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1 Introduction


The first existence results of quasi-periodic solutions for Hamiltonian PDE were proved by Kuksin [18] and
Wayne [26] for one dimensional (1-d) nonlinear wave (NLW) and nonlinear Schrödinger (NLS) equations,
extending KAM theory. This approach consists in generating iteratively a sequence of canonical changes
of variables which bring the Hamiltonian into a normal form with an invariant torus at the origin. This
procedure requires, at each step, to invert linear “homological equations”, which have constant coefficients
and can be solved by imposing the “second order Melnikov” non-resonance conditions. The final KAM
torus is linearly stable. These pioneering results were limited to Dirichlet boundary conditions because
the eigenvalues of ∂xx had to be simple: the second order Melnikov non resonance conditions are violated
already for periodic boundary conditions.


In such a case, the first existence results of quasi-periodic solutions were proved by Bourgain [8]
extending the approach of Craig-Wayne [14] for periodic solutions. The search of the embedded torus is
reduced to solving a functional equation in scales of Banach spaces, by some Newton implicit function
procedure. The main advantage of this scheme is to require only the “first order Melnikov” non-resonance
conditions to solve the homological equations. These conditions are essentially the minimal non-resonance
assumptions. Translated in the KAM language this corresponds to allow a normal form with non-
constant coefficients around the torus. The main difficulty is that the homological equations are PDEs
with non-constant coefficients and are small perturbations of a diagonal operator having arbitrarily small
eigenvalues.


At present, the theory for 1-d NLS and NLW equations has been sufficiently understood (see e.g. [19],
[21], [20], [22], [13], [1]) but much work remains in higher space dimensions. The main difficulties are:


1. the eigenvalues of −∆ + V (x) appear in clusters of unbounded sizes,


2. the eigenfunctions are “not localized with respect to the exponentials”.


Roughly speaking, an eigenfunction ψj of −∆ + V (x) is localized with respect to the exponentials,
if its Fourier coefficients (ψ̂j)i rapidly converge to zero (when |i − j| → ∞). This property always
holds in 1 space dimension (see [14]) but may fail for d ≥ 2, see [10]. It implies that the matrix
which represents (in the eigenfunctions basis) the multiplication operator for an analytic function has an
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exponentially fast decay off the diagonal. It reflects into a “weak interaction” between different “clusters
of small divisors”. Problem 2 has been often bypassed replacing the multiplicative potential V (x) by a
“convolution potential” V ∗ (eij·x) := mje


ij·x, mj ∈ R, j ∈ Zd. The “Fourier multipliers” mj play the
role of “external parameters”.


The first existence results of quasi-periodic solutions for analytic NLS and NLW like


1
i
ut = Bu+ ε∂ūH(u, ū) , utt +B2u+ εF ′(u) = 0 , x ∈ Td , d ≥ 2 , (1.1)


where B is a Fourier multiplier, have been proved by Bourgain [10], [11], by extending the Newton
approach in [8] (see also [9] for periodic solutions). Actually this scheme is very convenient to overcome
problem 1, because it requires only the first order Melnikov non-resonance conditions and therefore does
not exclude multiplicity of normal frequencies (eigenvalues). The main difficulty concerns the multiscale
inductive argument to estimate the off diagonal exponential decay of the inverse linearized operators in
presence of huge clusters of small divisors. The proof is based on a repeated use of the resolvent identity
and fine techniques of subharmonicity and semi-algebraic set theory, essentially to obtain refined measure
and “complexity” estimates for sublevels of functions.


Also the KAM approach has been recently extended by Eliasson-Kuksin [15] for NLS on Td with
Fourier multipliers and analytic nonlinearities. The key issue is to control more accurately the perturbed
frequencies after the KAM iteration and, in this way, verify the second order Melnikov non-resonance
conditions, we refer also to [17], [23], [2] for related techniques. We also mention [16] which proves the
reducibility of a linear Schrödinger equation forced by a small multiplicative potential, quasi-periodic in
time.


On the other hand, a similar reducibility KAM result for NLW on Td is still an open problem: the
possibility of imposing the second order Melnikov conditions for wave equations in higher space dimensions
is still uncertain.


In the recent paper [5] we proved the existence of quasi-periodic solutions for quasi-periodically forced
NLS on Td with finitely differentiable nonlinearities (all the previous results were valid for analytic
nonlinearities, actually polynomials in [10], [11]) and a multiplicative potential V (x) (not small). Clearly
a difficulty is that the matrix which represents the multiplication operator has only a polynomial decay
off the diagonal, and not exponential. The proof is based on a Nash-Moser iterative scheme in Sobolev
scales (developed for periodic solutions also in [4], [3], [6], [7]) and novel techniques for estimating the high
Sobolev norms of the solutions of the (non-constant coefficients) homological equations. In particular we
assumed that −∆ + V (x) > 0 in order to prove the “measure and complexity” estimates by means of
elementary eigenvalue variations arguments, avoiding subharmonicity and semi-algebraic techniques as
in [11].


The goal of this paper is to prove an analogous result -see Theorem 1.1- for d-dimensional nonlinear
wave equations with a quasiperiodic-in-time nonlinearity like


utt −∆u+ V (x)u = εf(ωt, x, u) , x ∈ Td , ε > 0 , (1.2)


where the multiplicative potential V is in Cq(Td; R), ω ∈ Rν is a non-resonant frequency vector (see
(1.6), (1.7)), and


f ∈ Cq(Tν × Td × R; R) (1.3)


for some q ∈ N large enough (fixed in Theorem 1.1). The NLW equation is more difficult than NLS
because the small divisors stay near a cone, see (2.7), and not a paraboloid. Therefore it is harder
to prove the “separation properties” of the Fourier indices of the small divisors, see section 4. In this
paper we use a non-resonance condition which is weaker than in Bourgain [11], see remark 4.1. After the
statement of Theorem 1.1 we explain the other main differences with respect to [11] and [5].


Concerning the potential we suppose that


Ker(−∆ + V (x)) = 0 . (1.4)
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Remark 1.1. In [5] we assumed the stronger condition −∆+V (x) > 0. See comments after Theorem 1.1.
Note that also in (1.1) the Fourier operator B2 > 0 is positive.


In (1.2) we use only one external parameter, namely the length of the frequency vector (time scaling).
More precisely we assume that the frequency vector ω is co-linear with a fixed vector ω̄ ∈ Rν ,


ω = λω̄ , λ ∈ Λ := [1/2, 3/2] ⊂ R , |ω̄| ≤ 1 , (1.5)


where ω̄ is Diophantine, namely for some γ0 ∈ (0, 1),


|ω̄ · l| ≥ 2γ0


|l|ν
, ∀l ∈ Zν \ {0} , (1.6)


and ∣∣∣ ∑
1≤i≤j≤ν


ω̄iω̄jpij


∣∣∣ ≥ γ0


|p|τ0
, ∀p ∈ Z


ν(ν+1)
2 \ {0} . (1.7)


There exists ω̄ satisfying (1.6) and (1.7) at least for τ0 > ν(ν + 1)− 1 and γ0 small, see Lemma 6.1. For
definiteness we fix τ0 := ν(ν + 1).


Remark 1.2. For NLS equations [5] only condition (1.6) is required, see comments after Theorem 1.1.


The dynamics of the linear wave equation


utt −∆u+ V (x)u = 0 (1.8)


is well understood. The eigenfunctions of


(−∆ + V (x))ψj(x) = µjψj(x)


form a Hilbert basis in L2(Td) and the eigenvalues µj → +∞ as j → +∞. By assumption (1.4) all the
eigenvalues µj are different from 0. We list them in non-decreasing order


µ1 ≤ . . . ≤ µn− < 0 < µn−+1 ≤ . . . (1.9)


where n− denotes the number of negative eigenvalues (counted with multiplicity).
All the solutions of (1.8) are the linear superpositions of normal mode oscillations, namely


u(t, x) =
n−∑
j=1


(β−j e
−
√
|µj |t + β+


j e
√
|µj |t)ψj(x) +


∑
j≥n−+1


Re(ajei
√
µjt)ψj(x) , β±j ∈ R , aj ∈ C .


The first n− eigenfunctions correspond to hyperbolic directions where the dynamics is attractive/repulsive.
The other infinitely many eigenfunctions correspond to elliptic directions.


• Question: for ε small enough, do there exist quasi-periodic solutions of the nonlinear wave equation
(1.2) for positive measure sets of λ ∈ [1/2, 3/2]?


Note that, if f(ϕ, x, 0) 6≡ 0 then u = 0 is not a solution of (1.2) for ε 6= 0.
The above question amounts to look for (2π)d+ν-periodic solutions u(ϕ, x) of


(ω · ∂ϕ)2u−∆u+ V (x)u = εf(ϕ, x, u) (1.10)


in the Sobolev space


Hs := Hs(Tν × Td; R) :=
{
u(ϕ, x) :=


∑
(l,j)∈Zν×Zd


ul,je
i(l·ϕ+j·x) : ‖u‖2s := K0


∑
i∈Zν+d


|ui|2〈i〉2s < +∞ ,


u−i = ui , where i := (l, j) , 〈i〉 := max(|l|, |j|, 1)
}


(1.11)
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for some (ν + d)/2 < s ≤ q. Above |j| := max{|j1|, . . . , |jd|}. For the sequel we fix s0 > (d + ν)/2 so
that Hs(Tν+d) ↪→ L∞(Tν+d), ∀s ≥ s0. The constant K0 > 0 in (1.11) is fixed (large enough) so that
|u|L∞ ≤ ‖u‖s0 and the interpolation inequality


‖u1u2‖s ≤
1
2
‖u1‖s0‖u2‖s +


C(s)
2
‖u1‖s‖u2‖s0 , ∀s ≥ s0 , u1, u2 ∈ Hs , (1.12)


holds with C(s) ≥ 1, ∀s ≥ s0, and C(s) = 1, ∀s ∈ [s0, s1]; the constant s1 := s1(d, ν) is defined in (6.4).
The main result of the paper is:


Theorem 1.1. Assume (1.6)-(1.7). There are s := s(d, ν), q := q(d, ν) ∈ N, such that: ∀f ∈ Cq,
∀V ∈ Cq satisfying (1.4), ∀ε ∈ [0, ε0) small enough, there is a map


u(ε, ·) ∈ C1(Λ;Hs) with sup
λ∈Λ
‖u(ε, λ)‖s → 0 as ε→ 0 , (1.13)


and a Cantor like set Cε ⊂ Λ := [1/2, 3/2] of asymptotically full Lebesgue measure, i.e.


|Cε| → 1 as ε→ 0, (1.14)


such that, ∀λ ∈ Cε, u(ε, λ) is a solution of (1.10) with ω = λω̄. Moreover, if V, f are of class C∞ then
∀λ , u(ε, λ) ∈ C∞(Td × Tν ; R).


Let us make some comments on the result.


1. The main novelties of Theorem 1.1 with respect to previous literature (i.e. [11]) are that we prove
the existence of quasi-periodic solutions for quasi-periodically forced NLW on Td, d ≥ 2, with a


(i) multiplicative finitely differentiable potential V (x),


(ii) finitely differentiable nonlinearity, see (1.3),


(iii) pre-assigned direction of the tangential frequencies, see (1.5).


Moreover we weaken the non-resonance assumptions to ensure the separation properties of the small
divisors. Theorem 1.1 generalizes [4] to the case of quasi-periodic solutions.


2. We underline that the present Nash-Moser approach requires essentially no information about the
localization of the eigenfunctions of −∆ + V (x) which, on the contrary, seem to be unavoidable to
prove also reducibility with a KAM scheme. Along the multiscale analysis we use (as in [5]) the
exponential basis which diagonalizes −∆ +m where m is the average of V (x). The key is to define
“very regular” sites, namely take the constant Θ in Definition 3.2 large enough, depending on the
potential V (x). In this way the number of sites to be considered as “singular” increases. However,
the separation properties of the “singular” sites obtained in Lemma 4.2 hold for any Θ > 0, and
this is sufficient for the applicability of the present multiscale approach.


3. Throughout this paper ε ∈ [0, ε0] is fixed (small) and λ ∈ [1/2, 3/2] is the only external parameter
in equation (1.2). Then the bound (1.14) is an improvement with respect to the analogous Theorem
1.1 in [5] (for NLS) where we only proved the existence of quasi-periodic solutions for a Cantor set,
with asymptotically full measure, in the parameters (ε, λ) ∈ [0, ε0)× [1/2, 3/2].


