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1. Introduction


Consider the problem
√


−∆+ V (x)u− au = f, (1.1)


whereu ∈ E = H1(Rd) and f ∈ F = L2(Rd), d ∈ N, a is a constant and
the scalar potential functionV (x) tends to0 at infinity. Fora ≥ 0, the essential
spectrum of the operatorA : E → F which corresponds to the left side of problem
(1.1) contains the origin. Consequently, this operator fails to satisfy the Fredholm
property. Its image is not closed, ford > 1 the dimensions of its kernel and the
codimension of its image are not finite. The present work deals with the studies of
certain properties of the operators of this kind. Let us recall that elliptic equations
containing non Fredholm operators were treated extensively in recent years (see
[15], [16], [17], [19], [20], [21], [22], [23], [24], [25], also [6]) along
with their potential applications to the theory of reaction-diffusion problems (see
[8], [9]). Non-Fredholm operators are also important when studying wave systems
with an infinite number of localized traveling waves (see [1]). In the particular
case whena = 0 the operatorA2 satisfies the Fredholm property in some properly
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chosen weighted spaces (see [2], [3], [4], [5], [6]). However, the case ofa 6= 0 is
significantly different and the approach developed in theseworks cannot be applied.


One of the important issues about problems with non-Fredholm operators con-
cerns their solvability. We address it in the following setting. Letfn be a sequence
of functions in the image of the operatorA, such thatfn → f in L2(Rd) asn → ∞.
Denote byun a sequence of functions fromH1(Rd) such that


Aun = fn, n ∈ N.


Since the operatorA does not satisfy the Fredholm property, the sequenceun may
not be convergent. Let us call a sequenceun such thatAun → f a solution in the
sense of sequences of problemAu = f (see [15]). If such sequence converges to
a functionu0 in the norm of the spaceE, thenu0 is a solution of this equation.
Solution in the sense of sequences is equivalent in this caseto the usual solution.
However, in the case of the non-Fredholm operators, this convergence may not hold
or it can occur in some weaker sense. In such case, solution inthe sense of se-
quences may not imply the existence of the usual solution. Inthe present work we
will find sufficient conditions of equivalence of solutions in the sense of sequences
and the usual solutions. In the other words, the conditions on sequencesfn under
which the corresponding sequencesun are strongly convergent. Solvability in the
sense of sequences for the sums of Schrödinger type operators without Fredholm
property was treated in [26].


In the first part of the article we study the problem
√


−∆x + V (x)−∆y + U(y)u− au = f(x, y), x, y ∈ R
3. (1.2)


The operator


HU, V :=
√


−∆x + V (x)−∆y + U(y) (1.3)


here is defined via the spectral calculus. Here and further down the Laplacian op-
erators∆x and∆y are with respect to thex andy variables respectively, such that
cumulatively∆ := ∆x +∆y. Similarly, for the gradients


∇ := ∇x +∇y,


where∇x and∇y act onx andy variables respectively. The square roots of sec-
ond order differential operators are actively used, for instance in the studies of the
superdiffusion problems (see e.g. [27] and the references therein), in relativistic
Quantum Mechanics (see e.g. [18]). The scalar potential functions involved in
(1.3) are assumed to be shallow and short-range, satisfyingthe assumptions analo-
gous to the ones of [19] and [21].


Assumption 1.The potential functionsV (x), U(y) : R3 → R satisfy the bounds


|V (x)| ≤ C


1 + |x|3.5+ε
, |U(y)| ≤ C


1 + |y|3.5+ε
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with someε > 0 andx, y ∈ R
3 a.e. such that
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cHLS‖V ‖
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2 (R3)


< 4π,
√
cHLS‖U‖


L
3
2 (R3)


< 4π.


Here and belowC denotes a finite positive constant andcHLS given on p.98 of [12]
is the constant in the Hardy-Littlewood-Sobolev inequality
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∣
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∣


∣
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, f1 ∈ L
3


2 (R3).


