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Families of periodic solutions for some Hamiltonian PDEs


Gianni Arioli 1 ,2 and Hans Koch 3


Abstract. We consider the nonlinear wave equation utt − uxx = ±u3 and the beam equation
utt+uxxxx = ±u3 on an interval. Numerical observations indicate that time-periodic solutions
for these equations are organized into structures that resemble branches and seem to undergo
bifurcations. Besides describing our observations, we prove the existence of time-periodic solu-
tions for various periods (a set of positive measure in the case of the beam equation) along the
main nontrivial “branch”.


1. Introduction and main results


We prove the existence of time-periodic solutions along what looks like “branches” of
solutions for two Hamiltonian partial differential equations: the nonlinear wave equation
(ν = 1) and the nonlinear beam equation (ν = 2) in one spatial dimension,


∂2t u(t, x) + (−1)ν∂2νx u(t, x) = f(u(t, x)) , (t, x) ∈ R× (0, π) , (1.1)


with homogeneous Dirichlet boundary conditions.


This work was motivated in part by observations in a new model for suspension bridges
[13,14] which consists of two coupled equations: a modified nonlinear beam equation mod-
eling the displacement of the center of the deck, and a modified nonlinear wave equation
modeling the torsion of the deck. This model exhibits resonances between longitudinal and
torsional modes that depend strongly on the energy (amplitudes). Thus we are interested
in families of time-periodic solutions covering a range of different amplitudes; and it is
natural to consider first the simpler case of equation (1.1).


The goal is to construct solutions in a way that also yields information about their
properties. The computer-aided methods presented in this paper are well suited for such
tasks. Similar techniques have been applied successfully to partial differential equations of
elliptic and parabolic type [17-27].


Initial results on time-periodic solutions for (1.1) covered periods that are rational
multiples of π. For small-amplitude solutions, or if f is near-linear, it is possible to apply
perturbative methods; see e.g. [1,2] and references therein. In other cases, existence results
have been obtained by variational techniques [3-7]. One of the drawbacks with these tech-
niques is that they yield very limited information about the solutions. The most recent
result cover positive-measure sets of periods [8-12], using Nash-Moser schemes or resum-
mation techniques (for divergent series) to deal with the problem of small denominators
that arise with irrational periods. These methods are again perturbative.
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Here we consider both the rational and the positive-measure case. We restrict our
analysis to the specific nonlinearity f(u) = σu3 with σ = ±1. Setting u(t, x) = u(αt, x),
where 2π/α is the desired period for u, we arrive at the equation


Lαu = σu3 , Lα = α2∂2t + (−1)ν∂2νx , (1.2)


for a function u = u(t, x) that is 2π-periodic in t and vanishes at x = 0, π, together with
its first x-derivative if ν = 2. Restricting further to solutions u that are invariant under
time reversal leads us to consider the vector space Ao of all real analytic functions u on
R2 that are 2π-periodic in each argument and admit a representation


u =
∑


n,k


un,kPn,k , Pn,k(t, x) = cos(nt) sin(kx) . (1.3)


We are interested mainly in solutions that are dominated by a single mode Pa,b. In
the case a = b = 1, one way to characterize such a solution is the following.


Definition 1.1. A solution u of the equation (1.2) will be called a type (1, 1) solution if
|un,k| < |u1,1| whenever n > 1 or k > 1.


Other solutions can be obtained via scaling. More specifically, if u ∈ Ao satisfies the
equation Lαu = σu3, and if we define


ũ(t, x) = bνu(at, bx) , α̃ = αbν/a , (1.4)


with a and b nonzero integers, then ũ belongs to Ao and satisfies Lα̃ũ = σũ3.
As indicated earlier, the nature of the problem (1.2) depends on the arithmetic prop-


erties of the frequency α. This can be seen e.g. from the eigenvalues of the operator Lα,
which are given by


λn,k = k2ν − (αn)2 = (kν + αn)(kν − αn) , (1.5)


with associated eigenfunctions Pn,k. In particular, if α is irrational, then all eigenvalues
are nonzero; although they typically accumulate at zero if ν = 1.


We start by considering rational values of α. In this case Lα can have a nontrivial
null space. We avoid this extra complication by restricting our analysis to the subspace
B ⊂ Ao consisting of all functions u ∈ Ao whose Fourier coefficients un,k vanish whenever
nk is even. Notice that, if u belongs to B then so do Lαu and u3. In addition, we restrict
to rational values of α that admit a representation α = p/q with p and q nonzero integers
of different parity (even or odd). The set of such rationals will be denoted by Qo.


