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We present an experiment on crystallization of packings of macroscopic granular spheres. This system is
often considered to be a model for thermally driven atomic or colloidal systems. Cyclically shearing a
packing of frictional spheres, we observe a first order phase transition from a disordered to an ordered state.
The ordered state consists of crystallites of mixed fcc and hcp symmetry that coexist with the amorphous
bulk. The transition, initiated by homogeneous nucleation, overcomes a barrier at 64.5% volume fraction.
Nucleation consists predominantly of the dissolving of small nuclei and the growth of nuclei that have
reached a critical size of about ten spheres.
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Packings of spheres show interesting features such as
phase transitions between disordered and ordered states,
and can be useful in the study of amorphous atomic
configurations [1]. Examples include thermal colloidal
packings [2–4], packings of macroscopic granular spheres
[1,5–15], and simulations of the mathematical hard sphere
model [16–25]. The behavior of such systems is determined
by the fraction of space filled by the spheres, their packing
fraction ϕ.
The hard sphere model exhibits an entropically driven


first order phase transition. Disordered fluid states are
observed below the freezing density of ϕ ¼ 0.495 and
crystalline ordered states appear above the melting density
of ϕ ¼ 0.545, with coexistence of the two phases for
intermediate densities [21].
Granular spheres can also be packed in disordered and


ordered states. In contrast to colloidal packings and the
mathematical hard sphere model, granular packings are
characterized by the existence of permanent contacts
between the particles. Most experimental protocols for
increasing the bulk volume fraction, such as vertical
shaking [12], centrifugation [4], thermal cycling [11] and
sedimentation [13], do not achieve an ordered state from an
initial disordered state. The “random close packed state”
(rcp) is used operationally to describe the highest density
state achieved by these methods. The rcp volume fraction is


in the range 0.635 < ϕ < 0.655 [14–17], about 15% lower
than the densest possible packing of ordered face centered
cubic (fcc) or hexagonal close packing (hcp), which each
have a volume fraction ϕ ¼ π=


ffiffiffiffiffi


18
p


≈ 0.74 [26].
Ordered clusters of granular spheres have been obtained


with a system density ϕglobal in the range 0.64–0.74 by
multidimensional shaking [5,6], cyclic shear [7,8], and
shear in a Couette cell [9]. By analogy with the freezing-
melting transition in the hard sphere model, the emergence
of growing crystallites found in our granular experiment
can be interpreted in terms of nucleation and a first order
phase transition [20,27].
In our experiment we compact a granular packing by


shearing. With increasing shear cycles, a well-defined
plateau emerges at phase transition density ϕglobal¼0.645,
which is in the range of densities associated with rcp
[14–17]. Such a plateau was not reported in a previous
experiment that used a setup similar to ours, and the growth
rate of nuclei that we find differs qualitatively from that
found in the previous experiment [8].
Our experiment uses a cubical shear cell with side


length 10.5 cm [Fig. 1(a)]. Nucleation from the side walls
is suppressed using half-spheres glued to the walls at
random positions (glue: Vitralit 7562, Panacol). The cell
is filled with 49 400 precision BK7 glass spheres of
diameter 3� 0.0025 mm and density 2.51 g=cm3 (size
tolerance given by manufacturer, Worf Glaskugeln GmbH).
The top plate applies a pressure of 2.1 kPa on the bed, and
the pressure increases downward to 3.1 kPa at the bottom.
The cell is sheared by sinusoidally tilting opposite vertical
shear walls by �0.6° about axes indicated by red circles
about halfway up opposite side walls [Fig. 1(a)]; the total


Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.


PHYSICAL REVIEW LETTERS 120, 055701 (2018)


0031-9007=18=120(5)=055701(5) 055701-1 Published by the American Physical Society







peak-to-peak oscillation displacement at the bottom of the
cell is about one-third of a sphere diameter.
The glass spheres are index matched [28] to a mixture


of phthalate esters (Cargille Laboratories, identifier code
1160, ρ ¼ 1.1 g=cm3, ν ¼ 41 cSt) with a dissolved fluo-
rescent dye (oxazine 750 perchlorate, c ¼ 10 mg=l).
Hydrodynamic interactions are negligible for our small
amplitude shear with a period of 2 s, and sphere deforma-
tion is also negligible. The spheres, half-spheres, and shear
cell walls are made of BK7 optical glass and are index
matched with the liquid mixture in a temperature controlled
environment (n ¼ 1.5198� 0.0001 at λ ¼ 589 nm and
T ¼ 22.9� 0.1 °C).
The shearing process is periodically stopped to measure