4. We have not tried to optimize the estimates for q := q(d, ν) and s := s(d, ν). In [3] we proved the
existence of periodic solutions in Hs


tH
1
x with s > 1/2, for one dimensional NLW equations with


nonlinearities of class C6, see the bounds (1.9), (4.28) in [3].


Let us make some comments about the proof. The main differences with respect to [5] and [11] are:
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1. Since we do not assume that−∆+V (x) is positive definite (as in [5]), but only the weaker assumption
(1.4), the measure and complexity arguments in section 5 are more difficult than in [5], section 6.
The main reason why we can allow a finite number of negative eigenvalues µj < 0 in (1.9) is that
the corresponding small divisors satisfy


−(ω · l)2 + µj ≤ µj ≤ µn− < 0 , ∀l ∈ Zν , j = 1, . . . , n−,


namely are not small, it is used in Lemma 5.7. The positivity of −∆+V (x) was used in [5] to prove
the measure and complexity estimates. Assuming only (1.4), the main difference concerns Lemma
5.6 that we tackle with a Lyapunov-Schmidt type argument. Note that Lemma 5.6 only holds
for j0 /∈ QN defined in (3.6) (in such a case the spectrum of the restricted operator ΠN,j0(−∆ +
V (x))EN,j0 in (5.22) is far away from zero by Lemma 2.3). This fact requires to modify also the
definition of N -good sites, see Definition 3.4, with respect to the analogous Definition 5.1 of [5].


2. The separation properties of the small divisors in section 4 are proved under the non-resonance
assumption (NR) (see (4.5), (1.7)), which is a Diophantine condition for polynomials in ω of degree
2, while the condition in [11] for polynomials of higher degree, see remark 4.1. A Diophantine
condition like (NR) is necessary because the singular sites are integer points near a cone, see
(4.10), and not a paraboloid like for NLS. Then it is necessary to assume an irrationality condition
on the “slopes” of this cone. Assumption (NR) seems to be the weakest possible. The improvement
is in the proof of Lemma 4.2 (different with respect to Lemma 20.14 of Bourgain [11]) which extends,
to the quasi-periodic case, the arguments of [4].


3. Another technical simplification of the present approach with respect to [11], Chapter 20, is to
study NLW in configuration space without regarding (1.2) as a first order Hamiltonian complex
system. The main difficulty concerns the measure estimates: the derivative with respect to θ of the
matrix in (2.6) is not positive definite (this affects Lemmata 5.3 and, especially, 5.6). The main
technical trick that we use is the change of variables (5.20). We mention that also Bourgain-Wang
[12], section 6, deals with NLW in configuration space, where the measure and complexity estimates
are verified using subharmonicity and semi-algebraic techniques.


Acknowledgments: We thank Luca Biasco and Pietro Baldi for useful comments.


2 The linearized equation


We look for solutions of the NLW equation (1.10) in Hs by means of a Nash-Moser iterative scheme. The
main step concerns the invertibility of (any finite dimensional restriction of) the linearized operator


L(u) := L(ω, ε, u) := Lω − εg(ϕ, x) (2.1)


where
Lω := (ω · ∂ϕ)2 −∆ + V (x) and g(ϕ, x) := (∂uf)(ϕ, x, u) . (2.2)


We decompose the multiplicative potential as


V (x) = m+ V0(x)


where m is the average of V (x) and V0(x) has zero mean value. Then we write


Lω = Dω + V0(x) where Dω := (ω · ∂ϕ)2 −∆ +m (2.3)


has constant coefficients. In the Fourier basis (ei(l·ϕ+j·x)), the operator L(u) is represented by the infinite
dimensional self-adjoint matrix


A(ω) := A(ω, ε, u) := D + T


where
D := diag(l,j)∈Zν×Zd − (ω · l)2 + ‖j‖2 +m := diagi∈Zbδi ,
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‖j‖2 := j2
1 + . . .+ j2


d , i := (l, j) ∈ Zb := Zν × Zd , δi := −(ω · l)2 + ‖j‖2 +m (2.4)


and
T := T2 − εT1 , T := (T i


′


i )i,i′∈Zb , T i
′


i := (V0)j−j′ − εgi−i′ (2.5)


represents the multiplication operator by V0(x)− εg(ϕ, x). The matrix T is Töplitz, namely T i
′


i depends
only on the difference of the indices i−i′, and, since the functions g, V ∈ Hs, then T i


′


i → 0 as |i−i′| → ∞
at a polynomial rate.


Along the iterative scheme of section 6, the function u (hence g) will depend on (ε, λ), so that
T := T (ε, λ) will be considered as a family of operators (or of infinite dimensional matrices representing
them in the Fourier basis) parametrized by (ε, λ). Introducing an additional parameter θ, we consider
the family of infinite dimensional matrices


A(ε, λ, θ) = D(θ) + T (ε, λ) (2.6)


where
D(θ) := D(λ, θ) := diagi∈Zb


(
− (λω̄ · l + θ)2 + ‖j‖2 +m


)
(2.7)


and ||T ||s1 + ||∂λT ||s1 ≤ C, depending on V (the norm || ||s1 is introduced in Definition 2.1). The main goal of
the following sections is to prove polynomial off-diagonal decay for the inverse of the (2N+1)b-dimensional
sub-matrices of A(ε, λ, θ) centered at (l0, j0) denoted by


AN,l0,j0(ε, λ, θ) := A|l−l0|≤N,|j−j0|≤N (ε, λ, θ) (2.8)


where |l| := max{|l1|, . . . , |lν |}, |j| := max{|j1|, . . . , |jd|}. The relation with ‖j‖ defined in (2.4) is


|j| ≤ ‖j‖ ≤
√
d|j| . (2.9)


If l0 = 0 we use the simpler notation


AN,j0(ε, λ, θ) := AN,0,j0(ε, λ, θ) .


If also j0 = 0, we simply write
AN (ε, λ, θ) := AN,0(ε, λ, θ) ,


and, for θ = 0, we denote
AN,j0(ε, λ) := AN,j0(ε, λ, 0) .


By (2.8), (2.6), (2.7) and since T is Töplitz, the following crucial covariance property (exploited in Lemma
4.1) holds:


AN,l1,j1(ε, λ, θ) = AN,j1(ε, λ, θ + λω̄ · l1) . (2.10)


2.1 Matrices with off-diagonal decay


For B ⊂ Zb we introduce the subspace


Hs
B :=


{
u =


∑
i∈Zb


uiei ∈ Hs : ui = 0 if i /∈ B
}


where ei := ei(l·ϕ+j·x). When B is finite, the space Hs
B does not depend on s and will be denoted HB . For


B,C ⊂ Zb finite, we identify the space LBC of the linear maps L : HB → HC with the space of matrices


MB
C :=


{
M = (M i′


i )i′∈B,i∈C , M i′


i ∈ C
}


identifying L with the matrix M with entries M i′


i := (Lei′ , ei)0 where ( , )0 := (2π)−b( , )L2 denotes the
normalized L2-scalar product. We consider also the L2-operatorial norm


‖MB
C ‖0 := sup


h∈HB ,h 6=0


‖MB
C h‖0
‖h‖0


. (2.11)
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Definition 2.1. (s-norm) The s-norm of a matrix M ∈MB
C is defined by


||M ||2s := K0


∑
n∈Zb


[M(n)]2〈n〉2s


where 〈n〉 := max(|n|, 1) (see (1.11)),


[M(n)] :=


{
max
i−i′=n


|M i′


i | if n ∈ C −B


0 if n /∈ C −B


and the constant K0 > 0 is the one of (1.11).


The s-norm is modeled on matrices which represent the multiplication operator.


Lemma 2.1. The (Töplitz) matrix T which represents the multiplication operator by g ∈ Hs satisfies
||T ||s ≤ C‖g‖s.


In analogy with the operators of multiplication by a function, the matrices with finite s-norm satisfy
interpolation inequalities (see [5]). As a particular case, we can derive from (1.12)


Lemma 2.2. (Sobolev norm) ∀s ≥ s0 there is C(s) ≥ 1 such that, for any finite subset B,C ⊂ Zb,


‖Mw‖s ≤ (1/2)||M ||s0‖w‖s + (C(s)/2)||M ||s‖w‖s0 , ∀M ∈MB
C , w ∈ HB . (2.12)


2.2 A spectral lemma


We denote
EN,j0 :=


{
u(x) :=


∑
|j−j0|≤N


uje
ij·x , uj ∈ C


}
(2.13)


(functions of the x-variable only) and the corresponding orthogonal projector


ΠN,j0 : Hs0(Td)→ EN,j0 . (2.14)


More generally, for a finite non empty subset B ⊂ Zd we denote by ΠB the L2-orthogonal projector onto
the space EB ⊂ L2(Td) spanned by {eij·x : j ∈ B}.


We now prove a result on the spectrum of the restricted self-adjoint operator


(−∆ + V )B := ΠB(−∆ + V )|EB (2.15)


that shall be used for the measure estimates of Lemma 5.6.
We shall denote (with a slight abuse of notation)


∂B :=
{
j ∈ B : d(j,Zd\B) = 1


}
where d(j, j′) := |j − j′| denotes the distance associated to the sup-norm. Note that, if d(0, ∂B) ≥ L0,
L0 ∈ N, then: either


B(0, L0 − 1) := {j ∈ Zd : |j| ≤ L0 − 1} ⊂ Zd\B or B(0, L0) ⊂ B .


Recall (1.9) where n− is the number of negative eigenvalues of −∆ + V (x) (counted with multiplicity).


Lemma 2.3. Let β0 := min{|µn− |/2, µn−+1}. There is L0 ∈ N, such that, if d(0, ∂B) ≥ L0, then


1. if B(0, L0 − 1) ⊂ Zd \B, then (−∆ + V )B ≥ β0I,


2. if B(0, L0) ⊂ B, then (−∆ + V )B has n− negative eigenvalues, all of them ≤ −β0. All the other
eigenvalues of (−∆ + V )B are ≥ β0.
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Proof The eigenvalues (1.9) of −∆ + V satisfy the min-max characterization


µp = inf
G⊂H1(Td),
dimG=p


sup
u∈G,‖u‖L2=1


Q(u) , p = 1, 2, . . . (2.16)


where Q : H1(Td; R)→ R is the quadratic form


Q(u) := ‖∇u‖2L2 +
∫


Td
V (x)u2(x)dx (2.17)


and the infimum in (2.16) is taken over the subspaces G of H1(Td) of dimension p.
Let H− ⊂ H1(Td) be the n−-dimensional orthogonal sum of the eigenspaces associated to the negative


eigenvalues µ1, . . . , µn− . Then


Q(u) ≤ µn−‖u‖2L2 ≤ −2β0‖u‖2L2 , ∀u ∈ H− ,


by the definition of β0. Moreover there is L1 (large) such that G− := ΠL1,0H− (recall (2.14)) has
dimension n− and


Q(u) ≤ −β0‖u‖2L2 , ∀u ∈ G− . (2.18)


Let
L0 := max{L1, (β0 + |V |L∞)1/2} . (2.19)


1) Assume B(0, L0 − 1) ⊂ Zd \B. Then (using that d(0, B) ≥ L0)


‖∇u‖2L2 ≥ L2
0‖u‖2L2 , ∀u ∈ EB ,


and, by (2.17),


Q(u) ≥ (L2
0 − |V |L∞)‖u‖2L2


(2.19)


≥ β0‖u‖2L2 , ∀u ∈ EB .


Hence (−∆ + V )B ≥ β0I.
2) Assume B(0, L0) ⊂ B. Let (µB,p) be the non-decreasing sequence of the eigenvalues of the self-
adjoint operator (−∆ + V )B , counted with multiplicity. They satisfy a variational characterization
analogous to (2.16) with the only difference that the infimum is taken over the subspaces G ⊂ EB . Since
B(0, L1) ⊂ B(0, L0) ⊂ B, the subspace G− ⊂ EB and, recalling that dimG− = n−,


µB,n− = inf
G⊂EB,


dimG=n−


sup
u∈G,‖u‖L2=1


Q(u) ≤ sup
u∈G−,‖u‖L2=1


Q(u)
(2.18)


≤ −β0 .


Moreover


µB,n−+1 = inf
G⊂EB,


dimG=n−+1


sup
u∈G,‖u‖L2=1


Q(u)


≥ inf
G⊂H1(Td),


dimG=n−+1


sup
u∈G,‖u‖L2=1


Q(u)
(2.16)


= µn−+1 ≥ β0


by the definition of β0. The proof of the lemma is complete.