For the nonlinear wave equation (ν = 1) we consider the sample set


Q1 =
{


3
8 ,


5
12 ,


7
16 ,


9
20 ,


13
28 ,


1
2 ,


15
28 ,


11
20 ,


9
16 ,


7
12 ,


5
8 ,


9
14 ,


11
16 ,


7
10 ,


13
18 ,


3
4 ,


11
14 ,


5
6 ,


7
8 ,


9
10 ,


11
12 ,


13
14 ,


17
18


}


.


Theorem 1.2. For each α ∈ Q1 the equation α2∂2t − ∂2xu = u3 has a solution u ∈ B of
type (1, 1) with |u1,1| >


√


2(1− α).


We note that every solution u ∈ B of the equation α2∂2t u − ∂2xu = u3 with α ∈ Qo


yields a solution ũ ∈ B of the equation α−2∂2t ũ−∂2xũ = −ũ3, and vice-versa. The functions
u and ũ are related via ũ(t, x) = α−1u(x− π/2, t− π/2).







Periodic solutions 3


Our method used to prove Theorem 1.2 applies in principle to any value α ∈ Qo. We
expect that the given bounds on u1,1 hold for all values of α in a subset of [0, 1]∩Qo whose
closure has positive measure. Numerically, the curve α 7→ u resembles a solution branch
of the type known for finite dimensional systems; see Section 2.


Next we consider some irrational values of α. Here we restrict to the beam equation
(ν = 2), where the spectrum of Lα is easier to control.


Even in this case it is difficult to construct non-small solutions for any specific irra-
tional value of α. As an example we consider a quadratic irrational α = 1/


√
m, where


m > 1 is an integer that is not the square of an integer. In this case, Siegel’s theorem
on integral points on algebraic curves of genus one [16] implies that |λn,k| → ∞ as n or k
tends to infinity. Unfortunately we have not been able to find lower bounds on |λn,k| that
would be useful for our purpose. We sidestep this problem by making an assumption.


Theorem 1.3. Let α = 1/
√
3. Assume that |3k4 − n2| ≥ 39 for all k ≥ 9 and all n ∈ N.


Then the equation α2∂2t u+ ∂4xu = u3 has a solution u ∈ B of type (1, 1) with |u1,1| > 1.


We have verified the assumption minn |3k4 − n2| ≥ 39 for 9 ≤ k ≤ 1012.
Our next result concerns irrational values of α that are close to the rationals in


Q2 =
{


1
4 ,


3
10 ,


9
20 ,


1
2 ,


7
12 ,


5
8 ,


3
4 ,


5
6 ,


7
6 ,


5
4 ,


19
14 ,


17
12 ,


31
20 ,


13
8 ,


31
18 ,


61
34


}


.


Theorem 1.4. For each κ ∈ Q2 there exists a set Rκ ⊂ R of positive measure that includes
κ as a Lebesgue density point, such that for each α ∈ Rκ, the equation α


2∂2t u+∂
4
xu = σu3


with σ = sign(1− α) has a solution u ∈ B of type (1, 1) with |u1,1| >
√


2|1− α|.
Our proofs of Theorems 1.2,3,4 are computer-assisted. The general strategy and main


estimates are given in Section 3. This includes a definition of the sets Rκ mentioned
in Theorem 1.4. In Section 4 we show that these sets Rκ have positive measure. The
computer part is sketched in Section 5 and described in detail in [28].


2. Numerical results


For numerical approximations we truncate the Fourier series (1.3) for a function u ∈ B in
both variables, using projections EN and PK defined by


ENu =
∑


n≤N


∑


k


un,kPn,k , PKu =
∑


n


∑


k≤K


un,kPn,k . (2.1)


However, it is useful to take into account that the equation (1.2) arises from a Hamiltonian
flow. The Hamiltonian H is given by


H(u, v) =


∫ π


0


[


1
2 (∂


ν
xu)


2 + 1
2α


−2v2 − 1
4σu


4
]


dx . (2.2)


This Hamiltonian describes not only the full equation Lαu = σu3, but also the truncated
equation Lαu = PKσu


3. To be more precise, we can consider H as a function on BK ×ḂK ,







4 GIANNI ARIOLI and HANS KOCH


where BK is the range of PK , and where ḂK is the set of all functions ∂tu with u ∈ BK .
The flow defined by the Hamiltonian H is given by ∂tu = ∇vH and ∂tv = −∇uH, using
gradients with respect to the L2 inner product. In particular ∂tu = α−2v. Substituting
v = α2∂tu into the equation ∂tv = −∇uH yields Lαu = PKσu


3. If we define P∞ to be the
identity operator, then the same applies to K = ∞.


In what follows we always assume that σ = sign(1− α).
For numerical computations we have to truncate the equation Lαu = PKσu


3 further
to Lαu = ENPKσu


3. This doubly truncated system is no longer Hamiltonian. But this
can be remedied partly by choosing N ≫ K whenever necessary. The fixed point equation
associated with Lαu = ENPKσu


3 is


u = FNK


α (u)
def


= L−1
α ENPKσu


3 , σ = sign(1− α) . (2.3)


Since FNK


α is a map on the finite dimensional space ENBK , approximate fixed points can
be found by standard numerical methods.


