eigenvalue  estimates, perturbations, complex  potentials, Schr\"odinger operators





ON THE NUMBER OF EIGENVALUES OF SCHRÖDINGER
OPERATORS WITH COMPLEX POTENTIALS


RUPERT L. FRANK, ARI LAPTEV, AND OLEG SAFRONOV


Abstract. We study the eigenvalues of Schrödinger operators with complex poten-


tials in odd space dimensions. We obtain bounds on the total number of eigenvalues


in the case where V decays exponentially at infinity.


1. Introduction and main results


Let V be a complex-valued potential on Rd, where d is odd. We study the spectral


properties of the Schrödinger operator


−∆ + V (x). (1.1)


Namely, denote by λj the eigenvalues of the operator (1.1). We are interested in an


estimate of the total number N of the eigenvalues λj in the case where V decays


exponentially fast.


σc(−∆ + V )


N = 7


λ1


λ6


λ3


λ4


λ7


λ2


λ5


Fig. 1. Eigenvalues of −∆ + V


There has been a lot of recent activity concerning uniform bounds on eigenvalues of


Schrödinger operators with complex-valued potentials which are decaying at infinity.


By ‘uniform bounds’ we refer to bounds which do not only hold in an asymptotic regime


and which depend on the potential only through some simple and computationally


easily accessible quantities like Lp norms. We refer to [3] for a review of the state of


c© 2016 by the authors. This paper may be reproduced, in its entirety, for non-commercial


purposes.
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the art of non-selfadjoint Schrödinger operators and for motivations and applications.


Bounds on single eigenvalues were proved, for instance, in [1, 4, 14, 11, 9] and bounds


on sums of powers of eigenvalues were proved, for instance, in [13, 20, 6, 7, 2, 15, 12].


The latter bounds generalize the Lieb–Thirring bounds [22] to the non-selfadjoint


setting.


Despite this activity, there have been almost no results on the number of eigenvalues


of Schrödinger operators with complex potentials. (The only exceptions are two papers


[31, 32] in one and three dimensions, whose relation to our work we discuss below.)


To see that this is a subtle question we recall that, for instance, for the Schrödinger


operator −d2/dx2 + V on the half-line with a Dirichlet boundary condition at the


origin, Bargmann’s bound states that for real potentials V the number of eigenvalues


can be bounded by
∫
|x||V (x)| dx. It is a remarkable result of Pavlov [28] that a


similar bound cannot hold in the non-selfadjoint case. In fact, he showed that for any


0 < α < 1/2 and any λ > 0 there is a (real) potential V satisfying, for some C, c > 0,


|V (x)| ≤ Ce−cx
α


for all x ∈ (0,∞) (1.2)


and a complex number σ such that the operator −d2/dx2 +V in L2(0,∞) with bound-


ary condition ψ′(0) = σψ(0) has an infinite number of eigenvalues accumulating at λ.


On the other hand, Pavlov [27] also showed that if, for some C, c > 0,


|V (x)| ≤ Ce−cx
1/2


for all x ∈ (0,∞) , (1.3)


then the number of eigenvalues of the operator −d2/dx2 + V in L2(0,∞) with any


boundary condition of the form ψ′(0) = σψ(0), σ ∈ C, or ψ(0) = 0 is finite. Pavlov


also proves a similar theorem in three dimensions. Pavlov’s proofs, however, seem to


give no bound on the number of eigenvalues in terms of the constants c and C in (1.3).


Before Pavlov, Naimark [26] had shown that the number of eigenvalues is finite


if (1.2) holds with α = 1. Similar results are known in two and three dimensions,


see [23, 24, 25], but none of these proofs gives uniform bounds on the corresponding


number of eigenvalues. Such uniform bounds, in arbitrary odd dimensions, are the


main result of the present paper. More precisely, we shall prove the following two


theorems.


Theorem 1.1. The number N of eigenvalues of − d2


dx2
+V in L2(R+) with a Dirichlet


boundary condition, counting algebraic multiplicities, satisfies, for any ε > 0,


N ≤ 1


ε2


(∫ ∞
0


eεx|V (x)| dx
)2


.


