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1. Introduction


The observation that spectra of quantum system may exhibit fractal properties was made


first by Azbel [3] but it really caught the imagination when Hofstadter [15] made the


structure visible; then it triggered a long and fruitful investigation of this phenomenon.


On the mathematical side the question was translated into the analysis of the almost


Mathieu equation which culminated recently in the proof of the “Ten Martini Problem”


by Avila and Jitomirskaya [2]. On the physical side, the effect remained theoretical for a


long time. Since the mentioned seminal papers, following an earlier work of Peierls [23]


and Harper [14], the natural setting considered was a lattice in a homogeneous magnetic


field because it provided the needed two length scales, generically incommensurable,


from the lattice spacing and the cyclotron radius. It was not easy to observe the effect,


however, and the first experimental demonstration of such a spectral character was done


instead in a microwave waveguide system with suitably placed obstacles simulating the
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almost Mathieu relation [18]. Only recently an experimental realization of the original


concept was achieved using a graphene lattice [8, 24].


The aim of this note is to show that fractal spectra can arise also in magnetic


systems extended in a single direction only under two conditions: the structure should


have a nontrivial topology and the magnetic field should vary along it. We are going


to demonstrate this claim using a simple example of a chain graph consisting of an


array of identical rings connected at the vertices in the simplest nontrivial way known


as the δ coupling and exposed to the magnetic field perpendicular to the graph plane


the intensity of which increases linearly along the chain, with the slope α measured in


terms of the number of the flux quanta through the ring. This is the decisive quantity. It


turns out that when α is rational, the spectrum has a band-gap structure which allows


for description in terms of the Floquet-Bloch theory. On the other hand, when α is


irrational, the spectrum is a Cantor set, that is, a nowhere dense closed set without


isolated points. The way to prove these results is to translate the original spectral


problem into an equivalent one involving a suitable self-adjoint operator on ℓ2(Z) which
is the well-known trick in the quantum graph theory [6, 10]. As a result, in the rational


case we rephrase the question as spectral analysis of a simple Laurent operator, while


in the irrational case we reduce the problem to investigation of the almost Mathieu


operator, for which the Cantor property of the spectrum is known as mentioned above


[2].


Let us briefly describe the contents of the paper. In the next section we will define


properly the operator that serves as the magnetic chain Hamiltonian. In Sec. 3 we


explain our main technical tool, a duality between the quantum graph in question and


an appropriate Jacobi operator. Relations between the spectra of the two are explained


in Sec. 4. Finally, Sec. 5 contains our main result with some corollaries and a discussion;


it is followed by a few concluding remarks.


2. Magnetic chain graphs


Quantum graphs, which is a short name for Schrödinger operators the configuration


space of which has the structure of a metric graph, are an important class of models


in quantum physics. They are interesting both physically as models of various


nanostructures, as well as from the viewpoint of their mathematical properties; we


refer the reader to the recent monograph of Berkolaiko and Kuchment [5] for a thorough


presentation and a rich bibliography. One important class is represented by magnetic


quantum graphs, cf. for instance [17].


Let us describe the particular system we will be interested in. It is a metric graph


Γ consisting of a linear chain of rings of unit radius, centred at equally spaced points


laying at a straight line and touching their neighbours at the left and right. Both the


edges forming the j-th ring of the graph are parametrized by intervals (0, π) directed


along the chain. We assume that the system is exposed to a magnetic field perpendicular


to the graph plane, which in contrast to [11] is not homogenerous but may vary along







Cantor spectra of magnetic chain graphs 3


0 π 0 π 0 π 0 π 0 π• • • • • •


ψL
j−2


ψU
j−2


Aj−2


ψL
j−1


ψU
j−1


Aj−1


ψL
j


ψU
j


Aj


ψL
j+1


ψU
j+1


Aj+1


ψL
j+2


ψU
j+2


Aj+2


Figure 1. Schematic depiction of the magnetic chain graph Γ with parametrization


of its nodes.


the chain. The Hamiltonian is the graph version of the magnetic Schrödinger operator


acting as 1
2m


(− i~∇− e
c
A)2 at each edge, where A stands for the tangential component


of the corresponding vector potential at a given point. However, it is known that in a


magnetic chain there are only the fluxes through the loops that count, see [5, Corollary


2.6.3], and therefore we may, without loss of generality, choose a gauge in which the


(tangent component of the) vector potential A is constant at each particular ring; we


denote by Aj ∈ R its value at the j-th ring and by A = {Aj}j∈Z the sequence of all


such local vector potentials.