The norm of a functionf1 ∈ Lp(Rd), 1 ≤ p ≤ ∞, d ∈ N is denoted as‖f1‖Lp(Rd).
We designate the inner product of two functions as


(f(x), g(x))L2(Rd) :=


∫


Rd


f(x)ḡ(x)dx, (1.6)


with a slight abuse of notations when such functions are not square integrable. In-
deed, iff(x) ∈ L1(Rd) andg(x) is bounded like, for example the functions of
the continuos spectrum of the Schrödinger operators discussed below, then the in-
tegral in the right side of (1.6) is well defined. By means of Lemma 2.3 of [21],
under Assumption 1 above on the scalar potentials, operator(1.3) considered as
acting inL2(R6) with domainH1(R6) is self-adjoint and is unitarily equivalent to
√


−∆x −∆y onL2(R6) via the product of the wave operators (see [11], [14])


Ω±
V := s− limt→∓∞eit(−∆x+V (x))eit∆x , Ω±


U := s− limt→∓∞eit(−∆y+U(y))eit∆y ,


with the limits here understood in the strongL2 sense (see e.g. [13] p.34, [7]
p.90). Hence, operator (1.3) has no nontrivialL2(R6) eigenfunctions. Its essential
spectrum fills the nonnegative semi-axis[0,+∞). Therefore, operator (1.3) does
not satisfy the Fredholm property. The functions of the continuos spectrum of the
first operator involved in (1.3) are the solutions the Schrödinger equation


[−∆x + V (x)]ϕk(x) = k2ϕk(x), k ∈ R
3,


in the integral form the Lippmann-Schwinger equation


ϕk(x) =
eikx


(2π)
3


2


− 1


4π


∫


R3


ei|k||x−y|


|x− y| (V ϕk)(y)dy (1.7)
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and the orthogonality conditions(ϕk(x), ϕk1(x))L2(R3) = δ(k − k1), k, k1 ∈ R
3.


The integral operator involved in (1.7)


(Qϕ)(x) := − 1


4π


∫


R3


ei|k||x−y|


|x− y| (V ϕ)(y)dy, ϕ(x) ∈ L∞(R3).


We considerQ : L∞(R3) → L∞(R3) and its norm‖Q‖∞ < 1 under Assumption 1
via Lemma 2.1 of [21]. In fact, this norm is bounded above by the k-independent
quantityI(V ), which is the left side of inequality (1.4). Analogously, for the second
operator involved in (1.3) the functions of its continuous spectrum solve


[−∆y + U(y)]ηq(y) = q2ηq(y), q ∈ R
3,


in the integral formulation


ηq(y) =
eiqy


(2π)
3


2


− 1


4π


∫


R3


ei|q||y−z|


|y − z| (Uηq)(z)dz, (1.8)


such that the the orthogonality relations(ηq(y), ηq1(y))L2(R3) = δ(q−q1), q, q1 ∈ R3


hold. The integral operator involved in (1.8) is


(Pη)(y) := − 1


4π


∫


R3


ei|q||y−z|


|y − z| (Uη)(z)dz, η(y) ∈ L∞(R3).


For P : L∞(R3) → L∞(R3) its norm‖P‖∞ < 1 under Assumption 1 by virtue
of Lemma 2.1 of [21]. As before, this norm can be estimated above by theq-
independent quantityI(U), which is the left side of inequality (1.5). Let us denote
by the double tilde sign the generalized Fourier transform with the product of these
functions of the continuous spectrum


˜̃
f(k, q) := (f(x, y), ϕk(x)ηq(y))L2(R6), k, q ∈ R


3. (1.9)


(1.9) is a unitary transform onL2(R6). We will be using the Sobolev space


H1(Rd) = {u(x) : Rd → C | u(x) ∈ L2(Rd), ∇u ∈ L2(Rd)}


equipped with the norm


‖u‖2H1(Rd) = ‖u‖2L2(Rd) + ‖∇u‖2L2(Rd), d ∈ N.


Our first main proposition is as follows.


Theorem 2.Let Assumption 1 hold andf(x, y) ∈ L2(R6).
a) Whena = 0, let in additionf(x, y) ∈ L1(R6). Then equation (1.2) admits a


unique solutionu(x, y) ∈ H1(R6).
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b) Whena > 0, let in additionxf(x, y), yf(x, y) ∈ L1(R6). Then problem
(1.2) possesses a unique solutionu(x, y) ∈ H1(R6) if and only if


(f(x, y), ϕk(x)ηq(y))L2(R6) = 0, (k, q) ∈ S6
a. (1.10)


Here and belowSd
a stands for the sphere inRd of radiusa centered at the origin.