We consider values of α in the interval [0, ν]. By the implicit function theorem,
the solutions of FNK


α (u) = u for which DFNK


α (u) has no eigenvalue 1 are organized into
branches where u depends smoothly on the parameter α. The union of all smooth branches
that include a solution of type (1, 1) will be referred to as the (1, 1) branch or “main”
branch. Scaling each solution on this main branch via (1.4) yields what we will call the
(a, b) branch.


Figure 1. (ν = 1) Norm versus α, for the solutions of (2.3) with N = K and K = 3, 5, 7, 9.


We start with the nonlinear wave equation (ν = 1). Our first observation is that
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the main branch covers a large fraction of the interval [0, 1]. The four graphs in Figure 1
display the norm ‖u‖0 =


∑


n,k |un,k| as a function of α along the main branch, for N = K
and K = 3, 5, 7, 9.


As one would expect, the larger K the less regular the graph. But the changes appear
rather tame. Spikes appear as K is increased, but they get increasingly narrow and become
invisible at any given resolution. To highlight places of possible bifurcations we use colors
to indicate the index of the solution u, that is, the number of eigenvalues of DFNK


α (u).


0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α


0.5


1.0


1.5


2.0


||u||


Figure 2. (ν = 1) The (1, 1) branch and some other (a, b) branches (thin lines).


Many of these bifurcations seem to involve other (a, b) branches: Figure 2 shows the
main branch together with several (a, b) branches (thin lines). Here the branch (a, b) can
be identified by using that it bifurcates out of u = 0 at α = b/a.


We study this phenomenon in more detail for values of α in the interval [0.57, 0.59]
where the first spike appears at truncation N = K = 5. To this end we choose K = 7, and
N ≫ K in order to preserve (approximately) the Hamiltonian character of the equation.
Figure 3 shows the values of the coefficients u1,1, u3,3, u5,3 and of the norm ‖u‖0, for the
solutions u that we found on the given α-interval. These graphs indicate clearly that the
(1, 1) branch coming from higher values of α undergoes a fold bifurcation at α ≃ 0.571 and
then bends back until it reaches a pitchfork bifurcation at α ≃ 0.585. The main branch
at the pitchfork bifurcation is the (5, 3) branch, which bifurcates out of u = 0 at α = 3/5.
The secondary branch is the continuation of the (1, 1) branch.


We did not investigate any of the other bifurcations, but our guess is that all bifurca-
tions of the (1, 1) branch involve one of the other (a, b) branches.
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Figure 3. (ν = 1) Coefficients u1,1, u3,3, u5,3 and norm ‖u‖0 versus α, for the solutions of the approximate


Hamiltonian system, N ≫ K = 7, near the crossing of the (1, 1) branch and the (5, 3) branch.


Next we consider the nonlinear beam equation (ν = 2). Our numerical results for this
equation show similarities with the above-mentioned results for the wave equation (ν = 1).
Here we are using K = 63 and N = 127. The two graphs in Figure 4 depict the (1, 1)
branch of solutions of the equation (2.3), for α < 1 (first) and for α > 1 (second). These
graphs appear much more regular than our graphs for ν = 1.


0.2 0.4 0.6 0.8 1.0
α


0.5


1.0


1.5


2.0


2.5


3.0


3.5


||u||


1.2 1.4 1.6 1.8
α


0.5


1.0


1.5


2.0


2.5


||u||


Figure 4. (ν = 2) The (1, 1) branch for α < 1 (left) and for α > 1 (right). The thin lines represent a few


other (a, b) branches.


Still, we observe a crossing between the (1, 1) branch and the (5, 3) branch, with a
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bifurcation patterns similar to the one for the wave equation; see Figure 5 which shows
an enlargement of the spike at α ≃ 1.83. The index changes that are visible in Figure 4
indicate that similar bifurcations occur at other branch crossings as well.


1.80 1.82 1.84 1.86
α


2.0


2.5


3.0


||u||


Figure 5. (ν = 2) Enlargement of the spike at α ≃ 1.83 in Figure 4.


The values of α used in Figure 4 include the values from the set Q2 defined before
Theorem 1.4. For these values of α there is no visible difference between our numerical
values of the norms ‖u‖0 and our rigorous norm bounds for the true solutions of Lαu = σu3.
We have no doubt that the other points in Figure 4 could be verified in the same sense.