the packing using a horizontally translated vertical laser
light sheet (λ ¼ 658 nm, P ¼ 75 mW). Fluorescent light is
imaged simultaneously by the camera [Figs. 1(b) and 1(c)].
The image slices are combined to form a three-dimensional
volume. The measurements presented here are from 618
scans made during a run with 1.955 × 106 cycles. In the
course of the two month long run 10% of the spheres
escaped from the sample cell through a gap between one of
the shear walls and a side wall, and this possibly increased
the mobility of spheres farther inside the packing, thereby
enhancing their crystallization.
Positions of the 20 000 spheres at least 3 diam from any


wall are detected by convolution with a template. Then the
peak of the correlation map in the (x,y,z) directions is
determined with ð37; 37; 30Þ pixel=diam resolution using a
three-point Gauss estimator [29]. This yields the position of
each particle. From the pair correlation function we can


determine, for more than 99% of the particles, the position
of each particle to less than 2% of a sphere diameter (see
Supplemental Material [30]).
For each sphere there is a Voronoi cell consisting of all


points closer to that sphere than to any other sphere in the
sample [see insets in Fig. 2(a)]. ϕlocal is then the ratio of the
sphere volume to the volume of its Voronoi cell. The mean
volume fraction of the whole sample, ϕglobal, is given by the
harmonic mean of all ϕlocal values [34].
The angular order between spheres sharing a face of their


Voronoi cells is characterized by a weighted version of the
order parameter q6 [19]. A sphere is called crystalline if it is
densely packed and its neighbors are ordered, i.e., ϕlocal >
0.72 and q6 is either in the range q6ðfccÞ ¼ 0.575� 0.020


(a) (b)


(c)


FIG. 1. Precision spheres are contained in a cubical volume
with opposite side walls (lime green) that produce oscillating
shear. The cell is filled with a liquid that is index matched to the
beads. The top plate is levered to the side walls and is mounted on
a piston that is constrained to move vertically. Shear is produced
by periodically oscillating the cell bottom in the z direction with a
period of 2 s. A laser sheet illuminates a slice in the x-y plane, as
illustrated by contrast enhanced images in (b) and (c); (b) shows a
layer near the camera, and (c) shows a layer much further
from the camera. Note that the image quality in both layers is
comparable.


(a)


(b)


FIG. 2. The formation of the crystalline phase shows features of
a first order phase transition. (a) Starting from a loose packing,
the global volume fraction ϕglobal increases logarithmically with
the number of shear cycles until it reaches a plateau at the density
ϕglobal ¼ 0.645. After approximately 50 000 more shear cycles,
ϕglobal increases again due to the formation of crystalline regions
inside the sample. The 2D diagrams on the upper left show
spheres (blue) and their Voronoi cells (yellow) for cases with
Voronoi neighbors that are disordered loosely packed (left) and
symmetric densely packed (right). (b) Histograms of local
volume fractions reveal the coexistence of crystalline and
amorphous regions inside the sample. Below the transition there
is only a single peaked distribution, which shifts towards higher
densities until the plateau is reached. After the onset of crystal-
lization the previous peak population diminishes and a new peak
appears at ϕlocal ¼ 0.74. The histogram for the plateau is the
average of 32 consecutive scans; elsewhere the histogram is the
average of 10 scans. Colors in (b) correspond to the colored data
points in (a).
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or q6ðhcpÞ ¼ 0.485� 0.020. Other spheres are called
amorphous. A nucleus is a connected set of crystalline
spheres, each sharing at least one Voronoi face with another
sphere in the set. Some authors suggest different definitions
for local order [16,35], but our results do not depend
qualitatively on the choice of definition or threshold (see
Supplemental Material [30] and a recent review [36]). The
distance of a nucleus to another single sphere or nucleus is
given by the shortest distance between the sphere centers.
During densification we observe three distinct regions,


as can be seen in Fig. 2(a). The packing starts from a
disordered state and compacts approximately logarithmi-
cally with time for about 20 000 cycles. The compaction
then slows to a stop, and the second region, a plateau
(ϕglobal ¼ 0.645), emerges and persists for about 50 000
cycles. Then the first growing nucleus appears, indicating a
first order phase transition to the third distinct region. The
volume fraction slowly begins to increase as shearing
continues, and nuclei increase in number and size but have
no preferred orientation of their hexagonal layers; an
intermediate state of the system is shown in Fig. 3(a).
The first growing nucleus is shown in Fig. 3(b), which
illustrates that nuclei fluctuate in shape, size, and crystal
symmetry as they grow, as can be seen in the movie in the
Supplemental Material [30].