3 The multiscale analysis


We recall the multiscale Proposition 3.1 proved in [5]. Given Ω,Ω′ ⊂ E ⊂ Zb we define


diam(E) := sup
i,i′∈E


|i− i′| , d(Ω,Ω′) := inf
i∈Ω,i′∈Ω′


|i− i′| .


Let δ ∈ (0, 1) be fixed.
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Definition 3.1. (N-good/bad matrix) The matrix A ∈ME
E, with E ⊂ Zb, diam(E) ≤ 4N , is N -good


if A is invertible and
∀s ∈ [s0, s1] , ||A−1||s ≤ Nτ ′+δs.


Otherwise A is N -bad.


Definition 3.2. (Regular/Singular site) Fix Θ ≥ 1. The index i ∈ Zb is regular for A = A(ε, λ, θ)
if |Aii| ≥ Θ. Otherwise i is singular.


Definition 3.3. ((A,N)-good/bad site) For A ∈ME
E, we say that i ∈ E ⊂ Zb is


• (A,N)-regular if there is F ⊂ E such that diam(F ) ≤ 4N , d(i, E\F ) ≥ N/2 and AFF is N -good.


• (A,N)-good if it is regular for A or (A,N)-regular. Otherwise we say that i is (A,N)-bad.


Let us consider the new larger scale
N ′ = Nχ (3.1)


with χ > 1. For a matrix A ∈ME
E we define Diag(A) := (δii′Ai


′


i )i,i′∈E .


Proposition 3.1. (Multiscale step, see [5]) Assume


δ ∈ (0, 1/2) , τ ′ > 2τ + b+ 1 , C1 ≥ 2 , (3.2)


and, setting κ := τ ′ + b+ s0,


χ(τ ′ − 2τ − b) > 3(κ+ (s0 + b)C1) , χδ > C1 , (3.3)


S ≥ s1 > 3κ+ χ(τ + b) + C1s0 . (3.4)


Υ > 0 being fixed , there exists N0(Υ, S) ∈ N, Θ(Υ, s1) > 0 large enough (see Definition 3.2), such that:
∀N ≥ N0(Υ, S), ∀E ⊂ Zb with diam(E) ≤ 4N ′ = 4Nχ, if A ∈ME


E satisfies


• (H1) ||A−Diag(A)||s1 ≤ Υ


• (H2) ‖A−1‖0 ≤ (N ′)τ


• (H3) There is a partition of the (A,N)-bad sites B = ∪αΩα with


diam(Ωα) ≤ NC1 , d(Ωα,Ωβ) ≥ N2 , ∀α 6= β , (3.5)


then A is N ′-good. More precisely


∀s ∈ [s0, S] , ||A−1||s ≤
1
4


(N ′)τ
′
(


(N ′)δs + ||A−Diag(A)||s
)
.


We shall apply Proposition 3.1 to finite dimensional matrices AN,i0 (recall the notation in (2.8))
which are obtained as restrictions of the infinite dimensional matrix A(ε, λ, θ) in (2.6). It is convenient
to introduce a notion of N -good site for an infinite dimensional matrix.


Let


QN :=
{
j ∈ Zd : d(0, ∂(j + [−N,N ]d)) < L0


}
, Q̌N :=


{
i = (l, j) ∈ Zd : j ∈ QN


}
(3.6)


where L0 is defined in Lemma 2.3. We shall always assume that N − 2L0 ≥ N/2.


Definition 3.4. (N-good/bad site) A site i ∈ Zb is:


• N -regular if AN,i is N -good (Definition 3.1). Otherwise we say that i is N -singular.


• N -good if i is regular (Definition 3.2) or for all M ∈ {N−2L0, N}, all the sites i′ with |i′−i| ≤M
and i′ /∈ Q̌M are M -regular. Otherwise, we say that i is N -bad.
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Definition 3.4 is designed in view of the application of Proposition 3.1, because we have


Lemma 3.1. Let A = AN ′,i0 with i0 /∈ Q̌N ′ . Then any N -good site i ∈ i0 + [−N ′, N ′]d+ν is (A,N)-good.


Proof. We decompose


E := i0 + [−N ′, N ′]ν+d = G×H where G := Πν
p=1[ap, bp] , H := Πd


q=1[cq, dq] (3.7)


and, writing i0 = (l0, j0),


ap := (l0)p −N ′ , bp := (l0)p +N ′ , cq := (j0)q −N ′ , dq := (j0)q +N ′ .


Consider any N -good site i := (l, j) ∈ E (see Definition 3.4). If i is a regular site, there is nothing to
prove. If i is singular, we introduce its neighborhood


FN := FN (i) := GN ×HN ⊂ E where GN := Πν
p=1Ip ⊂ G , HN := Πd


q=1Jq ⊂ H , (3.8)


and the intervals Ip ⊂ [ap, bp], Jq ⊂ [cq, dq] are defined as follows:


• if lp − ap > N and bp − lp > N (resp. jq − cq > N and dq − jq > N), then Ip := [lp −N, lp + N ]
(resp. Jq := [jq −N, jq +N ]);


• if lp − ap ≤ N (resp. jq − cq ≤ N), then Ip := [ap, ap + 2N ] (resp. Jq := [cq, cq + 2N ]);


• if bp − lp ≤ N ( resp. dq − jq ≤ N), then Ip := [bp − 2N, bp] (resp. Jq := [dq − 2N, dq]).


By construction we have
d(i, E \ FN ) ≥ N (3.9)


and we can write


FN = ı̄+ [−N,N ]ν+d for some ı̄ = (l̄, ̄) ∈ E with |i− ı̄| ≤ N . (3.10)


For M = N − 2L0, we define as in (3.8) the sets FM := GM ×HM , GM := Πν
p=1IM,p, HM := Πd


q=1JM,q,
and we write


FM = ı̃+ [−M,M ]ν+d for some ı̃ = (l̃, ̃) with |i− ı̃| ≤M . (3.11)


We claim that
d(∂HN\∂H,HM ) ≥ 2L0 . (3.12)


In fact, assume j′ ∈ ∂HN\∂H. Then there is some q ∈ {1, . . . , d} such that j′q ∈ ∂Jq\{cq, dq}. By
construction, it is easy to see that d(JM,q, [cq, dq]\Jq) ≥ 2L0+1. Hence d(j′q, JM,q) ≥ 2L0 and d(j′, HM ) ≥
2L0, proving (3.12).


We are now in position to prove that i is (A,N)-good. We distinguish two cases:


(i) d(0, ∂HN ) ≥ L0. Since HN = ̄ + [−N,N ]d (see (3.8)-(3.10)) we get ̄ /∈ QN (see (3.6)), namely
ı̄ /∈ Q̌N . Since i is a singular N -good site (see Definition 3.4), |i − ı̄| ≤ N (see (3.10)), ı̄ /∈ Q̌N ,
we deduce that the matrix AN,̄ı = AFNFN is N -good . As a consequence, since FN ⊂ E (see (3.8)),
diam(FN ) = 2N (see (3.10)) d(i, E\FN ) ≥ N (see (3.9)), the site i is (A,N)-good (see Definition
3.3).


(ii) d(0, ∂HN ) < L0. It is an assumption of the Lemma that i0 = (l0, j0) /∈ Q̌N ′ which means d(0, ∂H) ≥
L0 (by (3.7) we have H = j0 + [−N ′, N ′]d). Hence d(0, ∂HN\∂H) = d(0, ∂HN ) < L0. Hence, by
(3.12), we deduce d(0, HM ) ≥ L0 and therefore d(0, ∂HM ) ≥ L0. Then ı̃ /∈ Q̌M (the site ı̃ is defined
in (3.11) and we have HM = ̃+[−M,M ]d). Since i is singular and N -good, |i− ı̃| ≤M (see (3.11)),
ı̃ /∈ Q̌M , then the matrix AM,̃ı = AFMFM is N -good. As a consequence, since d(i, E\FM ) ≥M ≥ N/2,
the site i is (A,N)-good.


This concludes the proof of the Lemma.
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4 Separation properties of the bad sites


We now verify the “separation properties” of the bad sites required in the multiscale Proposition 3.1.
Let A := A(ε, λ, θ) be the infinite dimensional matrix of (2.6). We define


BM (j0;λ) := BM (j0; ε, λ) :=
{
θ ∈ R : AM,j0(ε, λ, θ) is M − bad


}
. (4.1)


Definition 4.1. (N-good/bad parameters) A parameter λ ∈ Λ is N -good for A if


∀M ∈ {N,N − 2L0} , ∀ j0 ∈ Zd \ QM , BM (j0;λ) ⊂
⋃


q=1,...,N2d+ν+3


Iq (4.2)


where Iq are intervals with measure |Iq| ≤ N−τ . Otherwise, we say λ is N -bad. We define


GN := GN (u) :=
{
λ ∈ Λ : λ is N − good for A


}
. (4.3)


In order to prove the separation properties of the N -bad sites we have to require that ω = λω̄ satisfies
a Diophantine type non-resonance condition. We assume:


• (NR) There exist γ > 0 such that, for any non zero polynomial P (X) ∈ Z[X1, . . . , Xν ] of the form


P (X) = n+
∑


1≤i≤j≤ν


pijXiXj , n, pij ∈ Z , (4.4)


we have
|P (ω)| ≥ γ


1 + |p|τ0
. (4.5)


The non-resonance condition (NR) is satisfied by ω = λω̄ for most λ ∈ Λ, see Lemma 6.3.


Remark 4.1. In [11], Bourgain requires the non-resonance condition (4.5) for all non zero polynomials
P (X) ∈ Z[X1, . . . , Xν ] of degree degP ≤ 10d.


The main result of this section is the following proposition. It will enable to verify the assumption
(H3) of Proposition 3.1 for the submatrices AN ′,j0(ε, λ, θ).


Proposition 4.1. (Separation properties of N-bad sites) There exists C1(d, ν) ≥ 2, N0(ν, d, γ0,Θ) ∈
N such that ∀N ≥ N0(ν, d, γ0,Θ), if


• (i) λ is N -good for A,


• (ii) τ > χν,


• (iii) ω = λω̄ satisfies (NR),


then, ∀θ ∈ R, the N -bad sites i := (l, j) ∈ Zν × Zd of A(ε, λ, θ) with |l| ≤ N ′ := Nχ admit a partition
∪αΩα in disjoint clusters satisfying


diam(Ωα) ≤ NC1(d,ν) , d(Ωα,Ωβ) > N2 , ∀α 6= β . (4.6)


The rest of this section is devoted to the proof of Proposition 4.1. Note that, by (1.6), the frequency
vectors ω = λω̄, ∀λ ∈ [1/2, 3/2], are Diophantine, namely


|ω · l| ≥ γ0


|l|ν
, ∀l ∈ Zν \ {0} . (4.7)


Lemma 4.1. Assume that λ is N -good for A and let τ > χν. Then, for all M ∈ {N − 2L0, N},
∀̄ ∈ Zd\QM , the number of M -singular sites (l1, ̄) ∈ Zν × Zd with |l1| ≤ 2N ′ does not exceed N2d+ν+3.


11







Proof. If (l1, ̄) is M -singular then AM,l1,̄(ε, λ, θ) is M -bad (see Definitions 3.4 and 3.1 with N = M).
By the co-variance property (2.10), we get thatAM,̄(ε, λ, θ+λω̄·l1) isM -bad, namely θ+λω̄·l1 ∈ BM (̄;λ),
see (4.1). By assumption, λ is N -good, and, therefore, (4.2) holds for M = N and M = N − 2L0.


We claim that in each interval Iq there is at most one element θ + ω · l1 with ω = λω̄, |l1| ≤ 2N ′.
Then, since there are at most N2d+ν+3 intervals Iq (see (4.2)), the lemma follows.


We prove the previous claim by contradiction. Suppose that there exist l1 6= l′1 with |l1|, |l′1| ≤ N ′,
such that ω · l1 + θ, ω · l′1 + θ ∈ Iq. Then


|ω · (l1 − l′1)| = |(ω · l1 + θ)− (ω · l′1 + θ)| ≤ |Iq| ≤ N−τ . (4.8)


By (4.7) we also have
|ω · (l1 − l′1)| ≥ γ0


|l1 − l′1|ν
≥ γ0


(4N ′)ν
= 4−νγ0N


−χν . (4.9)


By assumption (ii) of Proposition 4.1 the inequalities (4.8) and (4.9) are in contradiction, for N ≥ N0(γ0)
large enough.