The state Hilbert space corresponding to a non-relativistic charged spinless particle


confined to the graph Γ is L2(Γ). For a function ψ ∈ L2(Γ) we further denote


its components on the upper and lower semicircles of the j-th ring by ψU
j and ψL


j ,


respectively. The whole system is depicted in Figure 1. Since the actual values of


physical quantities will play no role in the discussion we employ the rational system of


units putting ~ = 2m = 1 and e
c
= 1. The Hamiltonian is then simply −∆γ,A = −D2,


where D is the quasi-derivative which depends locally on the parametrisation of the


edge and the magnetic field; specifically, on the upper and lower semicircles of the j-th


chain ring, ψU
j and ψL


j , it acts as


DψU
j = (ψU


j )
′ + iAjψ


U
j and DψL


j = (ψL
j )


′ − iAjψ
L
j ,


respectively.


In order to make −∆γ,A a well-defined self-adjoint operator we have to specify its


domain which entails choosing the boundary conditions satisfied by the functions at the


vertices of Γ, in physical terms this means to indicate the coupling between the rings.


We choose for the latter the simplest nontrivial coupling commonly known as δ. The


domain D(−∆γ,A) then consists of all functions from the Sobolev space H2(Γ) satisfying


at the graph vertices the conditions


ψU
j (0+) = ψL


j (0+) = ψU
j−1(π−) = ψL


j−1(π−), (1)


−DψU
j−1(π−)−DψL


j−1(π−) +DψU
j (0+) +DψL


j (0+) = γψU
j (0+) (2)


for all j ∈ Z, where γ is the coupling constant and ψU
j (0+) is the right limit of ψU


j (x)


at zero and ψU
j (π−) is the left limit of ψU


j−1(x) at the point π, etc. Note the different
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signs of the quasiderivative D at 0+ and π− which reflects the fact that the one-sided


derivative at a vertex should be taken in the outward direction.


3. Duality with a discrete operator


The spectrum of −∆γ,A is determined by weak solutions to the equation


(−∆γ,A − k2)ψ = 0, (3)


cf. [5, Corollary 3.2.3]. More explicitly, k2 ∈ σ(−∆γ,A) holds if and only if there is


a solution ψ ∈ H2
loc(Γ) of (3), not necessarily in L2(Γ), such that it satisfies both the


conditions (1) and (2). Since −∆γ,A is a self-adjoint operator, its spectrum is real and


it is enough to consider k ∈ K, where K = {0} ∪ R+ ∪ iR+.


Following [10] we denote by fU±
j (x; k) and fL±


j (x; k) the local solutions of (3) which


satisfy the boundary conditions


fU+
j (0+; k) = fL+


j (0+; k) = 0, DfU+
j (0+; k) = DfL+


j (0+; k) = 1,


fU−
j (π−; k) = fL−


j (π−; k) = 0, DfU−
j (π−; k) = DfL−


j (π−; k) = 1.


To find those solutions one can use the local gauge transformation


fU
j (x) = e−iAjxg(x), fL


j (x) = eiAjxg(x),


which yields a unitary equivalence between local solutions of (−∆γ,A − k2)f = 0 and


those of (−∆ − k2)g = 0, where −∆ = − d2


dx2 is the ordinary Laplacian. Thus, the


desired local solutions fU±
j (k) and fL±


j (k) are clearly given by


fU+
j (x; k) = e−iAjx · g(x; k), fU−


j (x; k) = e−iAj(x−π) · g(x− π; k),


fL+
j (x; k) = eiAjx · g(x; k), fL−


j (x; k) = eiAj(x−π) · g(x− π; k),


where


g(x; k) =


x for k = 0,


sin(kx)


k
for k ̸= 0.


Now we distinguish two situations. For k ∈ N one has g(π−; k) = 0 which yields


fU+
j (π−; k) = fL+


j (π−; k) = 0 and fU−
j (0+; k) = fL−


j (0+; k) = 0. This means that


fU±
j (k) and fL±


j (k) are indeed local solutions that satisfy Dirichlet conditions at the


vertices of the graph. In that case one is able to construct globally integrable solutions


of (3) that are eigenfunctions of −∆γ,A corresponding to the (infinitely degenerate)


eigenvalue k2. Further properties of the ‘elementary’ eigenfunctions depend on the


values of magnetic field A.


Proposition 3.1. Let k ∈ N and j ∈ Z such that Aj ∈ Z or Aj−1, Aj /∈ Z. Then there


exists a solution ψ(k, j) ∈ D(−∆γ,A) of (3) which can be described as follows:
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a) If Aj ∈ Z then


ψU
l (x; k, j) =


{
fU+
j (x; k) for l = j,


0 for l ̸= j,


ψL
l (x; k, j) =


{
−fL+


j (x; k) for l = j,


0 for l ̸= j


for all l ∈ Z.
b) If Aj−1, Aj /∈ Z then


ψU
l (x; k, j) =



sin(Ajπ) · fU+


j−1(x; k) for l = j − 1,


− sin(Aj−1π) · fU−
j (x; k) for l = j,


0 elsewhere,


ψL
l (x; k, j) =



− sin(Ajπ) · fL+


j−1(x; k) for l = j − 1,


sin(Aj−1π) · fL−
j (x; k) for l = j,


0 elsewhere


for all l ∈ Z.