All nuclei start their growth at least 10 sphere diam
distance away from any wall. By the end of the experiment,
after 2 × 106 shear cycles, nuclei with up to ∼600 spheres
are present, and 9% of all spheres in the analyzed volume
are in crystallites, which have fcc or hcp symmetry with
approximately equal probability; no icosahedral symmetry
was observed (see Supplemental Material [30]).
Histograms of local densities for amorphous packings


have a single peak and are approximately symmetrical
about that peak, as Fig. 2(b) illustrates. During compaction
the peak narrows slightly and shifts to higher densities.
Beyond the first order phase transition a second peak
emerges at ϕlocal ¼ 0.74, the density of densest packed
arrangements.
The end of the densification plateau is identified by the


emergence of a nucleus in the interior region; subsequently,
all nuclei are tracked for each successive scan. Nuclei
with fewer than about ten spheres are found to shrink more
often than grow, while growth gradually becomes more
probable for nuclei with more than ten spheres, that is,
Δρ ¼ ðρgrow − ρshrinkÞ > 0, where ρ is the probability to
grow or shrink, respectively [3,8] [Fig. 4(a)]. The critical
size at which the difference of the probabilitiesΔρ becomes
positive does not depend on the definition of local
crystallinity (see Supplemental Material [30]).
Our main result is the observation of nucleation centers


throughout the interior of a granular packing. The emer-
gence of a plateau at a well-defined packing fraction,
ϕglobal ¼ 0.645, indicates the onset of a first order phase
transition. A previous experiment used a setup similar to
ours and observed heterogenous nucleation at the cell walls
but no nucleation in the interior of the cell [8]. Another
experiment used shaking in a spherical container which
may or may not have suppressed heterogeneous nucleation;
however, the spatiotemporal evolution of the nuclei was not
determined in this study (see Refs. [5,6] and Supplemental
Material in Ref. [5]).
Our experiment analyzes static granular matter between


episodes of cyclic shearing, which increase the density. Our
data are snapshots, measurements of static packings. When
the snapshots are viewed consecutively, as in a movie,
nuclei emerge, grow, and shrink until after sufficient
shearing cycles, nuclei of critical size are created that then
grow indefinitely under further shearing (see movie in
Supplemental Material [30]). A nucleation theory should
explain why shearing at low amplitude and low frequency,
in the presence of pressure and gravity, leads to such a
sequence of static granular configurations. This is distinct
from the usual nucleation theory, which shows that a
thermal or Brownian dynamics, starting from a supercooled
state, leads to the creation, growth, and shrinking of nuclei.
The observed compaction of a granular bed under gravity


and pressure can be described by a simple mechanical
picture. A bed of frictional hard spheres increases in
density if subjected to repeated small disturbances that


(a)


(b) (c)


FIG. 3. (a) This cross section of the cell after 106 cycles shows
crystalline regions in the cell interior; the amorphous phase is not
shown. The colors of the nucleated spheres indicate crystal type.
The wire frame indicates the inner part of the shear cell that is
used for evaluation. (b) The nucleus that started to grow first
[dotted ellipse in (a)] fluctuated in shape and size until a stable
seed was reached at about 3 × 105 cycles. (c) Time evolution of
the nucleus in (b). A movie in the Supplemental Material [30]
illustrates the nucleation in the shear cell.
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are introduced, for example, by shearing, shaking, or
fluidization. The repeated shear cycles in our experiment
break some of the force chains that form a skeleton
supporting the bed, and this leads to compaction [24].
However, this simple picture does not address the homo-
geneous nucleation seen in our experiment [Fig. 4(a)]; very
dense crystallite clusters (ϕ ¼ 0.74) form, grow, and dis-
solve without the help of a flat wall. Figure 4(b) shows that
near a small nucleus the volume fraction is slightly higher
than the background volume fraction, which suggests from a
mechanical argument that under a confining pressure small
nuclei should grow. However, Fig. 4(a) reveals that this does
not happen. Any theory for nucleation in our system would
have to account for these results in Fig. 4.


Our results are qualitatively different from the crystal-
lization dynamics observed in constant volume molecular
dynamics simulations of supercooled hard spheres: the
existence of a nucleation barrier in our system disagrees
with the autocatalytic growth of crystalline regions
observed in Ref. [23]. Further, we do not observe burstlike
growth events as seen in mature glasses [24,25]. These
differences indicate that nucleation in our sheared granular
system is governed by its own dynamics.
In conclusion, we have found that small amplitude cyclic


shear of a bed of spherical particles under gravity and
pressure leads to compaction until a well-defined random-
close-packed volume fraction is reached. Then after many
more cycles (50 000 in our experiment), clusters with hcp
and fcc symmetry emerge, and these crystallites grow if
they contain about ten or more particles. Previous experi-
ments [5–9] had observed nucleation centers on flat
confining walls, but our experiment shows nucleation
throughout the interior of the cell. Further, the present
experiment on 49 400 spheres indicates that future numeri-
cal simulations of sheared packings should extend well
beyond a recent study of 2 000 frictional grains cyclically
sheared for 2000 cycles [18].
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