This suggests that the beam equation has families of periodic solutions that, at any
finite resolution, are indistinguishable from the solution-branches of a truncated beam
equation. The same seems to be true for the wave equation. These families cover a wide
range of periods, with varying amplitudes. The existence of such families (of longitudinal
modes) was conjectured in [13,14] for a model of a bridge, and we believe that our results
for the equation (1.1) lend support to this conjecture.


3. Estimates for linear operators


First we reformulate our main results in terms of contraction mappings. After describing
what types of estimates are needed in order to control the linear operators involved, we
will give explicit bounds on the operator Lα.


Given a pair ρ = (ρ1, ρ2) of positive real numbers, denote by Ao
ρ the closure with


respect to the norm


‖u‖ρ =
∑


n,k


|un,k|̺n1̺k2 , ̺j = 1 + ρj , (3.1)


of the space of Fourier polynomials u ∈ Ao. Notice that the functions in Ao
ρ are analytic


on the domain Dρ given by |Im t| < ln(̺1) and |Imx| < ln(̺2). In particular Ao
ρ is a subset
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of Ao. We also define Bρ = B ∩ Ao
ρ. The operator norm of a bounded linear operator


L : Bρ → Bρ will be denoted by ‖L‖ρ.
The domain of the operator Lα is defined to be the subspace of all functions u ∈ Bρ


for which the sum
∑


n,k |λk,nuk,n|̺n1̺k2 is finite. In the cases considered here, we will show
that the eigenvalues of Lα are bounded away from zero, implying that Lα has a bounded
inverse on Bρ. Consequently the equation (1.2) with σ = sign(1− α) can be written as


u = Fα(u)
def


= L−1
α σu3 , σ = sign(1− α) . (3.2)


In order to solve the fixed point problem for Fα we consider an approximate Newton map
Nα associated with Fα. To be more specific, we first determine an approximate fixed point
u0 and write u = u0 + Ah, where A is a suitable linear isomorphism of Bρ. Then u is a
fixed point of Fα if and only if h is a fixed point of the map Nα defined by


Nα(h) = Fα(u0 +Ah)− u0 + (I−A)h . (3.3)


By choosing A to be an approximate inverse of I − DFα(u0) we can expect Nα to be a
contraction near u0.


Given r > 0 and u ∈ Bρ, denote by Br(u) the open ball of radius r in Bρ, centered at
u. Theorem 1.4 is proved by verifying the following bounds.


Lemma 3.1. For each κ ∈ Q2 there exists a set Rκ ⊂ R of positive measure that includes
κ as a Lebesgue density point, a pair ρ of positive real numbers, a Fourier polynomial
u0 ∈ Bρ, a linear isomorphism A : Bρ → Bρ, and positive constants K, δ, ε satisfying
ε+Kδ < δ, such that for every α ∈ Rκ the map Nα defined by (3.2) and (3.3) is analytic
on Bδ(0) and satisfies


‖Nα(0)‖ρ < ε , ‖DNα(h)‖ρ < K , h ∈ Bδ(0) . (3.4)


This lemma, together with the contraction mapping principle, implies that for each κ ∈
K and each α ∈ Rκ, the map Nα has a unique fixed point h∗ ∈ Bδ(0). The corresponding
function u∗ = u0 + Ah∗ is a fixed point of Fα and thus solves the equation (1.2). Thus
Lemma 3.1 implies Theorem 1.4, after we verify that u = u∗ is of type (1, 1) and satisfies
|u1,1| >


√


2|1− α|. Notice that u∗ belongs to the ball Br(u0) of radius r = δ‖A‖ρ.
Similar contraction estimates are used to prove Theorem 1.2 and Theorem 1.3. The


corresponding lemmas are completely analogous to Lemma 3.1. Thus we shall not state
them explicitly. Our proof of these lemmas is computer-assisted. As a by-product we
obtain accurate bounds on the solutions and related quantities.


We will now describe the main estimates involved, which are specific to the problem
at hand. More “generic” aspects of the proof are described in Section 5. The general
strategy is to approximate a function u ∈ Ao


ρ by a Fourier polynomial P and to estimate
the difference E = u−P . A typical step in our proof yields much more information about
the error E than just its norm. Keeping track of such information can drastically improve
the estimates in subsequent steps.