Proof. In both cases the functions ψ(k, j) specified above clearly satisfy boundary


conditions (1) and (2).


For non-integer values of k the situation is more complicated. We proceed by


defining


f̃U+
j (x; k) =


fU+
j (x; k)


e−iAjπ
, f̃U−


j (x; k) =
fU−
j (x; k)


−eiAjπ
,


f̃L+
j (x; k) =


fL+
j (x; k)


eiAjπ
, f̃L−


j (x; k) =
fL−
j (x; k)


−e−iAjπ
.


The general weak solution of (3) may be now written in terms of f̃U±
j (x; k) and f̃L±


j (x; k)


locally as


ψU
j (x; k) = φU+


j f̃U+
j (x; k) + φU−


j f̃U−
j (x; k),


ψL
j (x; k) = φL+


j f̃L+
j (x; k) + φL−


j f̃L−
j (x; k),


where φU+
j , φL+


j , φU−
j , φL−


j are unknown coefficients. Their values can be determined


from boundary conditions (1) and (2). Since we assume k /∈ N which implies


g(π−; k) ̸= 0, it follows from (1) that


φL−
j = φU−


j = φL+
j−1 = φU+


j−1 := φj.


The solution satisfying (1) is thus determined by a sequence {φj}j∈Z and can be written


as


ψU
j (x; k) = φj+1f̃


U+
j (x; k) + φj f̃


U−
j (x; k), (4)


ψL
j (x; k) = φj+1f̃


L+
j (x; k) + φj f̃


L−
j (x; k).
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Since


Df̃U+
j (x; k) =


e−iAjxg′(x; k)


e−iAjπ
, Df̃U−


j (x; k) =
e−iAj(x−π)g′(x− π; k)


−eiAjπ
,


Df̃L+
j (x; k) =


eiAjxg′(x; k)


eiAjπ
, Df̃L−


j (x; k) =
eiAj(x−π)g′(x− π; k)


−e−iAjπ
,


using g′(0; k) = 1 and g′(−π; k) = g′(π; k), we get from (2) the relation


−φjg
′(π; k) + φj−1e


−iAj−1π − φjg
′(π; k) + φj−1e


iAj−1π


+φj+1e
iAjπ − φjg


′(π; k) + φj+1e
−iAjπ − φjg


′(π; k) = γφjg(π; k).


This may be finally rewritten as


φj+1(e
iAjπ+e−iAjπ)+φj−1(e


iAj−1π+e−iAj−1π) = φj(γg(π; k)+4g′(π; k)).(5)


Note that this condition is valid also for any k ∈ N in the sense that if it is satisfied


by some sequence {φj}j∈Z of coefficients then the functions (4) represent a weak solution


of the original equation (3). In other words, for such a k there may exist other solutions


in addition to those described in Proposition 3.1.


The above discussion is summarized in the following statement.


Theorem 3.2. Let γ ∈ R and A = {Aj}j∈Z be a real sequence. Then any weak solution


ψ(k) of (3) for k ∈ K\N is of the form (4), where the complex sequence φ(k) = {φj}j∈Z of


coefficients satisfies the difference equation (5). Conversely, for any k ∈ K, any solution


φ(k) of (5) defines via (4) a weak solution ψ(k) of (3). Moreover, ψ(k) ∈ L2(Γ) if and


only if φ(k) ∈ ℓ2(Z).


Proof. It remains to demonstrate the last claim. First note that, denoting by ∥·∥L2(0,π)


the norm of L2(0, π), we have∥∥∥f̃U±
j (k)


∥∥∥
L2(0,π)


=
∥∥∥f̃L±


j (k)
∥∥∥
L2(0,π)


= ∥g(x; k)∥L2(0,π)


=


 π3/3 for k = 0,


2kπ − sin(2kπ)


4k3
for k ̸= 0


which is positive for all k ∈ K. Hence, if ψ(k), φ(k) are related through (4) then


2C ∥φ(k)∥ℓ2(Z) =
∑
j∈Z


( |φj|2C + |φj|2C)


≤
∑
j∈Z


(∥∥ψU
j (k)


∥∥
L2(0,π)


+
∥∥ψL


j (k)
∥∥
L2(0,π)


)
= ∥ψ(k)∥L2(Γ)


≤ 2C
∑
j∈Z


( |φj+1|2 + |φj|2 ) ≤ 4C ∥φ(k)∥ℓ2(Z) ,


where C := ∥g(x; k)∥L2(0,π); this completes the proof.