Corollary 4.1. Assume (i)-(ii)-(iii) of Proposition 4.1. Then, ∀̃ ∈ Zd, the number of N -bad sites
(l1, ̃) ∈ Zν × Zd with |l1| ≤ N ′ does not exceed N3d+2ν+4.


Proof. By Lemma 4.1, for M ∈ {N − 2L0, N}, the set SM of M -singular sites (l, j) /∈ Q̌M (see (3.6)
with N = M) with |l| ≤ N ′ +N , |j − ̃| ≤M has cardinality at most CN2d+ν+3 ×Nd. Each N -bad site
(l1, ̃) with |l1| ≤ N ′ is included, for some M ∈ {N − 2L0, N}, in some M -ball centered at an element
(l, j) of SM which is not in Q̌M (see Definition 3.4). Each of these balls contains at most CNν sites of
the form (l, ̃). Hence there are at most C2N2d+ν+3 ×Nd ×Nν such N -bad sites.


We underline that the bound on the N -bad sites given in Corollary 4.1 holds for all ̃ ∈ Zd, even if
the complexity bound (4.2) holds for all j0 /∈ QM . We now estimate also the spatial components of the
singular sites.


Definition 4.2. (Γ-chain) A sequence i0, . . . , iL ∈ Zd+ν of distinct integer vectors satisfying


|iq+1 − iq| ≤ Γ , ∀q = 0, . . . , L− 1 ,


for some Γ ≥ 2, is called a Γ-chain of length L.


The next Lemma improves Lemma 20.14 of Bourgain [11].


Lemma 4.2. Assume that ω = λω̄ satisfies (NR). For all θ ∈ R, consider a Γ-chain (lq, jq)q=0,...,L of
θ-singular sites with Γ ≥ 2, namely, ∀q = 0, . . . , L,∣∣∣(λω̄ · lq + θ)2 − ‖jq‖2 −m


∣∣∣ < Θ + 1 , (4.10)


such that, ∀̃ ∈ Zd, the cardinality


|{(lq, jq)q=0,...,L : jq = ̃}| ≤ K . (4.11)


Then its length is bounded by
L ≤ (ΓK)C2(d,ν) . (4.12)


Proof. First note that it is sufficient to bound the length of a Γ-chain of singular sites when θ = 0.
Indeed, suppose first that θ = ω · l̄ for some l̄ ∈ Zν . For a Γ-chain of θ-singular sites (lq, jq)q=0,...,L, see
(4.10), the translated Γ-chain (lq + l̄, jq)q=0,...,L, is formed by 0-singular sites, namely


|(ω · (lq + l̄))2 − ‖jq‖2 −m| < Θ .


For any θ ∈ R, we consider an approximating sequence ω · l̄n → θ, l̄n ∈ Zν . A Γ-chain of θ-singular sites
(see (4.10)), is, for n large enough, also a Γ-chain of ω · l̄n-sites. Then we bound its length arguing as in
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the above case.
We now introduce the quadratic form Q : R× Rd → R defined by


Q(x, y) := −x2 + ‖y‖2 (4.13)


and the associated bilinear symmetric form Φ : (R× Rd)2 → R defined by


Φ
(


(x, y), (x′, y′)
)


:= −xx′ + y · y′ . (4.14)


Note that Φ is the sum of the bilinear forms


Φ = −Φ1 + Φ2 (4.15)


Φ1


(
(x, y), (x′, y′)


)
:= xx′ , Φ2


(
(x, y), (x′, y′)


)
:= y · y′ . (4.16)


Let (lq, jq)q=0,...,L be a Γ-chain, namely


|lq+1 − lq|, |jq+1 − jq| ≤ Γ , ∀q = 0, . . . , L− 1 , (4.17)


of 0-singular sites, see (4.10) with θ = 0. Setting


xq := ω · lq ∈ ω · Zν , (4.18)


we get that (see (4.13))
|Q(xq, jq)| < Θ + 1 + |m| , ∀q = 0, . . . , L . (4.19)


Lemma 4.3. ∀q, q0 ∈ [0, L] we have∣∣∣Φ((xq0 , jq0), (xq − xq0 , jq − jq0)
)∣∣∣ ≤ C|q − q0|2Γ2 . (4.20)


Proof. By bilinearity


Q(xq, jq) = Q(xq0 , jq0) + 2Φ
(


(xq0 , jq0), (xq − xq0 , jq − jq0)
)


+Q(xq − xq0 , jq − jq0) . (4.21)


We have


|Q(xq − xq0 , jq − jq0)|
(4.13)


≤ |xq − xq0 |2 + ‖jq − jq0‖2


(4.18),(2.9)


≤ |ω|2|lq − lq0 |2 + d|jq − jq0 |2
(4.17)


≤ C|q − q0|2Γ2 . (4.22)


Then (4.20) follows by (4.21), (4.22) and (4.19).


We introduce the subspace of Rd+1


G := SpanR


{
(xq − xq′ , jq − jq′) : 0 ≤ q, q′ ≤ L


}
= SpanR


{
(xq − xq0 , jq − jq0) : 0 ≤ q ≤ L


}
(4.23)


and we call g ≤ d+ 1 the dimension of G. Introducing a small parameter δ > 0, to be specified later,we
distinguish two cases.
Case I. ∀q0 ∈ [0, L],


SpanR{(xq − xq0 , jq − jq0) : |q − q0| ≤ Lδ , q ∈ [0, L] } = G . (4.24)


We select a basis of G ⊂ Rd+1 from (xq − xq0 , jq − jq0) with |q − q0| ≤ Lδ, say


fs := (xqs − xq0 , jqs − jq0) = (ω ·∆sl,∆sj) , s = 1, . . . , g , (4.25)


where


(∆sl,∆sj) := (lqs − lq0 , jqs − jq0) satisfies |(∆sl,∆sj)|
(4.17)


≤ CΓ|qs − q0| ≤ CΓLδ . (4.26)


Hence
|fs| ≤ C ΓLδ , ∀s = 1, . . . , g . (4.27)
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Lemma 4.4. Assume (NR). Then the matrix


Ω := (Ωs
′


s )gs,s′=1 , Ωs
′


s := Φ(fs′ , fs) , (4.28)


is invertible and
|(Ω−1)s


′


s | ≤ C(ΓLδ)C3(d,ν) , ∀s, s′ = 1, . . . , g . (4.29)


Proof. According to the splitting (4.15) we write Ω like


Ω :=
(
− Φ1(fs′ , fs) + Φ2(fs′ , fs)


)
s,s′=1,...,g


= −S +R (4.30)


where, by (4.25),


Ss
′


s := Φ1(fs′ , fs) = (ω ·∆s′ l)(ω ·∆sl) , Rs
′


s := Φ2(fs′ , fs) = ∆s′j ·∆sj . (4.31)


The matrix R = (R1, . . . , Rg) has integer entries (the Ri ∈ Zg denote the columns). The matrix S :=
(S1, . . . , Sg) has rank 1 since all its columns Ss ∈ Rg are colinear:


Ss = (ω ·∆sl)(ω ·∆1l, . . . , ω ·∆g)t , s = 1, . . . g .


We develop the determinant


P (ω) := det Ω
(4.30)


= det(−S +R)
= det(R)− det(S1, R2, . . . , Rg)− . . .− det(R1, . . . , Rg−1, Sg) (4.32)


using that the determinant of matrices with 2 columns Si, Sj , i 6= j, is zero. The expression in (4.32) is
a polynomial in ω of degree 2 of the form (4.4) with coefficients


|(n, p)|
(4.31),(4.26)


≤ C(ΓLδ)C(d) . (4.33)


If P 6= 0 then the non-resonance condition (NR) implies


|det Ω| = |P (ω)|
(4.5)


≥ γ


1 + |p|τ0
(4.33)


≥ γ


(ΓLδ)C′(d,ν)
(4.34)


(recall that τ0 := ν(ν + 1)). In order to conclude the proof of the lemma, we have to show that P 6= 0.
By contradiction, if P = 0 then (compare with (4.30))


0 = P (iω) = det
(
Φ1(fs′ , fs) + Φ2(fs′ , fs)


)
s,s′=1,...g


= det(fs′ · fs)s,s′=1,...g > 0


because fs is a basis of Rg. This contradiction proves that P is not the zero polynomial.
By (4.34), the Cramer rule, and (4.27) we deduce (4.29).


We introduce
G⊥Φ :=


{
z ∈ Rd+1 : Φ(z, f) = 0 , ∀f ∈ G


}
.


Since Ω is invertible (Lemma 4.4), Φ|G is nondegenarate, hence


Rd+1 = G⊕G⊥Φ


and we denote by PG : Rd+1 → G the corresponding projector onto G.
We are going to estimate


PG(xq0 , jq0) =
g∑


s′=1


as′fs′ . (4.35)
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For all s = 1, . . . , g, and since fs ∈ G, we have


Φ
(


(xq0 , jq0), fs
)


= Φ
(
PG(xq0 , jq0), fs


)
(4.35)


= Φ
( g∑
s′=1


as′fs′ , fs


)
=


g∑
s′=1


as′Φ(fs′ , fs)


that we write as the linear system


Ωa = b , a :=


 a1


. . .
ag


 , b :=



Φ
(


(xq0 , jq0), f1


)
. . .


Φ
(


(xq0 , jq0), fg
)
 (4.36)


and Ω is defined in (4.28).


Lemma 4.5. For all q0 ∈ [0, L] we have


|PG(xq0 , jq0)| ≤ (ΓLδ)C4(d,ν) . (4.37)


Proof. By (4.36), (4.25), (4.20) and (4.24), we get |b| ≤ C(ΓLδ)2. Hence, using also (4.36) and (4.29),
we get |a| = |Ω−1b| ≤ C(ΓLδ)C . This, with (4.35) and (4.27), implies (4.37).


As a consequence of Lemma 4.5, for all q1, q2 ∈ [0, L],


|(xq1 , jq1)− (xq2 , jq2)| = |PG
(


(xq1 , jq1)− (xq2 , jq2)
)
| ≤ (ΓLδ)C5(d,ν) .


Therefore, for all q1, q2 ∈ [0, L], |jq1 − jq2 | ≤ (ΓLδ)C5(d,ν), and so


diam{jq ; 0 ≤ q ≤ L} ≤ (ΓLδ)C5(d,ν) .


Since all the jq are in Zd, their number (counted without multiplicity) does not exceed C(ΓLδ)C5(d,ν)d.
Thus we have obtained the bound


]{jq : 0 ≤ q ≤ L} ≤ C(ΓLδ)C5(d,ν)d .


By assumption (4.11), for each q0 ∈ [0, L], the number of q ∈ [0, L] such that jq = jq0 is at most K, and
so


L ≤ (ΓLδ)C6(d,ν)K .


Choosing δ > 0 such that δC6(d, ν) < 1/2, we get L ≤ (ΓC6(d,ν)K)2, proving (4.12).
Case II. There is q0 ∈ [0, L] such that


µ := dim SpanR{(xq − xq0 , jq − jq0) : |q − q0| ≤ Lδ , q ∈ [0, L] } ≤ g − 1 ,


namely all the vectors (xq, jq) stay in a affine subspace of dimension µ ≤ g − 1. Then we repeat on the
sub-chain (lq, jq), |q − q0| ≤ Lδ, the argument of case I, to obtain a bound for Lδ (and hence for L).


Applying at most (d + 1)-times the above procedure, we obtain a bound for L of the form L ≤
(ΓK)C(d,ν). This concludes the proof of Lemma 4.2.


Proof of Proposition 4.1 completed. Set Γ := N2 in Definition 4.2 and introduce the following
equivalence relation:


Definition 4.3. We say that x ≡ y if there is a N2-chain {iq}q=0,...,L of N -bad sites connecting x to y,
namely i0 = x, iL = y.