Theorem 1.2. Let d ≥ 3 be odd. Then the number N of eigenvalues of −∆ + V in


L2(Rd), counting algebraic multiplicities, satisfies, for any ε > 0,


N ≤ Cd
ε2


(∫
Rd
eε|x||V (x)|(d+1)/2 dx


)2


with a constant Cd depending only on d.
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The proofs of both theorems are based on a ‘trace formula approach’ which consists


in identifying eigenvalues with zeroes of a certain analytic function and in using bounds


on the zeroes of analytic functions. This approach was used before by two of us (A.L.


and O.S.) in self-adjoint problems [19] and by one of us (O.S.) in non-selfadjoint


problems [29]. In non-selfadjoint problems, a related method is used, for instance, in


[2, 6, 7, 15]. In the present paper we combine these techniques with novel resolvent


bounds in trace ideals, which are our technical main results. Resolvent bounds in


operator norm are due to Kenig–Ruiz–Sogge [18]. In connection to eigenvalue bounds


for non-selfadjoint operators they were exploited in [11] and generalized to trace ideals


in [15]. Here we go a significant step further and show that, if V decays exponentially


in the sense of the assumptions in Theorems 1.1 and 1.2, then the Birman–Schwinger


operator admits an analytic continuation and resolvent bounds, similar to those of


[15], remain valid for its continuation. Our proof uses complex interpolation as in [18]


and [15], but the choice of the analytic family is more involved than in those papers.


In dimensions one and three the resolvent kernel is explicit and this is important


for the proofs in [31, 32]. In contrast, our Theorem 1.2 is valid in arbitrary odd


dimensions d ≥ 3, where the resolvent kernel is only given in terms of Bessel functions,


which become increasingly more complicated as the dimension increases. Complex


interpolation helps us to go around this obstacle. The assumption that the space


dimension is odd comes from the fact that in this case the resolvent admits an analytic


continuation to the lower half-plane (while there is a branch point at zero for even


dimensions).


Finally, we note that, while we managed to obtain rather explicit and transparent


bounds for potentials decaying exponentially, the question whether there is a quanti-


tative version of Pavlov’s bound remains a challenging open question.


Acknowledgements. The first and third author would like to thank the Mittag–


Leffler Institute for hospitality. The first author acknowledges support through NSF


grant DMS-1363432.


2. Zeroes of analytic functions


The following proposition gives a useful bound on the zeroes of an analytic function


in a half-plane.


Proposition 2.1. Let η ∈ R \{0}. Let a be an analytic function in {Im k > η} which


is continuous up to the boundary and satisfies


a(k) = 1 + o(|k|−1) as |k| → ∞ in {Im k > η} (2.1)


and, for some A ≥ 0 and ν > 1,


ln |a(k)| ≤ A|k|−ν if Im k = η . (2.2)
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Then the zeroes kj of a in {Im k > η}, repeated according to multiplicities, satisfy∑
j


(Im kj − η) ≤ cνA|η|−ν+1 (2.3)


with


cν =
1


2π


∫
R


dt


(1 + t2)ν/2
.


The integral appearing in cν can be expressed in terms of the Gamma function. For


ν = 2, the computation is straightforward and we obtain


c2 = 1/2 . (2.4)


Proof. We introduce the Blaschke product


B(k) =
∏
j


k − kj
k − kj − 2iη


,


so that a(k)/B(k) is an analytic and non-zero in {Im k > η} and log(a(k)/B(k)) exists


and is analytic there. For R > η we denote by CR the contour which consists of the


interval {k ∈ C : k = x + iη, |x| ≤
√
R2 − η2}, traversed from left to right, and the


circular part ΓR := {k ∈ C : |k| = R , Im k > η}, traversed counterclockwise.