Let is finally note that the duality stated in the preceding theorem was derived


with a minor modification very recently in [12]. In order to have the present paper


self-contained, however, we present it here with the proof.
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Figure 2. The influence of the parameter γ on the behaviour of η(k) for k ∈ K =


R+
0 ∪ iR+. On the right side of the vertical axis we plot the positive increasing values


of k and on the left side we plot increasing values of the purely imaginary positive


values of k, i.e. of k = iκ, κ > 0.


4. Spectrum in the general case


Now we can proceed with the analysis of the spectrum of −∆γ,A. Equation (5) may be


further rewritten as


LAφ = η(k)φ, (6)


where LA is a bounded self-adjoint operator on ℓ2(Z) defined by


(LAφ)j = 2 cos(Ajπ)φj+1 + 2 cos(Aj−1π)φj−1 (7)


and


η(k) =


 γ
sin(kπ)


k
+ 4 cos(kπ) for k ̸= 0,


γπ + 4 for k = 0.
(8)


Consequently, the spectrum of −∆γ,A is related to the spectrum of LA via the preimage


of σ(LA) under the entire function η. This means that, up to the discrete set {n2|n ∈ N}
of infinitely degenerate eigenvalues of −∆γ,A which are described in Proposition 3.1, one


has λ ∈ σ(LA) if and only if {k2| k ∈ K, η(k) = λ} ⊂ σ(−∆γ,A). Moreover, Theorem 3.2


implies that λ is an eigenvalue if and only if all the k2 such that η(k) = λ are also


eigenvalues.


Clearly, ∥LA∥ ≤ 4, where ∥·∥ is the operator norm on ℓ2(Z), and thus σ(LA) ⊂
[−4, 4]. We are thus interested in the behaviour of η when its values are inside the


interval [−4, 4]. This is shown in Figure 2. For k ∈ [0,∞), η(k) is continuous with


bounded continuous derivative and it behaves essentially the same way in each of the


intervals [n, n + 1], n ∈ N. Let In := η(−1)([−4, 4]) ∩ (n, n+ 1) be the closure of the


preimage of [−4, 4] restricted to (n, n + 1). This means that points n and n + 1 are


included only as limit points of the resulting interval and not as isolated points. By


inspecting the derivative of η, it is easy to check that In is always a closed interval.
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Moreover, for γ > 0 we have In = [an, n+1] where n < an < n+1, i.e. the left endpoint


of In is larger than n and the right endpoint is n+ 1. On the other hand, for γ < 0 we


have In = [n, bn] where n < bn < n + 1. Finally, In = [n, n + 1] holds for γ = 0. Thus


whenever γ ̸= 0, the intervals In are disjoint, i.e. there are gaps between possible parts


of the spectrum.


For k ∈ [0, 1] and for k ∈ iR+, the behaviour of η(k) is slightly different and


much stronger influenced by the value of γ. If γ > 0 then η(k) for k ∈ [0, 1] is


decreasing in k and η(ik) is increasing for k ∈ [0,∞). If −12/π ≤ γ ≤ 0 then η(ik)


is on [0,∞) again increasing and η(k) on [0, 1] is decreasing up to a certain point in


(0, 1) and then increasing. Finally, if γ < −12/π then η(k) is on [0, 1] increasing and


η(ik) is on [0,∞) decreasing up to some point in (0,∞) and then increasing. Let


I0 := η(−1)([−4, 4]) ∩ (iR+ ∪ [0, 1)) ⊂ C. By continuity of η, this I0 is a connected set.


Since limk→∞ η(ik) = ∞, we obtain that for γ > 0, I0 = [a0, 1] where 0 < a0 < 1. For


γ = 0 we have I0 = [0, 1]. For −8/π < γ < 0, I0 = i[0, a0] ∪ [0, b0] where 0 < a0 and


0 < b0 < 1. For γ = −8/π, I0 = i[0, a0] where 0 < a0, and finally, for γ < −8/π,


I0 = i[a0, b0] where 0 < a0 < b0. Note that 0 ∈ I0 holds only when γ ∈ [−8/π, 0].


These findings are summarized in the following statement about the basic structure of


the spectrum of −∆γ,A.


Proposition 4.1. The spectrum of −∆γ,A is bounded from below and can be decomposed


into the discrete set σp = {n2|n ∈ N} of infinitely degenerate eigenvalues and the


part determined by the spectrum of LA as σLA
= {k2| k ∈ K, η(k) ∈ σ(LA)}, i.e.


σ(−∆γ,A) = σp ∪ σLA
, where the union is not necessarily disjoint. Moreover, the part


σLA
can be written as the union


σLA
=


∞∪
n=0


σn


of sets such that σn = {k2| k ∈ Jn}, where Jn = η(−1)(σ(LA)) ∩ In for n ≥ 0,


In = η(−1)([−4, 4]) ∩ (n, n+ 1) for n > 0, and I0 = η(−1)([−4, 4]) ∩ (iR+ ∪ [0, 1)).