Such unit sphere will be denoted asSd and its Lebesgue measure as|Sd|. Note that
in the case ofa = 0 in the theorem above no orthogonality conditions are neededto
solve equation (1.2) inH1(R6).


Then we turn our attention to the issue of the solvability in the sense of se-
quences for our problem. The corresponding sequence of equations withn ∈ N is
given by


√


−∆x + V (x)−∆y + U(y)un − aun = fn(x, y), x, y ∈ R
3 (1.11)


with the right sides convergent to the right side of (1.2) inL2(R6) asn → ∞.


Theorem 3. Let Assumption 1 hold,n ∈ N andfn(x, y) ∈ L2(R6), such that
fn(x, y) → f(x, y) in L2(R6) asn → ∞.


a) Whena = 0, let in additionfn(x, y) ∈ L1(R6), n ∈ N, such thatfn(x, y) →
f(x, y) in L1(R6) asn → ∞. Then equations (1.2) and (1.11) have unique solu-
tionsu(x, y) ∈ H1(R6) andun(x, y) ∈ H1(R6) respectively, such thatun(x, y) →
u(x, y) in H1(R6) asn → ∞.


b) Whena > 0, let in additionxfn(x, y), yfn(x, y) ∈ L1(R6), n ∈ N, such
that xfn(x, y) → xf(x, y), yfn(x, y) → yf(x, y) in L1(R6) asn → ∞ and the
orthogonality conditions


(fn(x, y), ϕk(x)ηq(y))L2(R6) = 0, (k, q) ∈ S6
a. (1.12)


hold for alln ∈ N. Then problems (1.2) and (1.11) admit unique solutionsu(x, y) ∈
H1(R6) and un(x, y) ∈ H1(R6) respectively, such thatun(x, y) → u(x, y) in
H1(R6) asn → ∞.


In the second part of the article we consider the problem
√


−∆x −∆y + U(y)u− au = φ(x, y), x ∈ R
d, y ∈ R


3 (1.13)


with d ∈ N and the scalar potential function involved in (1.13) is shallow and short-
range under Assumption 1 as before. The operator


LU :=
√


−∆x −∆y + U(y) (1.14)
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here is defined by means of the spectral calculus. Similarly to (1.3), under our as-
sumptions operator (1.14) considered as acting inL2(Rd+3) with domainH1(Rd+3)
is self-adjoint and is unitarily equivalent to


√


−∆x −∆y. Therefore, operator
(1.14) has no nontrivialL2(Rd+3) eigenfunctions. Its essential spectrum fills the
nonnegative semi-axis[0,+∞) and such that operator (1.14) fails to satisfy the
Fredholm property. Let us consider another generalized Fourier transform with the
standard Fourier harmonics and the perturbed plane waves


˜̂
φ(k, q) :=


(


φ(x, y),
eikx


(2π)
d
2


ηq(y)


)


L2(Rd+3)


, k ∈ R
d, q ∈ R


3. (1.15)


(1.15) is a unitary transform onL2(Rd+3). We have the following statement.


Theorem 4.Let the potential functionU(y) satisfy Assumption 1 andφ(x, y) ∈
L2(Rd+3), d ∈ N.


a) Whena = 0, let in additionφ(x, y) ∈ L1(Rd+3). Then equation (1.13) admits
a unique solutionu(x, y) ∈ H1(Rd+3).


b) Whena > 0, let in additionxφ(x, y), yφ(x, y) ∈ L1(Rd+3). Then problem
(1.13) has a unique solutionu(x, y) ∈ H1(Rd+3) if and only if


(


φ(x, y),
eikx


(2π)
d
2


ηq(y)


)


L2(Rd+3)


= 0, (k, q) ∈ Sd+3
a . (1.16)


Note that in the case ofa = 0 of this theorem no orthogonality relations are
needed to solve problem (1.13) inH1(Rd+3).