In order to describe our choice of error terms we need the following: Given positive
integers N and K, denote by Ao


ρ,N,K the space of all functions u ∈ Ao
ρ whose Fourier
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coefficients un,k vanish whenever n < N or k < K. Let now N and K be fixed. Then we
represent a function u ∈ Ao


ρ as a finite sum


u = P + E , P =
∑


n≤N


k≤K


cn,kPn,k , E =
∑


n≤2N


k≤2K


En,k , (3.5)


where En,k is a function Ao
ρ,n,k. In this context, a bound on u consists in upper and lower


bounds on the coefficients cn,k for n ≤ N and k ≤ K, and an upper bound on ‖En,k‖ρ
for n ≤ 2N and k ≤ 2K. Notice that the representation (3.5) is highly non-unique. This
allows for a wide range of different bounds on functions in Ao


ρ.
Our estimates on a continuous linear operator L : Ao


ρ → Ao
ρ consist in a bound on


LPn,k for each n ≤ N and k ≤ K, together with bound of the form


‖LE‖ρ ≤ BL,k,n‖E‖ρ , E ∈ Ao
ρ,n,k , (3.6)


for each k ≤ 2K and n ≤ 2N . This also yields a bound on the operator norm on L, namely


‖L‖ρ ≤
(


∨


n≤N


k≤K


̺−n
1 ̺−k


2 ‖LPn,k‖ρ
)


∨BL,N+1,0 ∨BL,0,K+1 . (3.7)


Here, and in what follows, if s and t are real numbers then s ∨ t denotes the maximum
value of s and t. The inequality (3.7) is used e.g. to verify the bound ‖DNα(h)‖ρ < K in
Lemma 3.1.


The following proposition will be useful for estimating the inverse of the operator Lα.


Proposition 3.2. Let s, t, δ be positive real numbers. If |t− s| ≥ δ then


∣


∣t2 − s2
∣


∣ ≥
(


2(s ∨ t)− δ
)


δ . (3.8)


Proof. Fix t > 0. For s ∈ R positive define f(s) =
(


t2 − s2
)2
. Then f(s) ≥ f(t) = 0.


The derivative f ′(s) = −4s
(


t2 − s2
)


is positive for s > t and negative for s < t. Assume
that |t− s| > δ. Then s lies outside the interval [t− δ, t+ δ]. So either f(s) ≥ f(t+ δ) or
f(s) ≥ f(t− δ). But


f(t± δ) =
(


t+ (t± δ)
)2(


t− (t± δ)
)2


=
(


2t± δ
)2
δ2 ≥


(


2t− δ
)2
δ2 . (3.9)


The same holds if s and t are exchanged. This proves (3.8). QED


First we consider rational values of α. Define Bρ,n,k = B ∩ Ao
ρ,n,k.


Proposition 3.3. Let κ = p/q with p odd and q even. Then the operator Lκ with ν ≥ 1
has a compact inverse L−1


κ : Bρ → Bρ. If n and k are odd then


∥


∥L−1
κ E‖ρ ≤ q2


2(qkν ∨ pn)− 1
‖E‖ρ , ∀E ∈ Bρ,n,k . (3.10)
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Proof. If u ∈ Bρ is a Fourier polynomial then L−1
κ u is well defined and


(L−1
κ u)n,k =


q2


(qkν + pn)(qkν − pn)
un,k , (3.11)


for odd n and k. Here we have used that qkν − pn is odd and thus nonzero. Using
Proposition 3.2 with t = qkν and s = pt and δ = 1, we obtain


∣


∣(L−1
κ u)n,k


∣


∣ ≤ q2


2(qkν ∨ pn)− 1
|un,k| . (3.12)


Given that the fraction on the right hand side is a decreasing function of both n and k,
with a zero limit as n ∨ k → ∞, the assertion follows. QED


For irrational α we need to estimate the quantities


φ(n, k) = inf
x≥k


y≥n


∣


∣(βxν)2 − y2
∣


∣ , n, k ∈ No , (3.13)


where β = α−1. Here, and in what follows, x and y always denote odd positive integers.
Notice that the function φ : No ×No → R is non-decreasing in each argument.


The following proposition is trivial, but it gives an explicit expression for the bounds
BL,k,n that appear in (3.6) for the operator L = L−1


α .


Proposition 3.4. Assume that the function φ is strictly positive, and unbounded. Then
the operator Lα has a compact inverse L−1


α : Bρ → Bρ. Furthermore, for any n, k ∈ No,


∥


∥L−1
α E‖ρ ≤ β2


φ(n, k)
‖E‖ρ , ∀E ∈ Bρ,n,k . (3.14)


We note that the compactness of L−1
α is not really needed, but just the bound (3.14).


Concerning the case β =
√
3, notice that the assumption in Theorem 1.3 says that


φ(n, 9) ≥ 39 for all n. Based on this assumption, it suffices to compute a finite number of
terms


∣


∣3x4 − y2
∣


∣ in order to determine φ(n, k) for every k < 9 and every n.


Lemma 3.5. There exists a set R ⊂ R of full measure such that if α ∈ R then Lα =
α2∂2t + ∂4x has a compact inverse L−1


α : Bρ → Bρ. Let κ = p/q with p odd and q even.
Given odd positive integers K and N , denote by Rκ the set of all α ∈ R with the property
that


∥


∥L−1
α E‖ρ ≤ 4p2α−2/7


p(α−1k2 ∨ n)− 7/16
‖E‖ρ , ∀E ∈ Bρ,n,k , (3.15)


holds for all n ≤ N and k ≤ K. Then κ is a Lebesgue density point for Rκ.