CR


η


Fig. 2. Contour of integration CR


Then ∫
CR


log
a(k)


B(k)
dk = 0 ,


and therefore


Re


∫ √R2−η2


−
√
R2−η2


log
a(x+ iη)


B(x+ iη)
dx+ Re


∫
ΓR


log
a(k)


B(k)
dk = 0 . (2.5)
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We note that |B(x+ iη)| = 1 if x ∈ R and, therefore,


Re


∫ √R2−η2


−
√
R2−η2


log
a(x+ iη)


B(x+ iη)
dx =


∫ √R2−η2


−
√
R2−η2


ln


∣∣∣∣ a(x+ iη)


B(x+ iη)


∣∣∣∣ dx
=


∫ √R2−η2


−
√
R2−η2


ln |a(x+ iη)| dx . (2.6)


On the other hand, by (2.1) and B(k) = 1 +O(|k|−1) (note that the |kj| are contained


in a bounded set as a consequence of (2.1)), both log a(k) and logB(k) are well-defined


for all sufficiently large |k| and we have, for all sufficiently large R,


Re


∫
ΓR


log
a(k)


B(k)
dk = Re


∫
ΓR


log a(k) dk − Re


∫
ΓR


logB(k) dk . (2.7)


We conclude from (2.5), (2.6) and (2.7) that


Re


∫
ΓR


logB(k) dk =


∫ √R2−η2


−
√
R2−η2


ln |a(x+ iη)| dx+ Re


∫
ΓR


log a(k) dk (2.8)


for all sufficiently large R.


We assume that R is so large that |kj| < R and |kj − iη| <
√
R2 − η2 for all j.


Then, by analyticity, ∫
ΓR


logB(k) dk =


∫
Γ̃R


logB(k) dk (2.9)


with Γ̃R := {|k − iη| =
√
R2 − η2 , Im k > η}, traversed counterclockwise. Since


logB(k) = 2i
∑
j


η − Im kj
k − iη


+O((k − iη)−2) ,


we get∫
Γ̃R


logB(k) dk =


∫
|k̃|=
√
R2−η2, Im k̃>0


logB(k̃ + iη) dk̃


= −2π
∑
j


(η − Im kj) +O((R2 − η2)−1/2) as R→∞ . (2.10)


On the other hand, by (2.1),


Re


∫
ΓR


log a(k) dk = o(1) as R→∞ . (2.11)


Finally, by (2.2),∫ √R2−η2


−
√
R2−η2


ln |a(x+ iη)| dx ≤ A


∫ √R2−η2


−
√
R2−η2


dx


(x2 + η2)ν/2
≤ A


∫
R


dx


(x2 + η2)ν/2


= A|η|−ν+1


∫
R


dt


(1 + t2)ν/2
. (2.12)


Inequality (2.3) now follows from (2.8), (2.9), (2.10), (2.11) and (2.12). �
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Corollary 2.2. Let η < 0. Let a be an analytic function in {Im k > η} which satisfies


(2.1) with η replaced by η′ for any η′ > η. Moreover, assume that (2.2) holds for some


A ≥ 0 and ν > 1 with η replaced by η′ for any η′ > η sufficiently close to η. Then the


zeroes kj of a in {Im k ≥ 0}, repeated according to multiplicities, satisfy


#{j : Im kj ≥ 0} ≤ cνA|η|−ν .


Proof. We apply Proposition 2.1 for every η′ > η sufficiently close to η and obtain∑
j


(Im kj − η′)+ ≤ cνA|η′|−ν+1


Clearly, we have ∑
j


(Im kj − η′)+ ≥ |η
′| # {j : Im kj ≥ 0} .


The corollary follows by passing to the limit η′ → η in the thus obtained inequality. �


3. Traces and determinants


We use the standard notation Sp for the Schatten classes with exponent 1 ≤ p <∞.


If n ∈ N, K ∈ Sn and λj(K) denote the eigenvalues of K, repeated according to


algebraic multiplicities, the n-th order regularized determinant det n(1 +K) is defined


by


det n(1 +K) =
∏
j


(
(1 + λj(K)) exp


(
n−1∑
m=1


(−1)m


m
λj(K)m


))
.


The following properties are well-known, but we include a proof for the sake of com-


pleteness.


Lemma 3.1. Let n ∈ N.


(1) For any n− 1 ≤ p ≤ n with p > 0 there is a Γn,p such that


ln | det n(1 +K)| ≤ Γn,p‖K‖pp .