Our final main proposition deals with the issue of the solvability in the sense of
sequences for our problem. The corresponding sequence of equations withn ∈ N


is given by
√


−∆x −∆y + U(y)un − aun = φn(x, y), x ∈ R
d, d ∈ N, y ∈ R


3 (1.17)


with the right sides convergent to the right side of (1.13) inL2(Rd+3) asn → ∞.


Theorem 5. Let the potential functionU(y) satisfy Assumption 1,n ∈ N and
φn(x, y) ∈ L2(Rd+3), d ∈ N, such thatφn(x, y) → φ(x, y) in L2(Rd+3) asn → ∞.


a) Whena = 0, let in additionφn(x, y) ∈ L1(Rd+3), n ∈ N, such that
φn(x, y) → φ(x, y) in L1(Rd+3) as n → ∞. Then equations (1.13) and (1.17)
possess unique solutionsu(x, y) ∈ H1(Rd+3) and un(x, y) ∈ H1(Rd+3) respec-
tively, such thatun(x, y) → u(x, y) in H1(Rd+3) asn → ∞.
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b) Whena > 0, let in additionxφn(x, y), yφn(x, y) ∈ L1(Rd+3), such that
xφn(x, y) → xφ(x, y), yφn(x, y) → yφ(x, y) in L1(Rd+3) as n → ∞ and the
orthogonality relations


(


φn(x, y),
eikx


(2π)
d
2


ηq(y)


)


L2(Rd+3)


= 0, (k, q) ∈ Sd+3
a . (1.18)


hold for all n ∈ N. Then problems (1.13) and (1.17) admit unique solutions
u(x, y) ∈ H1(Rd+3) andun(x, y) ∈ H1(Rd+3) respectively, such thatun(x, y) →
u(x, y) in H1(Rd+3) asn → ∞.


Let us note that (1.10), (1.12), (1.16), (1.18) are the orthogonality conditions
involving the functions of the continuous spectrum of our Schrödinger operators, as
distinct from the Limiting Absorption Principle in which one orthogonalizes to the
standard Fourier harmonics (see e.g. Lemma 2.3 and Proposition 2.4 of [10]). We
proceed to the proof of our statements.


2. Solvability in the sense of sequences with two potentials


Proof of Theorem 2.Let us note that it is sufficient to solve equation (1.2) inL2(R6),
because its square integrable solution will belong toH1(R6) as well. Indeed, using
definition (1.3) it can be trivially verified that‖HU, V u‖2L2(R6) equals to


‖∇u‖2L2(R6) +


∫


R6


V (x)|u(x, y)|2dxdy +
∫


R6


U(y)|u(x, y)|2dxdy, (2.19)


whereu(x, y) is a square integrable solution of (1.2), the scalar potentials V (x)
andU(y) are bounded by means of Assumption 1 andf(x, y) ∈ L2(R6) by virtue
of the one of our assumptions. Then (2.19) yields∇u(x, y) ∈ L2(R6), such that
u(x, y) ∈ H1(R6).


To prove the uniqueness of solutions for our problem, we suppose that equation
(1.2) has two square integrable solutionsu1(x, y) andu2(x, y). Then their difference
w(x, y) := u1(x, y)− u2(x, y) ∈ L2(R6) satisfies the equation


HU, Vw = aw.


Since operator (1.3) has no nontrivial square integrable eigenfunctions in the whole
space as discussed above, we havew(x, y) = 0 a.e. inR6.


First of all, we consider the case of our theorem whena = 0. Let us apply the
generalized Fourier transform (1.9) to both sides of problem (1.2). This yields


˜̃u(k, q) =
˜̃
f(k, q)
√


k2 + q2
χ{√


k2+q2≤1
} +


˜̃
f(k, q)
√


k2 + q2
χ{√


k2+q2>1
} (2.20)
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with k, q ∈ R
3. Here and throughout the paperχA will denote the characteristic


function of a setA ⊆ Rd. Obviously, the second term in the right side of (2.20) can


be estimated from above in the absolute value by˜̃
f(k, q) ∈ L2(R6) due to the one


of our assumptions. The first term in the right side of (2.20) can be easily estimated
from above in the absolute value by virtue of Corollary 2.2 of[21] by


1


(2π)3
1


1− I(V )


1


1− I(U)
‖f‖L1(R6)


χ{√
k2+q2≤1


}


√


k2 + q2
.