This lemma will be proved in the next section. Notice that if α = κ then (3.15) follows
from (3.10). Thus κ ∈ Rκ.
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4. Irrational frequencies


Consider the operator Lα = α2∂2t + ∂4x for irrational values of α. Let β = α−1. The
eigenvalues of L−1


α : Ao
0,1 → Ao


0,1 are


(


L−1
α


)


n,k
=


β2


(βk2 + n)(βk2 − n)
, (4.1)


with eigenvectors Pn,k. Here, and in what follows, n ≥ 0 and k ≥ 1. By Proposition 3.2
we have


∣


∣


(


L−1
α


)


k,n


∣


∣ ≤ β2


(


2(βk2 ∨ n)− |⌈βk2⌋|
)


|⌈βk2⌋| , (4.2)


where |⌈s⌋| = dist(s,Z) denotes the distance of s ∈ R from the set of integers.
The following proposition is part of a result in [15]. We include a proof since it is short


and simple. Let (ψ1, ψ2, ψ3, . . .) be a summable sequence of nonnegative real numbers.


Proposition 4.1. Let m ≥ 1 and Ψm =
∑


k≥m ψk. Consider an interval I = (a, a + 1].
Then the set of all β ∈ I satisfying


∣


∣


⌈


βk2
⌋∣


∣ < ψk for some k ≥ m, (4.3)


has measure at most 2Ψm.


Proof. We may assume that ψk ≤ 1/2 . Consider the circle R/Z. For simplicity we identify
this circle with the interval S = (−1/2 , 1/2 ]. For s ∈ R define ⌈s⌋ to be the unique real
number in S that differs from s by an integer. Notice that |⌈βk2⌋| < ψk if and only if ⌈βk2⌋
belongs to (−ψk, ψk).


The map β 7→ ⌈βk2⌋ covers the circle S exactly k2 times as β ranges in I. So the set
Ik of all β ∈ I that satisfies |⌈βk2⌋| < ψk has measure precisely 2ψk. The set of all β ∈ I
that satisfy (4.3) is the union


⋃


k≥m Ik and thus has measure at most 2Ψm. QED


This proposition implies e.g. that for every ε > 0 and almost every β ∈ I, we have
|⌈βk2⌋| ≥ k−1−ε for all but finitely many values of k > 0. Combining this fact with the
bound (4.2) implies the


Corollary 4.2. For almost every α ∈ R the operator Lα = α2∂2t + ∂4x has a compact
inverse L−1


α : Ao
0,1 → Ao


0,1.


The following extends Proposition 4.1 to smaller intervals, at the cost of imposing a
lower bound on m.


Proposition 4.3. Consider a subinterval J ⊂ I. Assume that m−2 ≤ |J |. Then the set
of all β ∈ J satisfying (4.3) has measure less than 4Ψm|J |.


Proof. We use the notation introduced in the proof of Proposition 4.1. For simplicity
assume that a = 0.
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Let ψ′
k = k−2ψk. If we identify (−ψ′


k, 0] with (1−ψ′
k, 1] then Ik is the union of the k2


intervals (nk−2 − ψ′
k, nk


−2 + ψ′
k) for 0 ≤ n < k2. Notice that these intervals are centered


at integer multiples of k−2, and that each has length 2ψ′
k.


Assume now that k−2 ≤ m−2 ≤ |J |. Then we have jk−2 ≤ |J | < (j + 1)k−2 for some
positive integer j. Thus the set Jk = J ∩ Ik has measure


|Jk| < (j + 1)2ψ′
k =


j + 1


j
jk−22ψk ≤ j + 1


j
|J |2ψk . (4.4)


Summing over all k ≥ m and using that j+1
j ≤ 2 we obtain the desired bound. QED


The following will be used when k ≤ m.
For s ∈ R define |⌈βs⌋|o = dist(s,Zo), where Zo denotes the set of odd integers.