When γ ̸= 0, the spectrum has always gaps between the σn’s. For γ > 0, the


spectrum is positive. For γ < −8π, the spectrum has a negative part and does not


contain zero. Finally, 0 ∈ σ(−∆γ,A) if and only if γπ + 4 ∈ σ(LA).


The main conclusion from this discussion is that in order to get a better picture of


the spectrum of −∆γ,A we need to investigate the spectrum of the bounded self-adjoint


Jacobi operator LA. Spectral analysis of Jacobi operators is a well understood topic,


see e.g. [29], and we can pick the tools suitable for our present case.


Denoting aj := 2 cos(Ajπ) we can express the action of LA as


(LAφ)j = ajφj+1 + aj−1φj−1


for any φ ∈ ℓ2(Z). First thing to mention is that the spectrum of LA does not depend


on the signs of aj. This follows from the fact that LA is unitarily equivalent to LÃ
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whenever |aj| = |ãj|. It can be easily checked that the equivalence is mediated by the


unitary operator UA,Ã, i.e. LÃ = UA,ÃLAU
−1


A,Ã
, defined by


(UA,Ãφ)j = ujφj,


for any φ ∈ ℓ2(Z), where


uj =



1 for j = 0,


sjsj−1 . . . s2s1 for j > 0,


sjsj+1 . . . s−2s−1 for j < 0,


and sj =


{
1 for ãj = aj,


−1 otherwise.


This unitary invariance can be used to find upper and lower bounds of the spectrum.


By simple manipulations we get


⟨φ,LAφ⟩ = −
∑
j∈Z


aj |φj+1 − φj|2 +
∑
j∈Z


(aj−1 + aj) |φj|2 .


Let A+ be such that a+j = |aj|, then we have


⟨φ,LAφ⟩ =
⟨
UA,Ãφ,LA+UA,Ãφ


⟩
≤


∑
j∈Z


( |aj−1|+ |aj| )
∣∣∣(UA,Ãφ)j


∣∣∣2
≤ sup


j∈Z
cj ∥φ∥ ,


where


cj = |aj−1|+ |aj| = 2( |cos(Aj−1π)|+ |cos(Ajπ)| ).
Similarly, using A− such that a−j = − |aj|, we get


⟨φ,LAφ⟩ =
⟨
UA,Ãφ,LA−UA,Ãφ


⟩
≥ − sup


j∈Z
cj ∥φ∥ ,


which implies for the spectrum


σ(LA) ⊂ [− sup
j∈Z


cj, sup
j∈Z


cj]. (9)


Remark 4.2. It follows from the previous bounds that if supj∈Z cj < 4, which means that


all the pairs Aj−1, Aj are uniformly separated from pairs of integers, the gaps between


the parts σn of the spectrum of −∆γ,A from Proposition 4.1 are always open and contain


exactly one eigenvalue each.


Let us turn to the situation, when some aj’s are equal to zero, which happens if


the sequence {Aj} contains half-integers. First we introduce some notation, putting


J0 := {j ∈ Z | Aj + 1/2 ∈ Z},
J := J0 ∪ ({−∞} \ inf J0) ∪ ({∞} \ sup J0),


i.e. J contains ∞ whenever J0 is bounded from above and −∞ whenever J0 is bounded


from below. We say that j, k ∈ J are neighbouring in J if j < k and there is no i ∈ J


such that j < i < k. For any j, k ∈ J neighbouring in J let Lj,k be the restriction of LA


to {j + 1, . . . , k}. Clearly, Lj,k is an operator on ℓ2({j + 1, . . . , k}) given by


(Lj,kφ)i =



aj+1φj+2 for i = j + 1,


ajφj+1 + aj−1φj−1 for j + 1 < i < k,


ak−1φk for i = k,
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where ai ̸= 0 for all j < i < k. This allows us to write the decomposition


LA =
⊕
j,k∈J,


neighbouring in J


Lj,k.


When aj ̸= 0 for all j ∈ Z, then J0 = ∅, J = {−∞,∞} and hence LA = L−∞,∞.


Theorem 4.3. Under the previous notation


σ(LA) =
∪


j,k∈J,
neighbouring in J


σ(Lj,k)


and the essential spectrum of LA is nonempty. If j, k ∈ J0 then Lj,k has a pure point


spectrum containing k− j different eigenvalues. If j = −∞ or k = ∞ then the spectrum


of Lj,k has multiplicity at most two, that of the singular spectrum being one, and a


nonempty essential part.


Proof. The nonemptiness of the essential spectrum follows from boundedness of LA.


When j, k ∈ J0 the operator Lj,k corresponds to a symmetric tridiagonal matrix


(k − j) × (k − j) with nonzero upper and lower diagonals which implies that it has


k − j different eigenvalues. When j = −∞ or k = ∞ then the assertion follows from


Theorem 3.4, Lemma 3.6 in [29], and the boundedness of Lj,k.