Therefore,
∥


∥


∥


∥


∥


˜̃
f(k, q)
√


k2 + q2
χ{√


k2+q2≤1
}


∥


∥


∥


∥


∥


L2(R6)


≤ 1


(2π)3
1


1− I(V )


1


1− I(U)
‖f‖L1(R6)


√


|S6|
2


,


which is finite as assumed in the theorem. Hence the unique solution u(x, y) ∈
L2(R6).


We conclude the proof with treating the case b) of the theorem. We apply the
generalized Fourier transform (1.9) to both sides of equation (1.2) and arrive at


˜̃u(k, q) =
˜̃
f(k, q)


√


k2 + q2 − a
.


Let us introduce the set


Aδ := {(k, q) ∈ R
6 | a− δ ≤


√


k2 + q2 ≤ a+ δ}, 0 < δ < a, (2.21)


such that


˜̃u(k, q) =
˜̃
f(k, q)


√


k2 + q2 − a
χAδ


+
˜̃
f(k, q)


√


k2 + q2 − a
χAc


δ
. (2.22)


Note that for a setA ⊆ Rd we denote its complement asAc. Evidently, the second
term in the right side of (2.22) can be bounded from above in the absolute value


by
| ˜̃f(k, q)|


δ
∈ L2(R6) due to the one of our assumptions. Clearly, we have the


representation


˜̃
f(k, q) =


˜̃
f(a, σ) +


∫


√
k2+q2


a


∂
˜̃
f(s, σ)


∂s
ds.


Here and belowσ will denote the angle variables on the sphere. This enables us to
express the first term in the right side of (2.22) as


˜̃
f(a, σ)


√


k2 + q2 − a
χAδ


+


∫


√
k2+q2


a


∂
˜̃
f(s,σ)
∂s


ds
√


k2 + q2 − a
χAδ


. (2.23)
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Evidently, we can estimate the second term in (2.23) from above in the absolute
value by


‖(∇k +∇q)
˜̃
f(k, q)‖L∞(R6)χAδ


∈ L2(R6),


where the gradients∇k and∇q act on variablesk and q respectively. Note that


under our assumptions(∇k + ∇q)
˜̃
f(k, q) ∈ L∞(R6) by means of Lemma 11 of


[19]. Apparently, the first term in (2.23) is square integrable if and only if ˜̃f(a, σ)
vanishes, which is equivalent to orthogonality condition (1.10).


Let us turn our attention to establishing the solvability inthe sense of sequences
for our equation in the case of two scalar potentials.


Proof of Theorem 3.Supposeu(x, y) andun(x, y), n ∈ N are the unique solutions
of equations (1.2) and (1.11) inH1(R6) with a ≥ 0 respectively and it is known
thatun(x, y) → u(x, y) in L2(R6) asn → ∞. Then, it will follow thatun(x, y) →
u(x, y) in H1(R6) asn → ∞ as well. Indeed, from (1.2) and (1.11) we easily derive
that


HU, V (un(x, y)− u(x, y)) = a(un(x, y)− u(x, y)) + [fn(x, y)− f(x, y)],


which clearly implies


‖HU, V (un(x, y)− u(x, y))‖L2(R6) ≤ a‖un(x, y)− u(x, y)‖L2(R6)+


+‖fn(x, y)− f(x, y)‖L2(R6) → 0, n → ∞
by means of our assumptions. We express


‖HU, V (un(x, y)− u(x, y))‖2L2(R6) = ‖∇(un(x, y)− u(x, y))‖2L2(R6)+


+


∫


R6


V (x)|un(x, y)− u(x, y)|2dxdy +
∫


R6


U(y)|un(x, y)− u(x, y)|2dxdy


with the bounded scalar potentialsV (x) andU(y) due to Assumption 1. Thus, in
the identity above the left side along with the second and thelast term in the right
side tend to zero asn → ∞. This yields that∇un(x, y) → ∇u(x, y) in L2(R6) as
n → ∞, such thatun(x, y) → u(x, y) in H1(R6) asn → ∞ as well.