(2) For any 0 ≤ θ < 1 and 0 < p ≤ n there is a Γn,p(θ) such that, if ‖K‖ ≤ θ,


then


|log det n(1 +K)| ≤ Γn,p(θ) ‖K‖pp .


Proof. To prove the first assertion, let f(z) := (1 + z) exp
(∑n−1


m=1
(−1)m


m
zm
)


. Then


ln |f(z)| can be bounded by a constant times |z|n for small |z| and by a constant times


|z|n−1 for large |z|. Thus, ln |f(z)| ≤ Γn,p|z|p for any n− 1 ≤ p ≤ n, and so


ln | det n(1 +K)| ≤ Γn,p
∑
j


|λj(K)|p


By Weyl’s inequality [30, Thm. 1.15], the sum on the right side does not exceed ‖K‖pp.
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To prove the second assertion, we note that since |λj(K)| ≤ ‖K‖ ≤ θ < 1, we have


log det n(1 +K) =
∑
j


(
log (1 + λj(K)) +


n−1∑
m=1


(−1)m


m
λj(K)m


)


=
∑
j


∞∑
m=n


(−1)m−1


m
λj(K)m .


We bound


|log det n(1 +K)| ≤
∑
j


∞∑
m=n


1


m
|λj(K)|nθm−n = γn(θ)


∑
j


|λj(K)|n


and obtain the assertion for p = n with Γn,n(θ) = γn(θ) again by Weyl’s inequality.


If 0 < p < n, we simply use |λj(K)|n ≤ θn−p|λj(K)|p and get the inequality with


Γn,p(θ) = θn−pγn(θ). �


The previous proof and a simple computation show that for n = p = 2 one can take


Γ2,2 = 1/2 . (3.1)


We next recall a version of the Birman–Schwinger principle. We state it in the


setting of [12], namely, where H0 is a non-negative self-adjoint operator and G0 and


G are operators with domG ⊃ domH
1/2
0 and domG0 ⊃ domH


1/2
0 and such that


G0(H0 + 1)−1/2 and G(H + 1)−1/2 are compact. Then the quadratic form


‖H1/2
0 u‖2 + (Gu,G0u)


defines an m-sectorial operator, which we shall denote by H. The Birman–Schwinger


principle states that z ∈ ρ(H0) is an eigenvalue of H iff −1 is an eigenvalue of the


Birman–Schwinger operator G0(H0− z)−1G∗. Moreover, the corresponding geometric


multiplicities coincide.


The following lemma says that even the algebraic multiplicities of eigenvalues of H


can be characterizes in terms of a quantity related to the Birman–Schwinger operator.


Lemma 3.2. Assume that for some n ∈ N, G0(H0 − ζ)−1G∗ ∈ Sn for all ζ ∈ ρ(H0).


Then the function ζ 7→ det n(1 +G0(H0 − ζ)−1G) is analytic in ρ(H0). For z ∈ ρ(H0)


one has det n(1 +G0(H0− z)−1G) = 0 iff z is an eigenvalue of H and the order of the


zero coincides with the algebraic multiplicity.


The analyticity of the function ζ 7→ det n(1 + G0(H0 − ζ)−1G) is well-known and


so is the result concerning the algebraic multiplicity in the case n = 1. The result for


general n is essentially due to [21]; see also [12] for an extension of their proof to the


present setting.
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4. Resolvent bounds


In this section we collect trace ideal bounds for the Birman–Schwinger operator


K(k) =
√
V (−∆− k2)−1


√
|V | . (4.1)


We use the notation
√
V (x) = V (x)/


√
|V (x)| if V (x) 6= 0 and


√
V (x) = 0 if V (x) = 0.


We begin with the case of the half-line, that is, −∆ in (4.1) denotes the Dirichlet


Laplacian on (0,∞). From the explicit expression of its integral kernel it is easy to see


that, if V is bounded and has compact support, K(k) admits an analytic continuation


to an entire operator family on L2(R+). The following proposition gives a bound on


the Hilbert–Schmidt norm.