Note that the absolutely continuous spectrum of LA, which can be present only


when J0 is bounded from at least one side, can be further determined by the principle


of subordinacy, see e.g. [29, Section 3.3].


Other interesting situation is the periodic one when there exists N ∈ N such that


Aj = Aj+N holds for all j ∈ Z or more generally, in view of the invariance of the


spectrum w.r.t. the signs of aj, when |aj| = |aj+N | holds for all j ∈ Z. If aj = 0,


or equivalently Aj + 1/2 ∈ Z for some j, then the previous theorem implies that the


spectrum is trivially given by a finite number of eigenvalues with infinite multiplicities.


Otherwise, when aj ̸= 0 for all j ∈ Z one may apply Floquet-Bloch theory to show


that the spectrum is purely absolutely continuous with a band-and-gap structure. The


following assertion summarizes the result proven e.g. in [29, Sections 7.1 and 7.2].


Theorem 4.4. Let aj ̸= 0 for all j ∈ Z and |aj| = |aj+N | for some N ∈ N and all j ∈ Z,
i.e. Aj + 1/2 /∈ Z and |cos(Ajπ)| = |cos(Aj+Nπ)|, where N is the smallest number with


such property. Then the spectrum of LA is purely absolutely continuous and consists of


N closed intervals possibly touching at the endpoints.


5. A linear field growth


Suppose now that Aj = αj+ θ holds for some α, θ ∈ R and every j ∈ Z. We denote the


corresponding operator LA by Lα,θ, i.e.


(Lα,θφ)j = 2 cos (π(αj + θ))φj+1 + 2 cos (π(αj − α + θ))φj−1
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for all j ∈ Z. Properties of the spectrum of Lα,θ are strongly influenced by number


theoretic properties of α and θ. If α is a rational number, α = p/q, where p and q


are relatively prime, then Lα,θ is, according to the discussion in the previous section,


periodic with the period N = q. Two distinct situations may occur depending on the


value of θ.


Theorem 5.1. Assume that α = p/q, where p and q are relatively prime. Then:


(a) If αj+ θ+ 1
2
/∈ Z for all j = 0, . . . , q− 1, then Lα,θ has purely absolutely continuous


spectrum that consists of q closed intervals possibly touching at the endpoints. In


particular, σ(Lα,θ) = [− 4 |cos(πθ)| , 4 |cos(πθ)| ] holds if q = 1.


(b) If αj + θ + 1
2
∈ Z for some j = 0, . . . , q − 1, then the spectrum of Lα,θ is of pure


point type consisting of q distinct eigenvalues of infinite degeneracy. In particular,


σ(Lα,θ) = {0} holds if q = 1.


Proof. Part (a) follows directly from Theorem 4.4. For q = 1 corresponding to α ∈ Z
the spectrum may be calculated directly, see e.g. [29, Section 1.3].


In case (b) we may without loss of generality assume θ + 1
2
∈ Z. Thus, aj =


2 cos(Ajπ) = 0 for jmod q = 0 and aj ̸= 0 otherwise. Hence, with the notation from the


previous section, J0 = J = qZ and Ljq,(j+1)q are the same for all j ∈ Z. This together


with Theorem 4.3 yields the assertion. If q = 1 we have α ∈ Z and from the assumption


θ + 1
2
∈ Z it follows that aj = 0 holds for all j ∈ Z, and consequently, Lα,θ is a null


operator.


Remark 5.2. Note that (a) occurs, for example, whenever θ is irrational.


On the other hand, if α /∈ Q the spectrum of Lα,θ is closely related to the spectrum


of the almost Mathieu operator Hα,λ,θ in the critical situation, λ = 2, which for any


α, λ, θ ∈ R acts as


(Hα,θ,λφ)j = φj+1 + φj−1 + λ cos(2παj + θ)φj


for any φ ∈ ℓ2(Z) and all j ∈ Z. Recall that the almost Mathieu operator is one of


the most studied discrete one-dimensional Schrödinger operator during several recent


decades, see e.g. [19] for a nice review. The spectrum of Hα,2,θ as a set when α is


irrational has many interesting properties. First of all, it does not depend on θ, see


[4, 28]. Next, it is a Cantor set, i.e. the perfect nowhere dense set; this property is


known as the “Ten Martini Problem”. The name of the challenge was coined by Simon


[28], its proof was completed by Avila and Jitomirskaya in [2]. Moreover, the Lebesgue


measure of the spectrum of Hα,2,θ is zero, which is known as Aubry-André conjecture


on the measure of the spectrum of the almost Mathieu operator, demonstrated finally


by Avila and Krikorian in [1]. The picture arising from this survey can be described as


follows.