A N2-chain (lq, jq)q=0,...,L of N -bad sites of A(ε, λ, θ) is formed by θ-singular sites, namely (4.10)
holds if ε is small enough, see Definition 3.4. Moreover, by Corollary 4.1 (remark it holds for all ̃ ∈ Zν),
the condition (4.11) of Lemma 4.2 is satisfied with K := N3d+2ν+4. Hence Lemma 4.2 implies


L
(4.12)


≤ (N2N3d+2ν+4)C2(d,ν) ≤ NC′(d,ν) . (4.38)


The equivalence relation in Definition 4.3 induces a partition of the N -bad sites of A(ε, λ, θ) with |l| ≤ N ′,
in disjoint equivalent classes (Ωα), satisfying


d(Ωα,Ωβ) > N2 , diam(Ωα) ≤ N2L
(4.38)


≤ N2NC′(d,ν) ≤ NC1(d,ν) .
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5 Measure and complexity estimates


We define


B0
N (j0;λ) := B0


N (j0; ε, λ) :=
{
θ ∈ R : ‖A−1


N,j0
(ε, λ, θ)‖0 > Nτ


}
(5.1)


=
{
θ ∈ R : ∃ an eigenvalue of AN,j0(ε, λ, θ) with modulus less than N−τ


}
(5.2)


where ‖ ‖0 is the operatorial L2-norm defined in (2.11). The equivalence between (5.1) and (5.2) is a
consequence of the self-adjointness of AN,j0(ε, λ, θ). We also define


G0
N := G0


N (u) :=
{
λ ∈ Λ : ∀M ∈ {N,N − 2L0} , ∀ j0 ∈ Zd\QM , B0


M (j0;λ) ⊂
⋃


q=1,...,N2d+ν+3


Iq


where Iq are intervals with measure |Iq| ≤ N−τ
}


(5.3)


(the set QN is defined in (3.6)). The aim of this section is to provide, for any large N , a suitable bound
on the Lebesgue measure of the complementary set of G0


N , see (5.5). This will be used to estimate the
measures of the sets GcN (see (4.3)) thanks to Proposition 3.1.


Proposition 5.1. There are constants c, C > 0, N0 ∈ N, depending on V, d, ν, such that, for all N ≥ N0


and
ε0(‖T1‖0 + ‖∂λT1‖0) ≤ c (5.4)


(T1 is defined in (2.5)), the set B0
N := Λ \ G0


N has measure


|B0
N | ≤ C N−1 . (5.5)


The sequel of this section is devoted to the proof of Proposition 5.1. It is derived from several
lemmas based on basic properties of eigenvalues of self-adjoint matrices, which are a consequence of their
variational characterization. In the definitions below, when A is not invertible, we set ‖A−1‖0 :=∞.


Lemma 5.1. Let J be an interval of R and A(ξ) be a family of self-adjoint square matrices in ME
E,


C1 in the real parameter ξ ∈ J , and such that ∂ξA(ξ) ≥ βI for some β > 0. Then, for any α > 0, the
Lebesgue measure ∣∣∣{ξ ∈ J : ‖A−1(ξ)‖0 ≥ α−1


}∣∣∣ ≤ 2|E|αβ−1


where |E| denotes the cardinality of the set E.
More precisely there is a family (Iq)1≤q≤|E| of intervals such that


|Iq| ≤ 2αβ−1 and
{
ξ ∈ J : ‖A−1(ξ)‖0 ≥ α−1


}
⊂


⋃
1≤q≤|E|


Iq (5.6)


Proof. List the eigenvalues of the self-adjoint matrices A(ξ) as C1 functions (ξ 7→ µq(ξ)), 1 ≤ q ≤ |E|.
We have {


ξ ∈ J : ‖A−1(ξ)‖0 ≥ α−1
}


=
⋃


1≤q≤|E|


{
ξ ∈ J : µq(ξ) ∈ [−α, α]


}
.


Now, since ∂ξA(ξ) ≥ βI, we have ∂ξµq(ξ) ≥ β > 0, which implies that Iq := {ξ ∈ J : µq(ξ) ∈ [−α, α]} is
an interval, of length less than 2αβ−1.


Lemma 5.2. Let A, A1 be self adjoint matrices. Then their eigenvalues (ranked in nondecreasing order)
satisfy the Lipschitz property


|µk(A)− µk(A1)| ≤ ‖A−A1‖0 . (5.7)
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We develop all the computations for M = N , the case M = N − 2L0 is the same. We shall argue
differently for |j0| ≥ 8 and |j0| < 8 to estimate the complexity of B0


N (j0, λ).
In the next lemmas we assume


N ≥ N0(V, ν, d) > 0 large enough and ε‖T1‖0 ≤ 1 . (5.8)


Lemma 5.3. ∀|j0| ≥ 8N , ∀λ ∈ Λ, we have


B0
N (j0;λ) ⊂


⋃
q=1,...,2(2N+1)d+ν


Iq (5.9)


where Iq are intervals satisfying |Iq| ≤ N−τ .


Proof. We first claim that, if |j0| ≥ 8N and N ≥ N0(V, d, ν) (see (5.8)), then


B0
N (j0;λ) ⊂ R \ [−4N, 4N ] . (5.10)


Indeed, by Lemma 5.2 the eigenvalues λl,j(θ) of AN,j0(ε, λ, θ) satisfy


λl,j(θ) = δl,j(θ) +O(ε‖T1‖0 + ‖V ‖0) where δl,j(θ) := −(ω · l + θ)2 + ‖j‖2 . (5.11)


Since |ω| = |λ||ω̄| ≤ 3/2 (see (1.5)), ‖j‖ ≥ |j| (see (2.9)), |j − j0| ≤ N , |l| ≤ N , we get


δl,j(θ) ≥ (|j0| − |j − j0|)2 − (|ω||l|+ |θ|)2 ≥ (|j0| −N)2 − (2N + |θ|)2 (5.12)


As a consequence, all the eigenvalues λl,j(θ) of AN,j0(ε, λ, θ) satisfy, for |j0| ≥ 8N and |θ| ≤ 4N ,


λl,j(θ)
(5.11),(5.12)


≥ 10N2 −O(ε‖T1‖0 + ‖V ‖0)
(5.8)


≥ N2 ,


implying (5.10). We now estimate the complexity of


B0,−
N := B0


N (j0;λ) ∩ (−∞,−4N) and B0,+
N := B0


N (j0;λ) ∩ (4N,∞) .


Let us consider B0,−
N . For θ < −4N , the derivative


∂θAN,j0(ε, λ, θ) = diag|l|≤N,|j−j0|≤N − 2(ω · l + θ) > 8N − 2|ω||l| ≥ 5N


and therefore Lemma 5.1 (applied with β = 5N , α = N−τ ) implies


B0,−
N ∩ (−∞,−4N) ⊂


⋃
1≤q≤(2N+1)d+ν


I−q ,


where I−q are intervals satisfying |I−q | ≤ N−τ . We get the same estimate for B0,+
N and (5.9) follows.


We now consider the cases |j0| < 8N . Then the continuity property (5.7) of the eigenvalues allows to
derive a “complexity estimate” for B0


N (j0;λ) knowing its measure, more precisely the measure of


B0
2,N (j0;λ) := B0


2,N (j0; ε, λ) :=
{
θ ∈ R : ‖A−1


N,j0
(ε, λ, θ)‖0 > Nτ/2


}
. (5.13)


Lemma 5.4. ∀|j0| < 8N , ∀λ ∈ Λ, we have


B0
2,N (j0;λ) ⊂ IN := [−12dN, 12dN ] . (5.14)


Proof. The eigenvalues λl,j(θ) of AN,j0(ε, λ, θ) satisfy (5.11) where, for |θ| ≥ 12dN ,


|ω · l + θ| ≥ |θ| − |ω · l| ≥ 12dN − 2N ≥ 10dN , (5.15)


and, by (2.9), we have ‖j‖2 ≤ d(|j0|+ |j − j0|)2 ≤ d(9N)2. Hence


λl,j(θ) = −(ω · l + θ)2 + ‖j‖2 +O(ε‖T1‖0 + ‖V ‖0)
(5.15),(5.4)


≤ −(10dN)2 + d(9N)2 + C(1 + ‖V ‖0)
≤ −16d2N2


for N ≥ N(V, d, ν) large enough (see (5.8)), implying (5.14).
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Lemma 5.5. There is Ĉ := Ĉ(d) > 0 such that ∀|j0| < 8N , ∀λ ∈ Λ, we have


B0
N (j0;λ) ⊂


⋃
q=1,...,[Ĉ MNτ+1]


Iq


where Iq are intervals of length |Iq| ≤ N−τ and M := |B0
2,N (j0;λ)|.


Proof. Assume θ ∈ B0
N (j0, λ), see (5.1). Then there is an eigenvalue of AN,j0(ε, λ, θ) with modulus


less than N−τ . Now, for |∆θ| ≤ 1, (recall (2.6))


‖AN,j0(ε, λ, θ + ∆θ)−AN,j0(ε, λ, θ)‖0 = ‖Diag|l|≤N,|j−j0|≤N (λω · l + θ)2 − (λω · l + θ + ∆θ)2‖0
≤ (4N + 2|θ|+ 1)|∆θ|.


Hence, by Lemma 5.2,


(4N + 2|θ|+ 1)|∆θ| ≤ N−τ =⇒ θ + ∆θ ∈ B0
2,N (j0, λ) (5.16)


because AN,j0(ε, λ, θ + ∆θ) has an eigenvalue with modulus less than 2N−τ . Now by Lemma 5.4, |θ| ≤
12dN . Hence, by (5.16), there is a positive constant c := c(d) such that, for θ ∈ B0


N (j0;λ),


[θ − cN−(τ+1), θ + cN−(τ+1)] ⊂ B0
2,N (j0, λ) .


Therefore B0
N (j0, λ) is included in an union of intervals Jm with disjoint interiors,


B0
N (j0, λ) ⊂


⋃
m


Jm ⊂ B0
2,N (j0, λ), with length |Jm| ≥ 2cN−(τ+1) (5.17)


(if some of the intervals [θ−cN−(τ+1), θ+cN−(τ+1)] overlap, then we glue them together). We decompose
each Jm as an union of (non overlapping) intervals Iq of length between cN−(τ+1)/2 and cN−(τ+1). Then,
by (5.17), we get a new covering


B0
N (j0, λ) ⊂


⋃
q=1,...,Q


Iq ⊂ B0
2,N (j0, λ) with cN−(τ+1)/2 ≤ |Iq| ≤ cN−(τ+1) ≤ N−τ


and, since the intervals Iq do not overlap,


QcN−(τ+1)/2 ≤
Q∑
q=1


|Iq| ≤ |B0
2,N (j0, λ)| =: M .


As a consequence Q ≤ Ĉ MNτ+1, proving the lemma.


The next lemma has major importance. The main difference with respect to the analogous lemma
in [5] is that we do not assume the positivity of −∆ + V (x), but only (1.4). Hence we have to require
j0 /∈ QN .


Lemma 5.6. ∀|j0| < 8N , j0 /∈ QN , the set


B0
2,N (j0) := B0


2,N (j0; ε) :=
{


(λ, θ) ∈ Λ× R :
∥∥∥A−1


N,j0
(ε, λ, θ)


∥∥∥
0
> Nτ/2


}
(5.18)


has measure
|B0


2,N (j0)| ≤ CN−τ+d+ν+1 . (5.19)


Proof. By Lemma 5.4, B0
2,N (j0) ⊂ Λ × IN . In order to estimate the “bad” (λ, θ) where at least one


eigenvalue of AN,j0(ε, λ, θ) has modulus less than 2N−τ , we introduce the variables


ξ :=
1
λ2


, η :=
θ


λ
where (ξ, η) ∈ [4/9, 4]× 2IN . (5.20)
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Hence θ = λη, λ := 1/
√
ξ, and we consider the self adjoint matrix


A(ξ, η) :=
1
λ2
AN,j0(ε, λ, θ) = diag|l|≤N,|j−j0|≤N


(
− (ω̄ · l + η)2


)
+ ξPN,j0 − εξT1(ε, 1/


√
ξ) (5.21)


where, according to the notations (2.13)-(2.15),


PN,j0 := ΠN,j0(−∆ + V (x))|EN,j0 . (5.22)


The self-adjoint operator PN,j0 possesses a L2-orthonormal basis of eigenvectors


PN,j0Ψj = µ̂jΨj


with real eigenvalues (µ̂j)j=1,...(2N+1)d (depending on N) indexed in non-decreasing order. We define


I− :=
{
j : µ̂j < 0


}
, I+ :=


{
j : µ̂j > 0


}
.


Recalling the assumption j0 /∈ QN (see (3.6)) Lemma 2.3 implies that:


1. if B(0, L0−1) ⊂ Zd \{|j− j0| ≤ N} then PN,j0 ≥ β0I. In this case I− = ∅, I+ = {1, . . . , (2N + 1)d}
and min


j∈I+
µ̂j ≥ β0.