Proposition 4.1. For any k ∈ C \ {0},


‖K(k)‖S2 ≤
1


|k|


∫ ∞
0


e2x(Im k)−|V (x)| dx ,


in the sense that K(k) is Hilbert–Schmidt if the integral on the right side is finite.


Proof. The integral kernel of (−∆− k2)−1 is the function


gk(x, y) =
1


2ik


(
eik(x+y) − eik|x−y|


)
,


which satisfies


|gk(x, y)| ≤ 1


|k|
e(x+y)(Im k)− .


Combining this bound with the identity


‖K(k)‖2
S2


=


∫ ∞
0


∫ ∞
0


|V (x)||gk(x, y)|2|V (y)| dx dy


we obtain the claimed bound. �


We now consider the case of Rd with d ≥ 3 odd. The operator −∆ in (4.1) denotes


the Laplacian in Rd. It is well-known (see, e.g., [8, Theorem 3.1] for a textbook proof)


that, since d is odd, (−∆−k2)−1 admits an analytic continuation to an entire operator


family when considered as an operator from compactly supported functions in L2(Rd)


to L2
loc(Rd). Thus, if V is bounded and compactly supported, K(k) has a analytic


continuation to an entire operator family on L2(Rd). The following proposition implies,


in particular, that if V decays exponentially, then the Birman–Schwinger operator


also admits an analytic continuation to (part of) the lower half-plane and that this


continuation belongs to a certain trace ideal.


Proposition 4.2. Let d ≥ 3 be odd. There are constants Cd > 0, βd > 0 such that


for any k ∈ C \ {0},


‖K(k)‖Sd+1
≤ Cd


(
1


|k|


∫
Rd
eβd|x|(Im k)− |V (x)|(d+1)/2 dx


)2/(d+1)


,


in the sense that K(k) ∈ Sd+1 if the integral on the right side is finite.
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The proof of this proposition is somewhat involved and, in fact, presents the tech-


nical main result of this paper. In order to present the idea behind the proofs of


Theorems 1.1 and 1.2 more clearly, we defer the proof of Proposition 4.2 to Section 6.


5. Proof of Theorems 1.1 and 1.2


In this section we prove our main results, Theorems 1.1 and 1.2. We prove them


simultaneously. Let us assume that V is bounded and has compact support. The


bound in this case implies the bound in the general case by a simple density argument.


As discussed in Section 4, the Birman–Schwinger operators K(k) from (4.1) (with


−∆ denoting the Dirichlet Laplacian if d = 1 and the ordinary Laplacian if d ≥ 3)


extend to an entire family of bounded operators. The same proof shows that they are


not only entire with respect to the norm of bounded operators, but even with respect


to the norm of operators in Sd+1. (In fact, even in Sp with p > d/2, see [8, Lemma


3.21].) We emphasize that at this point we use the restriction to bounded, compactly


supported potentials; in the general case, Propositions 4.1 and 4.2 do not allow us to


exclude a singularity at the origin.


We will apply Corollary 2.2 to the function


a(k) := det d+1(1 +K(k))


with η = −ε/βd, where βd is from Proposition 4.2 if d ≥ 3 is odd and β1 = 2 if d = 1.


Since K(k) is analytic with values in Sd+1, the function a is analytic. It follows from


the resolvent bounds in Propositions 4.1 and 4.2, combined with item (2) in Lemma


3.1 (with p = n = d + 1), that assumption (2.1) is valid. Moreover, combining them


with item (1) in Lemma 3.1 (again with p = n = d+ 1), we see that assumption (2.2)


holds with ν = 2 and


A = Γd+1,d+1C
d+1
d


(∫
eε|x||V (x)|(d+1)/2 dx


)2


.


Here Cd = 1 if d = 1. Thus, Corollary 2.2 implies that


#{j : Im kj ≥ 0} ≤ ε−2β2
dc2Γd+1,d+1C


d+1
d


(∫
eε|x||V (x)|(d+1)/2 dx


)2


.


