j


(notice that the term for n = 1 coincides with the linear term in gn ◦ Tω appearing in


(4.5)).


We write:


σ(z) = σ1z + σ>(z) = σ1z +
∑
j≥2


σjz
j .


We see that the recursion σ` = Υ`(σ1, . . . , σ`−1) is equivalent to the fact that σ(z) satisfies


σ>(z) =
(µσ(z))2


1− µσ(z)
(4.12)


or, equivalently,


σ1z + σ>(z) =
(µ(σ1z + σ>(z)))2


1− µσ1z − µσ>(z)
+ σ1z . (4.13)
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It is easy to see that, if we fix σ1, one can find, by algebraic manipulations, a σ>(z) solving


(4.13). This solution is clearly analytic in a neighborhood of z = 0. By Proposition 10, we


have that ||u`|| ≤ σ`, so that the perturbative series converges in a small neighborhood.


5. Extension of the results to quasi–periodic perturbations


The goal of this section is to present an elementary construction that allows to extend


the results presented before to quasi–periodic perturbations. The motivation is that


quasi–periodic perturbations of conformally symplectic systems have been widely consid-


ered in the literature (see [5, 13], where a one–dimensional dissipative system subject to


a quasi–periodic forcing term has been considered).


The construction will be quite elementary and it is an analogue of the standard sym-


plectic extensions considered very often in the treatment of periodic or quasi–periodic


Hamiltonian systems.


5.0.1. Definitions. We recall that a quasi–periodic map F and a quasi–periodic vector


field X are given, respectively, by:


F (x, ϕ) = (f(x, ϕ), ϕ+ ν)


(ẋ, ϕ̇) = (X(x, ϕ), ν) ,
(5.1)


where x lies in a phase space P , ϕ ∈ T`, ν ∈ R` and f : P × T` → P . For flows,


X(x, ϕ) ∈ TxP , ϕ ∈ T`, ν ∈ TϕT` = R`.


A quasi–periodic solution of (5.1) is an embedding K of Td × T` into P satisfying


f(K(θ, ϕ), ϕ) = K(θ + ω, ϕ+ ν)


ω · ∂θK(θ, ϕ) + ν∂ϕK(θ, ϕ) = X(θ, ϕ) .


Notice that we are not assuming any irrationality condition on ω, ν, which could even


be rationals. In particular, our quasi–periodic solutions include as special cases families


of periodic solutions, for which the results remain valid. Other results (e.g., the KAM


theory in [7, 8]) require Diophantine conditions.


The quasi–periodic map F is conformally symplectic, when P has a symplectic form Ω


and, for every ϕ, defining fϕ : P → P by f(x, ϕ) = fϕ(x), we have


(fϕ)∗Ω = λΩ .


Similarly, a flow is conformally symplectic if for every ϕ we have


LX(·,ϕ)Ω = ηΩ .
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Note that for a fixed ϕ, X(·, ϕ) is a vector field in P and L is the Lie derivative in P .


Again, we remark that quasi–periodic flows are generated by quasi–periodic vector fields.


5.1. Main construction. The goal is now to show that all the above constructions


embed naturally in a conformally symplectic system of higher dimension. In this way,


we can apply the main result of Theorem 2 to the extended system and we can obtain


results for our original system.


We consider P̃ = P × Tn × Rn and we equip it with the symplectic form Ω̃ = Ω ⊕∑n
j=1 dAj ∧ dϕj. Given a quasi–periodic map F as above, we extend it as P̃ by


F̃ (x, ϕ,A) = (f(x, ϕ), ϕ+ ν, λA) .


Similarly, we extend a quasi–periodic flow by introducing X̃ as


X̃(x, ϕ,A) = (X(x, ϕ), ν, ηA) .


It is immediate to check that if F (respectively, X) is quasi–periodic conformally sym-


plectic, then F̃ (respectively, X̃) is conformally symplectic.


Given a quasi–periodic solution and K as above, we extend it as (respectively, in the case


of maps and in the case of flows)


K̃(θ, ϕ) = (K(θ, ϕ), ϕ+ ν, λA) , K̃(θ, ϕ) = (K(θ, ϕ), ν, ηA) .


It is also immediate to realize that, if K is a quasi–periodic solution for the map F , then


F̃ ◦ K̃ = K̃ ◦ Tω,ν
(ω∂θ, ν∂ϕ)K = X̃ ◦ K̃ ,


where Tω,ν is such that K̃ ◦ Tω,ν(θ, ϕ) = K̃(θ + ω, ϕ+ ν).


5.2. Some elementary consequences of the construction. It follows from the above


construction that, if we are given a quasi–periodic solution of a quasi–periodic system,


then we can determine a solution of the extended system.


Applying the main result, we can find a neighborbood of the orbit in which the system


is conjugate to the linearized version, say F̃0.


This leads to a non–autonomous linearization, when we eliminate the added variables


in the extended system and, in particular, to the fact that the quasi–periodic solution is


attractive.


Remark 11. Notice that we are not claiming that this construction suffices to extend


the KAM theorem in [7] that shows stability of the quasi–periodic solutions. The fact is
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that the KAM theorem of [7] requires non–degeneracy assumptions that are not verified


by the extended system and that are not created by the extension.


On the other hand, we mention that there is indeed a KAM theorem for quasi–periodic


perturbations, but this requires more sophisticated arguments, than using the constructions


presented here to reduce it to [7]. Some of such theorems have been presented in [14].


Another line of argument, close to that in [7] is to observe that perturbations of quasi–


periodic systems are very special and one can develop for them a theorem with weaker


non–degeneracy assumptions (compare with [8]).


5.2.1. Relations with the perturbative approach. In [5, 13] a one–dimensional dissipative


system of the form


ẍ+ γẋ+ g(x) = f(ωt)


is studied, where γ > 0 is the dissipative coefficient, g : R → R, f : Tn → R, are real


analytic functions, ω ∈ Tn is the forcing frequency. The analysis of this system is based


on the study of the response solution, namely the solution which is quasi–periodic with


frequency equal to the forcing frequency. For γ large enough, the solution is explicitly


constructed through a perturbative approach in ε ≡ 1/γ, provided some conditions are


fulfilled, precisely that ω satisfies the Bryuno condition and that there exists a zero x0


of odd order m of the equation g(x) − f̄ = 0, being f̄ the average of f . Under such


assumptions, the response solution provides a local attractor (see [5, 13]).


In the geometrically natural language of Section 3.1, the response solution associated


to a vector field X t is given by DX t ◦K(θ). The automatic reducibility developed in [7]


shows that DX t ◦K(θ) is conjugated to


(
Id 0
0 eηt Id


)
and the conjugating matrix is the


matrix M given explicitly in (3.3). We note that the construction leading to (3.5) is non–


perturbative, but it also makes sense when K is substituted by a perturbative expansion


(e.g., a formal sum of trees). We stress that the solution obtained in the present paper is


very general and, in particular, it does not require any assumption on ω (like the Bryuno


condition) or on the vector field.
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[27] A. Weinstein. Lectures on Symplectic Manifolds, volume 29 of CBMS Regional Conf. Ser. in Math.


Amer. Math. Soc., Providence, 1977.
[28] A. T. Winfree. Patterns of phase compromise in biological cycles. J. Math. Biol., 1(1):73–95,


1974/75.