2. if B(0, L0) ⊂ {|j − j0| ≤ N} then PN,j0 has n− negative eigenvalues µ̂j ≤ −β0 and the others
µ̂j ≥ β0 (we recall that n− is the number of negative eigenvalues of −∆ +V (x)). We shall use that


max
j∈I−


µ̂j ≤ −β0 and min
j∈I+


µ̂j ≥ β0 . (5.23)


We shall consider only the most difficult case 2 when I− 6= ∅. We denote


H− := HI− :=
{
u :=


∑
|l|≤N,j∈I−


ul,je
il·ϕΨj


}
, H+ := HI+ :=


{
u :=


∑
|l|≤N,j∈I+


ul,je
il·ϕΨj


}
,


and Π−, Π+ the corresponding L2-projectors. Correspondingly we represent A := A(ξ, η) in (5.21) as


A =
(
A− A+


−
A−+ A+


)
:=
(


Π−A|H− Π−A|H+


Π+A|H− Π+A|H+


)
(5.24)


where A+
− = (A−+)†, A†− := A− , A†+ = A+.


Lemma 5.7. For all ξ ∈ [4/9, 4], η ∈ R, the matrix A− := Π−A|H− is invertible and


‖A−1
− ‖0 ≤ 3β−1


0 . (5.25)


Proof. By (5.21) and Lemma 5.2, the eigenvalues of the matrix A− satisfy, for |l| ≤ N , j ∈ I−,


−(ω̄ · l + η)2 + ξµ̂j +O(ε‖T1‖0) ≤ ξµ̂j +O(ε‖T1‖0) ≤ ξ max
j∈I−


µ̂j +O(ε‖T1‖0)


(5.23),(5.4)
< −β0/3 ,


i.e. are negative and uniformly bounded away from zero. Then (5.25) follows.


The invertibility of the matrix in (5.24) is reduced to that of the self-adjoint matrix


L := L(ξ, η) := A+ −A−+A−1
− A+


− (5.26)


via the “resolvent type” identity


A−1 =
(
I −A−1


− A+
−


0 I


)(
A−1
− 0
0 L−1


)(
I 0


−A−+A−1
− I


)
. (5.27)
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Lemma 5.8. ‖L(ξ, η)−1‖0 ≤ Nτ/20 except for (ξ, η) ∈ [4/9, 4]×2IN in a set of measure O(N−τ+d+ν+1).


Proof. The derivative with respect to ξ of the matrix L(ξ, η) in (5.26) is


∂ξL = ∂ξA+ − (∂ξA−+)A−1
− A+


− −A−+(∂ξA−1
− )A+


− −A−+A−1
− (∂ξA+


−)


= ∂ξA+ − (∂ξA−+)A−1
− A+


− +A−+A
−1
− (∂ξA−)A−1


− A+
− −A−+A−1


− (∂ξA+
−) . (5.28)


Moreover, since Π+((ω · ∂ϕ)2 −∆ + V (x))|H− = 0 (and similarly exchanging ±), we have


A+
− = −εξΠ+(T1(ε, ξ−1/2))|H− , A−+ = −εξΠ−(T1(ε, ξ−1/2))|H+ . (5.29)


Hence, since 4 ≥ ξ ≥ 4/9,


‖A+
−‖0 + ‖A−+‖0 + ‖∂ξA+


−‖0 + ‖∂ξA−+‖0 = 0(ε(‖T1‖0 + ‖∂λT1‖0)). (5.30)


In addition, by (5.21)-(5.22),


‖∂ξA−‖0 = ‖Π−PN,j0 |H−‖0 +O(ε(‖T1‖0 + ‖∂λT1‖0)) ≤ C , (5.31)


∂ξA+ = Π+PN,j0 |H+ +O(ε(‖T1‖0 + ‖∂λT1‖0) . (5.32)


Hence by (5.28), (5.32), (5.30), (5.25), (5.31), for ε(‖T1‖0 + ‖∂λT1‖0) small,


∂ξL = Π+PN,j0 |H+ +O(ε(‖T1‖0 + ‖∂λT1‖0)
(5.23),(5.4)


≥ β0


2
I . (5.33)


By (5.33) and Lemma 5.1, for each fixed η, the set of ξ ∈ [4/9, 4] such that at least one eigenvalue of the
matrix L(ξ, η) in (5.26) has modulus ≤ 20N−τ has measure at most O(N−τ+d+νβ−1


0 ). Then, integrating
on η ∈ 2IN , whose length is |IN | = O(N), we prove the lemma.


From (5.27), (5.25), (5.29), Lemma 5.8 and (5.4), we derive the bound


‖A−1‖0 ≤ 2(‖L−1(ξ, η)‖0 + ‖A−1
− ‖0) ≤ 2


(Nτ


20
+ 3β−1


0


) (5.8)


≤ Nτ


9
(5.34)


except in a set of (ξ, η) of measure O(N−τ+d+ν+1). We finally turn to the original parameters (λ, θ).
Since the change of variables (5.20) has Jacobian of modulus greater than 1/8, we have


‖A−1
N,j0


(ε, λ, θ)‖0
(5.21)


= λ−2‖A−1‖0
(1.5),(5.34)


≤ 4
Nτ


9
≤ Nτ


2
,


except for (λ, θ) ∈ Λ× R in a set of measure ≤ CN−τ+d+ν+1. The proof of Lemma 5.6 is complete.


By the same arguments we also get the following measure estimate used in the Nash-Moser iteration.


Lemma 5.9. The complementary of the set


GN := GN (u) :=
{
λ ∈ Λ : ‖A−1


N (ε, λ)‖0 ≤ Nτ
}


(5.35)


has measure
|Λ \ GN | ≤ N−τ+d+ν+2 . (5.36)


As a consequence of Lemma 5.6, for “most” λ the measure of B0
2,N (j0;λ) is “small”.


Lemma 5.10. ∀|j0| < 8N , j0 /∈ QN , the set


FN (j0) :=
{
λ ∈ Λ : |B0


2,N (j0;λ)| ≥ Ĉ−1N−τ+2d+ν+2
}
,


where Ĉ is the positive constant of Lemma 5.5, has measure


|FN (j0)| ≤ CN−d−1 . (5.37)


20







Proof. By Fubini theorem (see (5.18) and (5.13))


|B0
2,N (j0)| =


∫
Λ


|B0
2,N (j0;λ)| dλ . (5.38)


Let µ := τ − 2d− ν − 2. By (5.38) and (5.19),


CN−τ+d+ν+1 ≥
∫


Λ


|B0
2,N (j0;λ)| dλ


≥ Ĉ−1N−µ
∣∣∣{λ ∈ Λ : |B0


2,N (j0;λ)| ≥ Ĉ−1N−µ
}∣∣∣ := Ĉ−1N−µ|FN (j0)|


whence (5.37).


For all λ /∈ FN (j0), |B0
2,N (j0;λ)| < N−τ+2d+ν+2Ĉ−1. Then Lemma 5.5 implies


Corollary 5.1. ∀|j0| < 8N , j0 /∈ QN , ∀λ /∈ FN (j0), we have


B0
N (j0;λ) ⊂


⋃
q=1,...,N2d+ν+3


Iq


with Iq intervals satisfying |Iq| ≤ N−τ .


Proposition 5.1 is now a direct consequence of the following lemma.


Lemma 5.11. B0
N ⊆


⋃
|j0|<8N,j0 /∈QN


FN (j0).


Proof. Lemma 5.3 and Corollary 5.1 imply that


λ /∈
⋃


|j0|<8N,j0 /∈QN


FN (j0) =⇒ λ ∈ G0
N


(see the definition in (5.3)). The lemma follows.


Proof of Proposition 5.1 completed. By Lemma 5.11 and (5.37) we get


|B0
N | ≤


∑
|j0|<8N,j0 /∈QN


|FN (j0)| ≤ C(8N)dN−d−1 ≤ CN−1 .


6 Nash Moser iterative scheme and proof of Theorem 1.1


Consider the orthogonal splitting
Hs = Hn ⊕H⊥n


where Hs is defined in (1.11) and


Hn :=
{
u =


∑
|(l,j)|≤Nn


ul,j e
i(l·ϕ+j·x)


}
, H⊥n :=


{
u =


∑
|(l,j)|>Nn


ul,j e
i(l·ϕ+j·x) ∈ Hs


}
with


Nn := N2n


0 , namely Nn+1 = N2
n , ∀n ≥ 0 . (6.1)


We shall take N0 ∈ N large enough depending on ε0 and V , d, ν. Moreover we always assume N0 > L0


defined in Lemma 2.3. We denote by


Pn : Hs → Hn and P⊥n : Hs → H⊥n
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the orthogonal projectors onto Hn and H⊥n . The following “smoothing” properties hold, ∀n ∈ N, s ≥ 0,
r ≥ 0,


‖Pnu‖s+r ≤ Nr
n‖u‖s , ∀u ∈ Hs , ‖P⊥n u‖s ≤ N−rn ‖u‖s+r , ∀u ∈ Hs+r .


For f ∈ Cq(Tν × Td × R; R) with
q ≥ S + 2 , (6.2)


the composition operator on Sobolev spaces


f : Hs → Hs , f(u)(ϕ, x) := f(ϕ, x, u(ϕ, x))


satisfies the following standard properties: ∀s ∈ [s1, S], s1 > (d+ ν)/2,


• (F1) (Regularity) f ∈ C2(Hs;Hs).


• (F2) (Tame estimates) ∀u, h ∈ Hs with ‖u‖s1 ≤ 1,


‖f(u)‖s ≤ C(s)(1 + ‖u‖s) , ‖(Df)(u)h‖s ≤ C(s)(‖h‖s + ‖u‖s‖h‖s1) , (6.3)


‖D2f(u)[h, v]‖s ≤ C(s)
(
‖u‖s‖h‖s1‖v‖s1 + ‖v‖s‖h‖s1 + ‖v‖s1‖h‖s


)
.


• (F3) (Taylor Tame estimate) ∀u ∈ Hs with ‖u‖s1 ≤ 1, ∀h ∈ Hs with ‖h‖s1 ≤ 1,


‖f(u+ h)− f(u)− (Df)(u)h‖s ≤ C(s)(‖u‖s‖h‖2s1 + ‖h‖s1‖h‖s) .


In particular, for s = s1, ‖f(u+ h)− f(u)− (Df)(u)h‖s1 ≤ C(s1)‖h‖2s1 .


We fix the Sobolev indices s0 < s1 < S as


s0 := b = d+ ν , s1 := 10(τ + b)C2 , S := 12τ ′ + 8(s1 + 1) , (6.4)


where
C2 := 6(C1 + 2) , τ := max{d+ ν + 3, 2C2ν + 1} , τ ′ := 3τ + 2b , (6.5)


and C1 := C1(d, ν) ≥ 2 is defined in Proposition 4.1. Note that s0, s1, S defined in (6.4) depend only on
d and ν. We also fix the constant δ in Definition 3.1 as


δ := 1/4 . (6.6)


Remark 6.1. By (6.4)-(6.6) the hypotheses (3.2)-(3.4) of Proposition 3.1 are satisfied for any χ ∈
[C2, 2C2), as well as assumption (ii) of Proposition 4.1. We assume τ ≥ d+ ν + 3 in view of (5.36).


Setting
τ1 := 3ν + d+ 1 (6.7)


and γ > 0, we implement the first steps of the Nash-Moser iteration restricting λ to the set


Ḡ :=
{
λ ∈ Λ :


∥∥∥(− λ2(ω̄ · l)2 + Π0(−∆ + V (x))|E0


)−1∥∥∥
L2
x


≤ Nτ1
0


γ
, ∀ |l| ≤ N0


}
=


{
λ ∈ Λ : | − λ2(ω̄ · l)2 + µ̂j | ≥ γN−τ10 , ∀ |j| ≤ N0, |l| ≤ N0


}
(6.8)


where µ̂j are the eigenvalues of Π0(−∆ + V (x))|E0 and Π0 := ΠN0,0, E0 := EN0,0 are defined in (2.13).
We shall prove in Lemma 6.2 that |Ḡ| = 1−O(γ) (since τ1 > 3ν + d).