It remains to use Lemma 3.2, which says that the kj with Im kj > 0 coincide with


the square roots of the eigenvalues of −∆ + V , counting algebraic multiplicities. This


proves Theorems 1.1 and 1.2.


In the case d = 1, we can use the values of the constants


c2 = 1/2 , Γ2,2 = 1/2 , β1 = 2 , C1 = 1


(see (3.1), (2.4) and Proposition 4.1) to get the explicit constant in Theorem 1.1. �
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6. Proof of Proposition 4.2


The bound from Proposition 4.2 for Im k ≥ 0 is contained in [15], so we focus on


the case Im k < 0. We are going to break the proof into two steps, according whether


| Im k|/|Re k| is large or small.


Lemma 6.1. Let d ≥ 3. There are αd, βd, γd > 0 such that, for any k ∈ C with


Im k < 0 and |Re k| > γd| Im k|,


‖K(k)‖Sd+1
≤ αd


(∫
Rd e


βd| Im k||x||V (x)|(d+1)/2 dx


|Re k| − γd| Im k|


)2/(d+1)


. (6.1)


One can take βd = 2(e(d+1)/2 − 1)/(e− 1) and γd = e(d+1)/2/(e− 1).


We emphasize that this lemma does not need d to be odd. In this case one can still


prove that K(k) has an analytic continuation to the set C \ (−i)[0,∞).


Proof. By a density argument we may assume that V is bounded and compactly sup-


ported. As discussed above, under this assumption K(k) has an analytic continuation


to an entire function. We will show that for any k as in the lemma and any finite rank


operator Q,


|TrK(k)Q| ≤ αd


(∫
Rd e


βd(Im k)−|x||V (x)|(d+1)/2 dx


|Re k| − γd| Im k|


)2/(d+1)


‖Q‖S(d+1)/d
, (6.2)


which will imply the assertion.


To prove (6.2) we use complex interpolation. Namely, for fixed k as in the lemma we


will construct an analytic family of operators Kζ such that K1 = K(k) for ζ = 1. The


construction of Kζ proceeds as follows. If Im k > 0 and Re ζ ≥ 0, then the operator


(−∆−k2)−ζ is well-defined by the spectral theorem or, equivalently, as a multiplier in


Fourier space. Here (·)−ζ denotes the principal branch. If Re ζ > 0, this is an integral


operator with integral kernel


(
−∆− k2


)−ζ
(x, y) =


1


(2π)d


∫
Rd


eiξ·(x−y)


(ξ2 − k2)ζ
dξ . (6.3)


We recall [17, Section III.2.8] the formula∫
Rd


eiξ·x


(ξ2 − k2)ζ
dξ = (2π)d/2


21−ζ


Γ(ζ)


(
−ik
|x|


)(d−2ζ)/2


K(d−2ζ)/2(−ik|x|) , (6.4)


valid for Im k > 0 and Re ζ > 0. Here Kν denotes the Bessel function of the third


kind. We will need the fact that


Kν(z) = K−ν(z) , (6.5)
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as well as the following integral representation for this function [10, Section 7.3.4],


Kν(z) =
1


Γ(ν + 1/2)


( π
2z


)1/2


e−z
∫ ∞


0


e−ttν−1/2


(
1 +


t


2z


)ν−1/2


dt if Re ν > −1/2 .


(6.6)


For fixed ζ with Re ζ > 0, the right side of (6.4) has an analytic continuation with


respect to k, with k = 0 being possibly a branch point. This allows us to analytically


continue the operator W (−∆ − k2)−ζW to the lower half-plane if W is a bounded,


compactly supported function. At the same time, for fixed k 6= 0 (possibly in the


lower half-plane), the operator family W (−∆− k2)−ζW is analytic with respect to ζ


in the upper half-plane.


We now fix k ∈ C with Im k < 0 and Re k 6= 0 and set


kζ = k + i| Im k|e− e
ζ


e− 1
.


For fixed Re ζ this describes a circle centered at k + i| Im k|e/(e − 1) with radius


| Im k|eRe ζ/(e− 1).