Proposition 4.4. Let β0 = q/p with q even and p odd. Let 0 < r < 1 and β ∈ R. Then


∣


∣


⌈


βk2
⌋∣


∣


o
≥ 1− r


p
whenever |β − β0| ≤


r


pk2
, k ∈ No . (4.5)


Proof. First notice that p−1 ≤
∣


∣


⌈


β0k
2
⌋∣


∣


o
≤ 1 for all odd integers k. Clearly


βk2 − n = β0k
2 − n0 + (β − β0)k


2 − (n− n0) . (4.6)


Using the odd integer n0 closest to β0k
2 and the odd integer n closest to βk2 we get


∣


∣


⌈


βk2
⌋∣


∣


o
=


∣


∣


⌈


β0k
2
⌋∣


∣


o
+ (β − β0)k


2 − (n− n0) . (4.7)


Assume that |β − β0| ≤ r
pk2 . If n 6= n0 then |n− n0| ≥ 2 and thus


∣


∣


⌈


βk2
⌋
∣


∣


o
≥ |n− n0| − |β − β0|k2 −


∣


∣


⌈


β0k
2
⌋
∣


∣


o
≥ |n− n0| −


r


p
− 1 ≥ p− r


p
. (4.8)


If n = n0 then
∣


∣


⌈


βk2
⌋∣


∣


o
≥


∣


∣


⌈


β0k
2
⌋∣


∣


o
− |β − β0|k2 ≥ 1


p
− r


p
=


1− r


p
. (4.9)


In both cases we have (4.5). QED


Proof of Lemma 3.5. The compactness of L−1
α : Bρ → Bρ for almost all α ∈ R follows


from Corollary 4.2. In order to prove the remaining part of Lemma 3.5, fix an even integer
q and odd integers p,K,N ; all positive. Let α0 = p/q and β0 = q/p.


Given C > 0 to be specified later, choose m ∈ No larger than K ∨ 4 and sufficiently
large such that


2C


(m− 2)2
≤ 7


8p
, β0m


2 > 2N + 4 , m2 − 4α0 > (m− 1)2 . (4.10)
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We define


ψk =
2C


k(k + 2)
, k ∈ No , k ≥ m, (4.11)


and ψk = 0 if k is even. The sum Ψm defined in Proposition 4.1 is given by


Ψm =
∑


k≥m


ψk =
C


m
. (4.12)


Let δ = 1/(8pm2) and J = [β0 − 4pδ, β0 +4pδ]. Then by Proposition 4.3 we have a bound
|⌈βk2⌋| ≥ ψk for every k ≥ m and for every β ∈ J outside some set of measure 32Cpδ/m
or less. Define


ψk =
7


8p
, k ∈ No , k < m . (4.13)


Then Proposition 4.4 with r = 1/8 implies that |⌈βk2⌋|o ≥ ψk for all k < m and for all
values of β in the interval Jm = [β0 − δ/2, β0 + δ/2].


At this point we have proved that |⌈βk2⌋|o ≥ ψk holds for all k and for every β in a
subset J ′


m ⊂ Jm of measure at least |Jm| − 32Cpδ/m = |Jm|(1 − 32Cp/m). To complete
the proof of Lemma 3.5, we will now show that there exists a choice of C > 0, such that
if m ∈ N0 satisfies (4.10) then the bounds (3.15) hold for every β ∈ J ′


m, every odd n ≤ N ,
and every odd k ≤ K.


To be more precise, we first restrict β to the interval B = [β0/2, 2β0]. Then we choose
C in such a way that βC is larger than ϕ2(N) ∨ ϕ1(K) for all β ∈ B, where


ϕ1(k) =
7βk2


4p
− 49


64p2
, ϕ2(n) =


7n


4p
− 49


64p2
. (4.14)


In addition we require βC ≥ 1. In what follows we always assume that k and n are odd
positive integers. We also assume that β ∈ J ′


m so that |⌈βk2⌋|o ≥ ψk for every k.


We now estimate the values φ(n, k) defined in (3.13). Here ν = 2. First we exploit
the fact that φ(n, k) ≥ φ(1, k). It implies that


φ(n, k) ≥ φ1(k) ∧ φ(1,m) , φ1(k) = inf
k≤x<m


y≥1


∣


∣β2x4 − y2
∣


∣ , k < m , (4.15)


where we have used the notation s ∧ t = min(s, t). We start by estimating φ(1,m). If
x ≥ m then |βx2 − y| ≥ ψx ≥ Cx−2 for all y. Thus by Proposition 3.2 we have


φ(1,m) ≥ inf
x≥m


(


2βx2 − Cx−2
)


Cx−2 = 2βC − C2m−4 ≥ βC . (4.16)


For the last inequality we have used the first condition in (4.10) and the fact that βC ≥ 1.
Now consider φ1(k). Using that |βx2 − y| ≥ 7


8p for x < m and applying Proposition 3.2
we have


φ1(k) ≥ inf
k≤x<m


(


2βx2 − 7
8p


)


7
8p = ϕ1(k) , k < m . (4.17)
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Notice that this applies to any k ≤ K since we have assumed that m > K.