Theorem 5.3. For any α /∈ Q, the spectrum of Hα,2,θ does not depend on θ and it is a


Cantor set of Lebesgue measure zero.
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In order to reveal the relation between Lα,θ andHα,2,θ we employ ideas from [27]. We


start by introducing the abstract Rotation Algebra Aα which is a C∗ algebra generated


by two unitary elements u, v with the commutation relation


uv = ei2παvu,


see also [9, 22, 7, 26] for more details. We can consider the representation πθ generated


by operators U = πθ(u) and V = πθ(v),


(Uφ)j := φj+1, (V φ)j := ei2παj+θφj.


Then the almost Mathieu operator coincides with the image of the element


hα = u+ u−1 + v + v−1 ∈ Aα,


in other words, Hα,2,θ = πθ(hα). On the other hand, one can consider the representation


π′
θ generated by operators


(Uφ)j = eiπ(αj+θ)φj+1, (V φ)j = eiπ(α(j−1)+θ)φj−1.


In this case we have Lα,θ = π′
θ(hα).


When α /∈ Q, it can be checked that Aα is simple, see e.g. [9, 22, 25]. This implies


that all its representations are faithful and thus they preserve the spectrum of hα, which


is defined as a set of those complex λ such that hα − λI is not invertible, see e.g. [22].


As a result, spectra of Lα,θ and Hα,2,θ as sets coincide,


σ(Lα,θ) = σ(Hα,2,θ), (10)


and are independent of θ. This in combination with Theorem 5.3 proves the following


assertion.


Theorem 5.4. For any α /∈ Q, the spectrum of Lα,θ as a set does not depend on θ and


it is a Cantor set of Lebesgue measure zero.


Remark 5.5. Note that all the previous considerations are equally valid for any Aj such


that |cos(Ajπ)| = |cos (π(αj + θ))| as a result of the invariance of the spectrum with


respect to the signs of aj = cos(Ajπ) discussed in the previous section.


As for the original operator −∆γ,A, we may combine the previous observations to


obtain the following theorem.


Theorem 5.6. Let Aj = αj + θ for some α, θ ∈ R and every j ∈ Z. Then for the


spectrum σ(−∆γ,A) the following holds:


(a) If α, θ ∈ Z and γ = 0, then σ(−∆γ,A) = σac(−∆γ,A) ∪ σpp(−∆γ,A) where


σac(−∆γ,A) = [0,∞) and σpp(−∆γ,A) = {n2|n ∈ N} consists of infinitely degenerate


eigenvalues.


(b) If α = p/q, where p and q are relatively prime, αj+θ+ 1
2
/∈ Z for all j = 0, . . . , q−1


and assumptions of part (a) do not hold, then −∆γ,A has infinitely degenerate


eigenvalues at the points of {n2|n ∈ N} and an absolutely continuous part of the


spectrum such that in each interval (−∞, 1) and (n2, (n+ 1)2), n ∈ N it consists of


q closed intervals possibly touching at the endpoints.
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(c) If α = p/q, where p and q are relatively prime, and αj + θ + 1
2
∈ Z for some


j = 0, . . . , q−1, then the spectrum −∆γ,A is of pure pure type and such that in each


interval (−∞, 1) and (n2, (n + 1)2), n ∈ N there are exactly q distinct eigenvalues


and the remaining eigenvalues form the set {n2|n ∈ N}. All the eigenvalues are


infinitely degenerate.


(d) If α /∈ Q, then σ(−∆γ,A) does not depend on θ and it is a disjoint union of the


isolated-point family {n2|n ∈ N} and Cantor sets, one inside each interval (−∞, 1)


and (n2, (n + 1)2), n ∈ N. Moreover, the overall Lebesgue measure of σ(−∆γ,A) is


zero.


Proof. For parts (a), (b) and (c) one uses Theorem 5.1, Proposition 4.1 and properties


of function η discussed before Proposition 4.1. The conclusion is implied by the


bicontinuity of η on each set In, n ∈ N, and by the fact that in (b), (c) σ(Lα,θ) ⊂
(−4, 4) follows from (9). Under the assumptions of (a), σ(Lα,θ) = [−4, 4], and thus


η(−1)(Lα,θ) = [0,∞), see also Figure 2.


Finally, let us prove part (d). By Theorem 5.4, σ(Lα,θ) is a Cantor set with Lebesgue


measure zero. From (9) it follows again that σ(Lα,θ) ⊂ (−4, 4). Hence, since η is


bicontinuous in each set In, n ≥ 0, the preimage Jn = f (−1)(σ(Lα,θ)) ∩ In mapped by


the square function to σn (using the notation from Proposition 4.1) is again a Cantor


set contained in (−∞, 1) for n = 0 and in (n2, (n + 1)2) for n ∈ N, respectively. It is


easy to see that the Lebesgue measure of σn is zero for every n ≥ 0 which implies that


it is zero for the whole set. Now the sought assertion follows from Proposition 4.1.