Re ζ = 0


Re ζ = 1


Re ζ = (d+ 1)/2


k


Fig. 3. Curves t 7→ ka+it for a = 0, a = 1 and a = (d+ 1)/2


We consider the function


f(ζ) := eζ
2


Tr
(
S|V |ζ/2(−∆− k2


ζ )
−ζ |V |ζ/2U |Q|(d+1−ζ)/d) ,


where S(x) = V (x)/|V (x)| if V (x) 6= 0 and S(x) = 0 if V (x) = 0 and where Q = U |Q|
is the polar decomposition of Q. The function f is analytic in ζ and at ζ = 1 its


absolute value coincides with e times the left side of (6.2). We will apply Hadamard’s


three lines lemma to the function f , where the bounding lines are given by Re ζ = 0


and Re ζ = (d+ 1)/2.
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If Re ζ = 0, we use the fact that Im kζ ≥ 0. This implies that the argument of


|ξ|2 − k2
ζ is uniformly bounded in ξ ∈ Rd and therefore∥∥(−∆− k2


ζ )
−ζ∥∥ = sup


ξ∈Rd


∣∣(|ξ|2 − k2
ζ )
−ζ∣∣ ≤ C1e


C1| Im ζ| if Re ζ = 0 .


for some C1 > 0. Thus, because of the superexponential decrease of the factor e−(Im ζ)2 ,


|f(ζ)| ≤ C ′1‖Q‖
(d+1)/d
(d+1)/d if Re ζ = 0 . (6.7)


If Re ζ = (d+ 1)/2, we bound


|f(ζ)| ≤ e(Re ζ)2−(Im ζ)2
∥∥|V |(d+1)/4(−∆− k2


ζ )
−ζ |V |(d+1)/4


∥∥
S2


∥∥|Q|(d+1)/(2d)
∥∥
S2


= e(Re ζ)2−(Im ζ)2
∥∥|V |(d+1)/4(−∆− k2


ζ )
−ζ |V |(d+1)/4


∥∥
S2
‖Q‖(d+1)/(2d)


S(d+1)/d
.


In order to control the Hilbert–Schmidt norm on the right side, we bound the integral


kernel of (−∆ − k2)−ζ for ζ = (d + 1)/2 + iτ with τ ∈ R. According to (6.3), (6.4)


and (6.5) it is given by


(2π)−d/2
21−(d+1)/2−iτ


Γ((d+ 1)/2 + iτ)


(
−ik
|x− y|


)−1/2−iτ


K1/2+iτ (−ik|x− y|) .


We take k = kζ and bound, using (6.6),∣∣K1/2+iτ (−ikζ |x− y|)
∣∣


≤
(


π


2|kζ ||x− y|


)1/2
e− Im kζ |x−y|


|Γ(1 + iτ)|


∫ ∞
0


e−t


∣∣∣∣∣
(


1 +
it


2kζ |x− y|


)iτ ∣∣∣∣∣ dt .
It is easy to see that there is a constant C > 0 such that |Re kζ | ≥ C| Im kζ | for all


ζ with Re ζ = (d + 1)/2. This implies that the argument of 1 + it/(2kζ |x − y|) is


uniformly bounded in t ∈ [0,∞), |x− y| ∈ [0,∞) and τ = Im ζ ∈ R. We now observe


that


Im kζ = −| Im k|e
(d+1)/2 cos τ − 1


e− 1
≥ −βd| Im k|/2


with βd = 2(e(d+1)/2 − 1)/(e− 1) and


|kζ | ≥


√
(Re k)2 +


(Im k)2


(e− 1)2
− | Im k| e


Re ζ


e− 1
≥ |Re k| − γd| Im k|


with γd = e(d+1)/2/(e− 1). Thus we conclude that∣∣(−∆− k2
ζ )
−1(x, y)