We prove the separation properties of the small divisors for λ satisfying assumption (NR), namely in


G̃ :=
{
λ ∈ Λ :


∣∣∣n+ λ2
∑


1≤i≤j≤ν


pijω̄iω̄j


∣∣∣ ≥ γ


1 + |p|τ0
, ∀ (n, p) 6= 0


}
. (6.9)


The constant γ will be fixed in (6.26). We also set


σ := τ ′ + δs1 + 2 . (6.10)


Given a set A we denote N (A, η) the open neighborhood of A of width η (which is empty if A is empty).
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Theorem 6.1. (Nash-Moser) There exist ε0, c̄, γ̄ > 0 (depending on d, ν, V ,γ0) such that, if


γ ∈ (0, γ̄) , N0 ≥ 2γ−1 , and ε ∈ [0, ε0) , εNS
0 ≤ c̄ , (6.11)


then there is a sequence (un)n≥0 of C1 maps un(ε, ·) : Λ→ Hs1 satisfying


(S1)n un(ε, λ) ∈ Hn, un(0, λ) = 0, ‖un‖s1 ≤ 1, ‖u0‖s1 ≤ N−σ0 and ‖∂λun‖s1 ≤ C(s1)Nτ1+s1+1
0 γ−1.


(S2)n (n ≥ 1) For all 1 ≤ k ≤ n, ‖uk − uk−1‖s1 ≤ N−σ−1
k , ‖∂λ(uk − uk−1)‖s1 ≤ N


−1/2
k .


(S3)n (n ≥ 1)


‖u− un−1‖s1 ≤ N−σn =⇒
n⋂
k=1


G0
Nk


(uk−1) ∩ G̃ ⊆ GNn(u) (6.12)


where G0
N (u) (resp. GN (u)) is defined in (5.3) (resp. in (4.3)) and G̃ in (6.9).


(S4)n Define the set


Cn :=
n⋂
k=1


GNk(uk−1)
n⋂
k=1


G0
Nk


(uk−1)
⋂
G̃ ∩ Ḡ , (6.13)


where GNk(uk−1) is defined in (5.35), Ḡ in (6.8), G̃ in (6.9), G0
Nk


(uk−1) in (5.3).


If λ ∈ N (Cn, N−σn ) then un(ε, λ) solves the equation


(Pn) Pn


(
Lωu− εf(u)


)
= 0 .


(S5)n Un := ‖un‖S, U ′n := ‖∂λun‖S (where S is defined in (6.4)) satisfy


(i) Un ≤ N2(τ ′+δs1+1)
n , (ii) U ′n ≤ N4τ ′+2s1+4


n .


The sequence (un)n≥0 converges in C1 norm to a map


u(ε, ·) ∈ C1(Λ, Hs1) with u(0, λ) = 0 (6.14)


and, if λ belongs to the Cantor like set
Cε :=


⋂
n≥0


Cn (6.15)


then u(ε, λ) is a solution of (1.10), with ω = λω̄.


The proof of Theorem 6.1 follows exactly the steps in [5], section 7. A difference is that we do not
need to estimate ∂εun. Another difference is that the frequencies in Cn (see (6.13)) belong also to G̃ (in
order to prove the separation properties). For the reader convenience, in the Appendix, we spell out
the main steps indicating the other minor adaptations in the proof. The main one concerns the proof of
Lemma 7.3 where we estimate A−1


M,j0
(ε, λ, θ) for both M = Nn+1 and Nn+1 − 2L0 (and not only Nn+1).


The sets of parameters Cn in (S4)n are decreasing, i.e.


. . . ⊆ Cn ⊆ Cn−1 ⊆ . . . ⊆ C0 ⊂ G̃ ∩ Ḡ ⊂ Λ ,


and it could happen that Cn0 = ∅ for some n0 ≥ 1. In such a case un = un0 , ∀n ≥ n0 (however the map
u(ε, ·) in (6.14) is always defined), and Cε = ∅. We shall prove in (6.27) that (choosing (6.26)) the set Cε
has asymptotically full measure.


In order to prove Theorem 1.1, we first verify the existence of frequencies satisfying (6.1).


Lemma 6.1. For τ0 > ν(ν+ 1)− 1, the complementary of the set of ω ∈ Rν , |ω| ≤ 1, verifying (1.7) has
measure O(γ1/2


0 ).
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Proof. We have to estimate the measure of⋃
p∈Zν(ν+1)/2\{0}


Rp where Rp :=
{
ω ∈ Rν , |ω| ≤ 1 :


∣∣∣ ∑
1≤i≤j≤ν


ωiωjpij


∣∣∣ < γ0


|p|τ0
}
.


Let M := Mp be the (ν × ν)−symmetric matrix such that∑
1≤i≤j≤ν


ωiωjpij = Mω · ω , ∀ω ∈ Rν .


The symmetric matrix M has coefficients


Mij :=
pij
2


(1 + δij) , ∀1 ≤ i ≤ j ≤ ν , and Mij = Mji . (6.16)


There is an orthonormal basis of eigenvectors V := (v1, . . . , vk) of Mvk = λkvk with real eigenvalues
λk := λk(p). Under the isometric change of variables ω = V y we have to estimate


|Rp| =
∣∣∣{y ∈ Rν , |y| ≤ 1 :


∣∣∣ ∑
1≤k≤ν


λky
2
k


∣∣∣ < γ0


|p|τ0
}∣∣∣ . (6.17)


Since M2vk = λ2
kvk, ∀k = 1, . . . , ν, we get


ν∑
k=1


λ2
k = Tr(M2) =


ν∑
i,j=1


M2
ij


(6.16)


≥ |p|2/2 .


Hence there is an index k0 ∈ {1, . . . , ν} such that |λk0 | ≥ |p|/
√


2ν and the derivative∣∣∣∂2
yk0


( ∑
1≤i≤ν


λky
2
k


)∣∣∣ = |2λk0 | ≥
√


2 |p|/
√
ν . (6.18)


As a consequence of (6.17) and (6.18) we deduce the measure estimate |Rp| ≤ C


√
γ0


|p|τ0+1
(see e.g.


Lemma 9.1 in [15]) and∣∣∣ ⋃
p∈Zν(ν+1)/2\{0}


Rp
∣∣∣ ≤ ∑


p∈Zν(ν+1)/2\{0}


|Rp| ≤
∑


p∈Zν(ν+1)/2\{0}


C


√
γ0


|p|τ0+1
≤ C ′√γ0


for τ0 > ν(ν + 1)− 1.


We now prove that Cε in (6.15) has asymptotically full measure, i.e. (1.14) holds.


Lemma 6.2. The complementary of the set Ḡ defined in (6.8) satisfies


|Λ \ Ḡ| = O(γ) . (6.19)


Proof. The λ such that (6.8) is violated are


Λ \ Ḡ =
⋃


|l|,|j|≤N0


Rl,j where Rl,j :=
{
λ ∈ [1/2, 3/2] : |λ2(ω̄ · l)2 − µ̂j | <


γ


Nτ1
0


}
. (6.20)


By Lemma 2.3 the eigenvalues |µ̂j | > β0 (for N0 > L0 ). Therefore, R0,j = ∅ if γN−τ10 < β0. We have
to estimate the ξ := λ2 ∈ [4/9, 4] such that |ξ(ω̄ · l)2 − µ̂j | < γN−τ10 . The derivative of the function
glj(ξ) := ξ(ω̄ · l)2 − µ̂j satisfies ∂ξglj(ξ) = (ω̄ · l)2 ≥ 4γ2


0N
−2ν
0 by (1.6). As a consequence


|Rl,j | ≤ Cγ−2
0 γN−τ1+2ν


0 . (6.21)


Then (6.20), (6.21), imply


|Λ \ Ḡ| ≤
∑


|l|≤N0,|j|≤N0


|Rl,j | ≤ Cγγ−2
0 Nd+ν


0 N−τ1+2ν
0 = O(γ)


since τ1 > 3ν + d (see (6.7)).
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Lemma 6.3. Let γ ∈ (0, 1/4). Then the complementary of the set G̃ in (6.9) has a measure


|Λ \ G̃| = O(γ) . (6.22)


Proof. For p := (pij)1≤i≤j≤ν ∈ Zν(ν+1)/2, let


ap :=
∑


1≤i≤j≤ν


pijω̄iω̄j , gn,p(ξ) := n+ ξap .


We have


|Λ \ G̃| ≤ C
∑


(n,p) 6=(0,0)


|Rn,p| where Rn,p :=
{
ξ := λ2 ∈ [1/4, 9/4] : |gn,p(ξ)| <


γ


1 + |p|τ0
}


(6.23)


Case I: n 6= 0. If Rn,p 6= ∅ then, since γ ∈ (0, 1/4) and |ξ| ≤ 3, we deduce |ap| ≥ 1/4, |n| ≤ 4|ap| and


|Rn,p| ≤
2γ


(1 + |p|τ0)|ap|
.


Hence ∑
n∈Z\{0}


|Rn,p| =
∑


n∈Z\{0},|n|≤4|ap|


|Rn,p| ≤
Cγ


(1 + |p|)τ0
. (6.24)


Case II: n = 0. In this case, using (1.7) we obtain


R0,p ⊂
(


0,
γ


1 + |p|τ0
|p|τ0
γ0


]
⊂
(


0,
γ


γ0


]
. (6.25)


From (6.23), (6.24), (6.25), τ0 := ν(ν + 1), we deduce (6.22).


We now verify that Cε has asymptotically full measure, i.e. (1.14) holds, choosing


γ := εα with α := 1/(S + 1) , N0 := 4γ−1 , (6.26)


so that (6.11) is fulfilled for ε small enough.
The complementary set of Cε in Λ has measure


|Ccε |
(6.15),(6.13)


=
∣∣∣ ⋃
k≥1


GcNk(uk−1)
⋃
k≥1


(G0
Nk


(uk−1))c
⋃
G̃c
⋃
Ḡc
∣∣∣


≤
∑
k≥1


|GcNk(uk−1)|+
∑
k≥1


|(G0
Nk


(uk−1))c|+ |G̃c|+ |Ḡc|


(5.36),(5.5),(6.5),(6.22),(6.19)


≤ C
∑
k≥1


N−1
k + Cγ ≤ C ′(N−1


0 + γ)
(6.26)


≤ C ′′εα (6.27)


implying (1.14). Finally (1.13) follows by (6.14) and


‖u(ε, λ)‖s1 ≤ ‖u0‖s1 +
∞∑
k=1


‖uk − uk−1‖s1


(S1)0,(S2)n
≤ N−σ0 +


∞∑
k=1


N−σ−1
k ≤ CN−σ0


(6.26)


≤ Cεασ ,


hence ‖u(ε, λ)‖s1 → 0, uniformly for λ ∈ Λ, as ε → 0. Theorem 1.1 is proved with s(d, ν) := s1 defined
in (6.4) and q(d, ν) := S + 3, see (6.2). The C∞-regularity result follows as in [5]-section 7.3.
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7 Appendix: proof of the Nash-Moser Theorem 6.1


Step 1: Initialization. We take λ ∈ N (Ḡ, 2N−σ0 ) (see (6.8)), so that


L0 := P0(Lλω̄)|H0 satisfies ‖L−1
0 ‖s1 ≤ 2Nτ1+s1


0 γ−1


(see Lemma 7.1 in [5]), and we look for a solution of equation (P0) as a fixed point of


F0 : H0 → H0 , F0(u) := εL−1
0 P0f(u) .


A contraction mapping argument (as in Lemma 7.2 of [5]) proves that, for εγ−1Nτ1+s1+σ
0 ≤ c(s1) small,


∀λ ∈ N (Ḡ, 2N−σ0 ), there exists a unique solution ũ0(ε, λ) of (P0) in


B0(s1) := {u ∈ H0 : ‖u‖s1 ≤ ρ0 := N−σ0 } .


By uniqueness ũ0(0, λ) = 0. The implicit function theorem implies that ũ0(ε, ·) ∈ C1(N (Ḡ, 2N−σ0 );H0)
and ∂λũ0 = −L−1


0 (ε)(∂λL0)ũ0 satisfies


‖∂λũ0‖s1 ≤ CN
τ1+s1+2−σ
0 γ−1 .


Then we define the C1 map u0 := ψ0ũ0 : Λ→ H0 with cut-off function ψ0 : Λ→ [0, 1],


ψ0 :=


{
1 if λ ∈ N (Ḡ, N−σ0 )
0 if λ /∈ N (Ḡ, 2N−σ0 )


and |Dλψ0| ≤ Nσ
0 C .


We get ‖u0‖s1 ≤ N−σ0 , ‖∂λu0‖s1 ≤ C(s1)Nτ1+s1+1
0 γ−1. The statements (S1)0, (S4)0 are proved (note


that C0 = G̃ ∩ Ḡ). Statement (S5)0 follows in the same way using (6.11). Note that (S2)0, (S3)0 are
empty.