Remark 5.7. It follows from the previous theorem that the eigenvalues {n2|n ∈ N} are


isolated points of the spectrum of −∆γ,A if and only if γ ̸= 0 or α /∈ Z or θ /∈ Z.
Finally, we may apply the very recent result of Last and Shamis [20] which says


that there is a dense set Gδ of α’s, for which the Hausdorff dimension of the spectrum of


Hα,2,θ equals zero, dimH σ(Hα,2,θ) = 0, see e.g. [13, 21] for the definitions of Hausdorff


measure and dimension. This result may be applied to the spectrum of −∆γ,A as a


consequence of the following proposition.


Proposition 5.8. Let Aj = αj + θ for some θ ∈ R, α /∈ Q, and every j ∈ Z. Then


dimH σ(−∆γ,A) = dimH σ(Lα,θ).


Proof. By the discussion preceding Proposition 4.1 and with the same notation, it follows


that η is bi-Lipschitz on every interval (n, (n+ 1)) ⊂ In, n > 0. Thus the inverse of its


restriction on (n, (n+1)) combined with the square is again bi-Lipschitz. It follows from


(9) that σ(Lα,θ) ⊂ (−4, 4) which yields σn ⊂ (n, (n+1)). Hence σn is the image of σ(Lα,θ)


under bi-Lipschitz function. It is a known fact, that bi-Lipschitz mappings preserve


Hausdorff dimension, see e.g. [13, Corollary 2.4]. Hence dimH(σn) = dimH σ(Lα,θ) for


all n > 0. For n = 0 we may argue similarly for any closed set contained in I0 \{0}. The
point 0 should be omitted since η is not bi-Lipschitz on open sets containing zero. Let


H0 be a complex open neighbourhood of 0 and let H̃0 = {x2|x ∈ H0}. Then σ0\H̃0 is an


image of σ(Lα,θ)\η(H0) under a bi-Lipschitz function. Since H0 was arbitrary, it follows
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that dimH(σ0) = dimH σ(Lα,θ). Finally, since countable sets have Hausdorff dimension


zero, the countable stability, see e.g. Section 2.2 in [13], of Hausdorff measures yields


the assertion.


Thus, by [20, Theorem 1] and (10), one more assertion follows.


Corollary 5.9. Let Aj = αj + θ for some α, θ ∈ R and every j ∈ Z. There exist a


dense set Gδ, such that for every α ∈ Gδ,


dimH σ(−∆γ,A) = 0


for all θ.


6. Concluding remarks


To conclude, recall first that for any irrational α and (Lebesgue) almost all θ the


spectrum of the almost Mathieu operator Hα,2,θ is purely singularly continuous. This is


a part of the more general Aubry-André conjecture proven by Jitomirskaya [16]. This


fact motivates us to the question whether for any irrational α the spectrum of Lα,θ has


the same property, i.e. whether it is purely singularly continuous for Lebesgue a.e. θ.


A deeper question concerns the physical meaning of the model that involves a


magnetic field changing linearly along the chain. A philosophical answer could be,


according the known quip of Bratelli and Robinson, that “validity of such idealizations


is the heart and soul of theoretical physics and has the same fundamental significance as


the reproducibility of experimental data”. On a more mundane level, one can note that


the spectral behaviour will not change if the linear field is replaced by a quasiperiodic


one which changes in a saw-tooth-like fashion as long as the jumps coincide with the


graph vertices. This also opens an interesting question about the spectral form and


type in case when the saw-tooth shape is replaced by another periodic or quasiperiodic


function.
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project 14-06818S.


References


[1] A. Avila, R. Krikorian: Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger


cocycles, Ann. Math., 164 (2006), 911–940.


[2] A. Avila, S. Jitomirskaya: The Ten Martini Problem, Ann. Math., 170 (2009), 303–342.


[3] M.Ya. Azbel: Energy spectrum of a conduction electron in a magnetic field, J. Exp. Theor. Phys


19 (1964), 634–645.


[4] J. Avron, B. Simon: Almost periodic Schrödinger operators II. The integrated density of states,


Duke Math. J., 50 (1983), 369–391.


[5] G. Berkolaiko, P. Kuchment: Introduction to Quantum Graphs, Amer. Math. Soc., Providence,


R.I., 2013.







Cantor spectra of magnetic chain graphs 15


[6] C. Cattaneo: The spectrum of the continuous Laplacian on a graph, Monatsh. Math., 124 (1997),


215–235.


[7] M.-D. Choi, G.A. Elliott, N. Yui: Gauss polynomials and the rotation algebra, Invent. Math., 99


(1990), 225–246.


[8] C.R. Dean et al.: Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices,
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