∣∣ ≤ C2e
C2|τ | eβd| Im k||x−y|/2


|Re k| − γd| Im k|
, ζ =


d+ 1


2
+ iτ ,


for some constant C2 depending on d, but not on x, y or τ . This implies


∥∥|V |(d+1)/4(−∆− k2
ζ )
−ζ |V |(d+1)/4


∥∥2


S2
≤ C2


2e
2C2|τ |


(∫
Rd e


βd| Im k||x||V (x)|(d+1)/2 dx


|Re k| − γd| Im k|


)2
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and therefore,


|f(ζ)| ≤ C ′2‖Q‖
(d+1)/(2d)
S(d+1)/d


∫
Rd e


βd| Im k||x||V (x)|(d+1)/2 dx


|Re k| − γd| Im k|
if Re ζ =


d+ 1


2
. (6.8)


According to Hadamard’s three lines lemma we have


|f(1)| ≤
(


sup
Re ζ=0


|f(ζ)|
)(d−1)/(d+1)


(
sup


Re ζ=(d+1)/2


|f(ζ)|


)2/(d+1)


.


Combining this with the bounds (6.7) and (6.8) we obtain (6.2) �


Lemma 6.2. Let d ≥ 3 be odd. There is a constant α′d such that for any k ∈ C with


Im k < 0,


‖K(k)‖Sd+1
≤ α′d


(∫
Rd e


(d+1)|k||x||V (x)|(d+1)/2 dx


|k|


)2/(d+1)


. (6.9)


Proof. Since d is odd,


‖K(k)‖d+1
Sd+1


= Tr (K(k)∗K(k) · · ·K∗(k)K(k))


=


∫
· · ·
∫
|V (x1)|gk(xd+1, x1|V (xd+1)|gk(xd+1, xd) · · · gk(x4, x3)


× |V (x3)|gk(x2, x3)|V (x2)|gk(x2, x1) dx1 · · · dxd+1 ,


where gk(x, y) is the integral kernel of the operator (−∆ − k2)−1. It follows from


formula (6.6) for the Bessel function that


|Kν(−ia)| ≤ e2|a|Kν(|a|) if Im a ≤ 0 .


This implies


|gk(x, y)| ≤ e2|k||x−y|gi|k|(x, y) ≤ e2|k|(|x|+|y|)gi|k|(x, y) ,


and therefore, in view of the above expression for ‖K(k)‖d+1
Sd+1


,


‖K(k)‖d+1
Sd+1


=


∫
· · ·
∫
e2|k||x1||V (x1)| gi|k|(xd+1, x1) e2|k||xd+1||V (xd+1)| gi|k|(xd+1, xd) · · ·


× gi|k|(x4, x3) e2|k||x3||V (x3)| gi|k|(x2, x3) e2|k|x2||V (x2)|
× gi|k|(x2, x1) dx1 · · · dxd+1


=
∥∥e2|k||x|K(i|k|)e2|k||y|∥∥d+1


Sd+1
,
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To bound the right side we use the Kato–Seiler–Simon bound [30, Thm. 4.1] and get∥∥e|k||x|K(i|k|)e|k||y|
∥∥(d+1)/2


Sd+1
≤
∥∥e|k||x|K(i|k|)e|k||y|


∥∥(d+1)/2


S(d+1)/2


=
∥∥∥(−∆ + |k|2)−1/2


√
|V |e|k||x|


∥∥∥d+1


Sd+1


≤ (2π)−d
∫
Rd


dξ


(|ξ|2 + |k|2)(d+1)/2


∫
Rd
|V (x)|(d+1)/2e(d+1)|k||x| dx


= (2π)−d
∫
Rd


dξ


(1 + |ξ|2)(d+1)/2
|k|−1


∫
Rd
|V (x)|(d+1)/2e(d+1)|k||x| dx .


This proves the lemma. �


Finally, we are in position to give the


Proof of Proposition 4.2. The claimed bound for Im k ≥ 0 follows from [15]. The


bound for Im k < 0 and |Re k| ≥ 2γd| Im k| follows from Lemma 6.1. (Note that in


this case one can bound |Re k| − γd| Im k| ≥ (γd/
√


1 + 4γ2
d)|k| in the denominator.)


Finally, the bound for Im k < 0 and |Re k| < 2γd| Im k| follows from Lemma 6.2.


(Note that in this case one can bound |k| ≤
√


1 + 4γ2
d | Im k| in the exponential.) This


concludes the proof. �
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