Next we exploit the fact that φ(n, k) ≥ φ(n, 1). Denote by ℓ the largest odd integer
not exceeding βm2. Then


φ(n, k) ≥ φ2(n) ∧ φ(ℓ, 1) , φ2(n) = inf
x≥1


n≤y<ℓ


∣


∣β2x4 − y2
∣


∣ , n < ℓ . (4.18)


We start by estimating φ(ℓ, 1). For every y ∈ No denote by xy be the odd integer that
minimizes


∣


∣β2x4 − y2
∣


∣. By using the third condition in (4.10) we find that if y ≥ ℓ then


xy ≥ √
αy − 2 > m− 3. Thus ψxy


≥ 2C
(m−2)m whenever y ≥ ℓ, and


φ(ℓ, 1) ≥ inf
y≥ℓ


(


2βx2y − ψxy


)


ψxy
≥ 2βC − ψ2


xℓ
≥ βC . (4.19)


Here we have used Proposition 3.2, the first condition in (4.10), and the fact that βC ≥ 1.
Now consider φ2(n). If x ≥ m then |βx2 − y| > 1 for every y < ℓ. On the other hand, if
x < m then |βx2 − y| ≥ 7


8p . In either case, we obtain


φ2(n) ≥ inf
n≤y<ℓ


(


2y − 7
8p


)


7
8p = ϕ2(n) , n < ℓ , (4.20)


where we have used again Proposition 3.2. Notice that this applies to any n ≤ N since
the second condition in (4.10) implies that ℓ > N .


By our assumption on C we have βC ≥ ϕ2(n) and βC ≥ ϕ1(k) for all n ≤ N and all
k ≤ K. Combining (4.15) and (4.16) and (4.17) we find that φ(n, k) ≥ ϕ1(k) for n ≤ N
and k ≤ K. Similarly, combining (4.18) and (4.19) and (4.20) we find that φ(n, k) ≥ ϕ2(n)
for n ≤ N and k ≤ K. Thus


φ(n, k) ≥ ϕ2(n) ∨ ϕ1(k) , n ≤ N , k ≤ K , (4.21)


holds for every m ∈ No satisfying (4.10), and for every β ∈ B∩J ′
m. Substituting the bound


(4.17) for ϕ1(k) and the bound (4.20) for ϕ2(n) into the inequality (4.21), and using (3.14),
we obtain the bound (3.15). As explained above, this completes the proof of Lemma 3.5.
QED


5. Estimates done by the computer


What remains to be proved is Lemma 3.1 and two analogous lemmas that imply Theo-
rem 1.2 and Theorem 1.3. We will only describe here the proof of Lemma 3.1. The other
two lemmas are proved similarly, and we refer to [28] for the complete details.


Lemma 3.1 involves the choice of parameters (ρ, u0, A,K, δ, ε) for each value of κ ∈ Q2.
The precise value of each parameter, as well as the complete set Q2, is given in [28].
To be more precise, only the set Q2 and the domain parameter ρ for each κ ∈ Q2 are
specified explicitly. The other parameters are computed as specified by our programs. In
particular, the approximate fixed point u0 is first guessed and then improved by iterating
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a numerical version of Nκ. The operator A : Bρ → Bρ is the approximate inverse of
a numerical approximation for the operator I − DFκ(u0). The constants K, δ, ε are
determined a-posteriori to satisfy (3.4). At the end we verify that ε +Kδ < δ, and that
there exists r ≥ δ‖A‖ρ such that every function u ∈ Br(u0) is of type (1, 1) and satisfies


|u1,1| >
√


2|1− α|.
This leaves the task of estimating the two norms in (3.4) and the operator norm of A.


The norm of the operator L = DNα(h) for h ∈ Bδ(0) is estimated by using the inequality
(3.7). So all we need are bounds on the function Nα(0) = Fα(u0)−u0, on LPn,k for n ≤ N
and k ≤ K, and on LEn,k for n ≤ 2N and k ≤ 2K. Here En,k denotes a function in Ao


n,k


which is unknown except for a bound on its norm. The operator norm of A is estimated
similarly. These are standard tasks in many computer-assisted proofs, including [26].


At this level our techniques are similar to the techniques used in [26] to find solutions
for the boundary value problem −∆u = wu3 on the unit square. The functions spaces are
in fact the same. As far as estimates are concerned, the main difference is that we now
have the operator L−1


α instead of the inverse Laplacean. This is where we use the bounds
described in Section 3. But at the level of enclosures (representable sets in An,k) and data
types used to represent such enclosures, we use the same methods as in [26]. Thus, we
refer to [26] for a description of the basic principles.


The main goal of such a description is to simplify the reading of our computer programs
[26]. The source code of these programs contains the details of how the remaining part of
the proof is organized. Our code is written in the programming language Ada [29] and was
compiled using a public version of the gcc/gnat compiler [31]. By running the resulting
machine code, the computer verifies the inequalities necessary to complete the proof of
Lemma 3.1 and Theorem 1.4.
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