For the next steps of the induction, the following lemma establishes a property which replaces (S3)n
for the first steps. It is proved exactly as in Lemma 7.3 of [5].


Lemma 7.1. There exists N0(S, V ) ∈ N and c(s1) > 0 such that, if N0 ≥ N0(S, V ) and εNτ ′+δs1
0 ≤ c(s1),


then ∀N1/C2
0 ≤ N ≤ N0, ∀‖u‖s1 ≤ 1, we have GN (u) = Λ.


Step 2: Iteration of the Nash-Moser scheme. Suppose, by induction, that we have already defined
un ∈ C1(Λ;Hn) and that properties (S1)k-(S5)k hold for all k ≤ n. We are going to define un+1 and
prove the statements (S1)n+1-(S5)n+1.


In order to carry out a modified Nash-Moser scheme, we shall study the invertibility of


Ln+1(un) := Pn+1L(un)|Hn+1 where L(u) := Lω − ε(Df)(u) , (7.1)


(see (2.1)) and the tame estimates of its inverse, applying Proposition 3.1. We distinguish two cases.
If 2n+1 > C2 (the constant C2 is fixed in (6.5)), then there exists a unique p ∈ [0, n] such that


Nn+1 = Nχ
p , χ = 2n+1−p ∈ [C2, 2C2) , and Nn+1 − 2L0 = N χ̃


p , χ̃ ∈ [C2, 2C2) . (7.2)


If 2n+1 ≤ C2 then there exists χ, χ̃ ∈ [C2, 2C2] such that


Nn+1 = N̄χ , N̄ := [N1/C2
n+1 ] ∈ (N1/C2


0 , N0) and Nn+1 − 2L0 = N̄ χ̃ . (7.3)


If (7.2) holds we consider in Proposition 3.1 the two scales N ′ = Nn+1 (resp. N ′ = Nn+1−2L0), N = Np,
see (3.1) . If (7.3) holds, we set N ′ = Nn+1 (resp. N ′ = Nn+1 − 2L0), N = N̄ .


Lemma 7.2. Let A(ε, λ, θ) be defined in (2.6), with u = un. For all


λ ∈
n+1⋂
k=1


G0
Nk


(uk−1) ∩ G̃ , θ ∈ R ,


the hypothesis (H3) of Proposition 3.1 apply to AM,j0(ε, λ, θ), ∀M ∈ {Nn+1, Nn+1−2L0}, ∀j0 ∈ Zd \QM .
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Proof. We give the proof when M = Nn+1 and (7.2) holds. Since j0 /∈ QNn+1 (i.e. (0, j0) /∈ Q̌Nn+1)
Lemma 3.1 implies that, a site


i ∈ E := (0, j0) + [−Nn+1, Nn+1]b (7.4)


which is Np-good for A(ε, λ, θ) (see Definition 3.4) is also (ANn+1,j0(ε, λ, θ), Np)-good (see Definition 3.3).
As a consequence,{


(ANn+1,j0(ε, λ, θ), Np)−bad sites
}
⊂
{
Np−bad sites of A(ε, λ, θ) with |l| ≤ Nn+1


}
. (7.5)


and (H3) is proved if the latter Np-bad sites (in the right hand side of (7.5)) are contained in a disjoint
union ∪αΩα of clusters satisfying (3.5) (with N = Np). This is a consequence of Proposition 4.1 applied
to the infinite dimensional matrix A(ε, λ, θ). We claim that


n+1⋂
k=1


G0
Nk


(uk−1) ⊂ GNp(un) , i.e. any λ ∈
n+1⋂
k=1


G0
Nk


(uk−1) is Np − good for A(ε, λ, θ) , (7.6)


and then assumption (i) of Proposition 4.1 holds. Indeed, if p = 0 then (7.6) is trivially true because
GN0(un) = Λ, by Lemma 7.1 and (S1)n. If p ≥ 1, we have


‖un − up−1‖s1 ≤
n∑
k=p


‖uk − uk−1‖s1
(S2)k
≤


n∑
k=p


N−σ−1
k ≤ N−σp


∑
k≥p


N−1
k ≤ N−σp


and so (S3)p implies
p⋂
k=1


G0
Nk


(uk−1) ⊂ GNp(un) .


Assumption (ii) of Proposition 4.1 holds by (6.5), since χ ∈ [C2, 2C2). Assumption (iii) of Proposition
4.1 holds for all λ ∈ G̃, see (6.9).


When (7.3) holds the proof is analogous using Lemma 7.1 with N = N̄ and (S1)n.


Lemma 7.3. Property (S3)n+1 holds.


Proof. We want to prove that


‖u− un‖s1 ≤ N−σn+1 and λ ∈
n+1⋂
k=1


G0
Nk


(uk−1) ∩ G̃ =⇒ λ ∈ GNn+1(u) .


Since λ ∈ G0
Nn+1


(un), by (5.3) and Definition 4.1 it is sufficient to prove that


BM (j0;λ)(u) ⊂ B0
M (j0;λ)(un) , ∀M ∈ {Nn+1, Nn+1 − 2L0} , j0 ∈ Zd \ QM


(we highlight the dependence of these sets on u, un) or, equivalently, by (5.1), (4.1), that


(‖A−1
M,j0


(ε, λ, θ)(un)‖0 ≤Mτ =⇒ AM,j0(ε, λ, θ)(u) is M − good) , ∀M ∈ {Nn+1, Nn+1 − 2L0} , (7.7)


where A(ε, λ, θ)(u) is in (2.6).
Let us make the case M = Nn+1, the other is similar. We prove (7.7) applying Proposition 3.1 to


A := ANn+1,j0(ε, λ, θ)(u) with E defined in (7.4), N ′ = Nn+1, N = Np (resp. N = N̄) if (7.2) (resp.
(7.3)) is satisfied.


Using Lemma 2.1, ‖V ‖Cq ≤ C, assumption (H1) holds with


Υ ≤ C(1 + ‖un‖s1 + ||V ||s1)
(S1)n
≤ C ′(V ) . (7.8)
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By Lemma 7.2, for all θ ∈ R, j0 ∈ Zd \ QNn+1 , the hypothesis (H3) of Proposition 3.1 holds for
ANn+1,j0(ε, λ, θ)(un). Hence, by Proposition 3.1, for s ∈ [s0, s1], if


‖A−1
Nn+1,j0


(ε, λ, θ)(un)‖0 ≤ Nτ
n+1


(which is assumption (H2)) then


||A−1
Nn+1,j0


(ε, λ, θ)(un)||s ≤
1
4
Nτ ′


n+1


(
Nδs
n+1 + ||V ||s + ε||(Df)(un)||s


)
. (7.9)


Finally, since ‖u− un‖s1 ≤ N−σn+1 we have


||ANn+1,j0(ε, λ, θ)(un)−ANn+1,j0(ε, λ, θ)(u)||s1 ≤ Cε‖u− un‖s1 ≤ N−σn+1


and (7.7) follows by (7.9) and a standard perturbative argument (see e.g. [5]).


From now on the convergence proof of the Nash-Moser iteration follows [5] with no changes.
In order to define un+1, we write, for h ∈ Hn+1,


Pn+1


(
Lω(un + h)− εf(un + h)


)
= rn + Ln+1(un)h+Rn(h) (7.10)


where Ln+1(un) is defined in (7.1) and


rn := Pn+1


(
Lωun − εf(un)


)
, Rn(h) := −εPn+1


(
f(un + h)− f(un)− (Df)(un)h


)
. (7.11)


By (S4)n, if λ ∈ N (Cn, N−σn ) then un solves Equation (Pn) and so


rn = Pn+1P
⊥
n


(
Lωun − εf(un)


)
= Pn+1P


⊥
n


(
V0 un − εf(un)


)
, (7.12)


using also that Pn+1P
⊥
n (Dωun) = 0, see (2.3). Note that, by (6.1) and σ ≥ 2 (see (6.10)), for N0 ≥ 2, we


have the inclusion N (Cn+1, 2N−σn+1) ⊂ N (Cn, N−σn ).


Lemma 7.4. (Invertibility of Ln+1) For all λ ∈ N (Cn+1, 2N−σn+1) the operator Ln+1(un) is invertible
and, for s = s1, S,


||L−1
n+1(un)||s ≤ Nτ ′+δs


n+1 . (7.13)


As a consequence, by (2.12), ∀h ∈ Hn+1,


‖L−1
n+1(un)h‖s1 ≤ C(s1)Nτ ′+δs1


n+1 ‖h‖s1 , (7.14)


‖L−1
n+1(un)h‖S ≤ Nτ ′+δs1


n+1 ‖h‖S + C(S)Nτ ′+δS
n+1 ‖h‖s1 . (7.15)


Proof. We apply the multiscale Proposition 3.1 to ANn+1 = Ln+1(un) as in Lemma 7.3. Assumption
(H1) holds by (7.8). For all λ ∈ GNn+1(un) (see (5.35)) ‖L−1


n+1(un)‖0 ≤ Nτ
n+1 and (H2) holds. The


hypothesis (H3) holds, for λ ∈ Cn+1 (see (6.13)), as a particular case of Lemma 7.2, for θ = 0, j0 = 0,
M = Nn+1, and since 0 /∈ QNn+1 . Then Proposition 3.1 applies ∀λ ∈ Cn+1, implying (7.13). For all
λ ∈ N (Cn+1, 2N−σn+1) the proof of (7.13) follows by a perturbative argument as in Lemma 7.7 in [5].


By (7.10), the equation (Pn+1) is equivalent to the fixed point problem h = Fn+1(h) where


Fn+1 : Hn+1 → Hn+1 , Fn+1(h) := −L−1
n+1(un)(rn +Rn(h)) .


By a contraction mapping argument as in Lemma 7.8 in [5] (using (7.14), (7.12), (7.11)) we prove the
existence, ∀λ ∈ N (Cn+1, 2N−σn+1), of a unique fixed point h̃n+1(ε, λ) of Fn+1 in


Bn+1(s1) :=
{
h ∈ Hn+1 : ‖h‖s1 ≤ ρn+1 := N−σ−1


n+1


}
.
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Since un(0, λ) = 0 (by (S1)n), we deduce, by the uniqueness of the fixed point, that h̃n+1(0, λ) = 0.
Moreover, as in Lemma 7.9 of [5] (using the tame estimate (7.15)), one deduces the following bound on
the high norm


‖h̃n+1‖S ≤ K(S)Nτ ′+δs1
n+1 Un .


By the implicit function theorem as in Lemma 7.10 in [5] (using (7.14)-(7.15)) the map h̃n+1 is in
C1(N (Cn+1, 2N−σn+1), Hn+1) and


‖∂λh̃n+1‖s1 ≤ N−1
n+1 , ‖∂λh̃n+1‖S ≤ Nτ ′+δs1+1


n+1


(
Nτ ′+δs1+1
n+1 Un + U ′n


)
.


Finally we define the C1-extension onto the whole Λ as


hn+1(λ) :=
{
ψn+1(λ)h̃n+1(λ) if λ ∈ N (Cn+1, 2N−σn+1)
0 if λ /∈ N (Cn+1, 2N−σn+1)


where ψn+1 is a C∞ cut-off function satisfying


0 ≤ ψn+1 ≤ 1 , ψn+1 ≡


{
1 if λ ∈ N (Cn+1, N


−σ
n+1)


0 if λ /∈ N (Cn+1, 2N−σn+1)
and |∂λψn+1| ≤ Nσ


n+1C .


Then (see Lemma 7.11 in [5])


‖hn+1‖s1 ≤ N−σ−1
n+1 , ‖∂λhn+1‖s1 ≤ N


−1/2
n+1 .


In conclusion, un+1 := un + hn+1 satisfies (S1)n+1, (S2)n+1, (S4)n+1, (S5)n+1 (see Lemma 7.12 in [5]).
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[23] Procesi M., Xu X., Quasi-Töplitz Functions in KAM Theorem, preprint 2011.


[24] Wang W. M., Supercritical nonlinear Schrödinger equations I: quasi-periodic solutions, preprint 2010.


[25] Wang W. M., Supercritical nonlinear wave equations: quasi-periodic solutions and almost global
existence, preprint 2011.


[26] Wayne E., Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm.
Math. Phys. 127, 479-528, 1990.


Massimiliano Berti, Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi
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