In the case a) problems (1.2) and (1.11) have unique solutionsu(x, y), un(x, y)
belonging toH1(R6) respectively withn ∈ N by virtue of the part a) of Theo-
rem 2 above. Let us apply the generalized Fourier transform (1.9) to both sides of
equations (1.2) and (1.11). This yields


˜̃u(k, q) =
˜̃
f(k, q)
√


k2 + q2
, ˜̃un(k, q) =


˜̃
fn(k, q)
√


k2 + q2
, n ∈ N.
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Thus ˜̃un(k, q)− ˜̃u(k, q) can be written as


˜̃
fn(k, q)− ˜̃


f(k, q)
√


k2 + q2
χ{√


k2+q2≤1
} +


˜̃
fn(k, q)− ˜̃


f(k, q)
√


k2 + q2
χ{√


k2+q2>1
}. (2.24)


Evidently, the second term in (2.24) can be easily bounded from above in the abso-


lute value by| ˜̃fn(k, q)− ˜̃
f(k, q)|, such that


∥


∥


∥


∥


∥


˜̃
fn(k, q)− ˜̃


f(k, q)
√


k2 + q2
χ{√


k2+q2>1
}


∥


∥


∥


∥


∥


L2(R6)


≤ ‖fn(x, y)− f(x, y)‖L2(R6) → 0


asn → ∞ due to the one of our assumptions. We estimate the first term in(2.24)
from above in the absolute value by means of the Corollary 2.2of [21] by


1


(2π)3
1


1− I(V )


1


1− I(U)
‖fn(x, y)− f(x, y)‖L1(R6)


χ{√
k2+q2≤1


}


√


k2 + q2
,


such that
∥


∥


∥


∥


∥


˜̃
fn(k, q)− ˜̃


f(k, q)
√


k2 + q2
χ{√


k2+q2≤1
}


∥


∥


∥


∥


∥


L2(R6)


≤


≤ 1


(2π)3
1


1− I(V )


1


1− I(U)
‖fn(x, y)− f(x, y)‖L1(R6)


√


|S6|
2


→ 0, n → ∞


according to the one of our assumptions. Therefore,un(x, y) → u(x, y) in L2(R6)
asn → ∞ in the case when the parametera = 0.


Then we proceed to the proof of the part b) of the theorem. For eachn ∈ N


equation (1.11) admits a unique solutionun(x, y) ∈ H1(R6) by means of the result
of the part b) of Theorem 2 above. By virtue of (1.12) along with Corollary 2.2 of
[21], we estimate for(k, q) ∈ S6


a


|(f(x, y), ϕk(x)ηq(y))L2(R6)| = |(f(x, y)− fn(x, y), ϕk(x)ηq(y))L2(R6)| ≤


≤ 1


(2π)3
1


1− I(V )


1


1− I(U)
‖fn(x, y)− f(x, y)‖L1(R6) → 0, n → ∞.


Note that under our assumptionsfn(x, y) → f(x, y) in L1(R6) via the simple argu-
ment on p.114 of [26]. Hence, we obtain


(f(x, y), ϕk(x)ηq(y))L2(R6) = 0, (k, q) ∈ S6
a. (2.25)


Therefore, equation (1.2) admits a unique solutionu(x, y) ∈ H1(R6) due to the
result of the part b) of Theorem 2 above. We apply the generalized Fourier transform
(1.9) to both sides of problems (1.2) and (1.11). This gives us


˜̃un(k, q)− ˜̃u(k, q) =
˜̃
fn(k, q)− ˜̃


f(k, q)
√


k2 + q2 − a
χAδ


+
˜̃
fn(k, q)− ˜̃


f(k, q)
√


k2 + q2 − a
χAc


δ
(2.26)
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with the setAδ defined in (2.21). Clearly, the second term in the right side of (2.26)


can be bounded from above in the absolute value by
| ˜̃fn(k, q)− ˜̃


f(k, q)|
δ


, such that


∥


∥


∥


∥


∥


˜̃
fn(k, q)− ˜̃


f(k, q)
√


k2 + q2 − a
χAc


δ


∥


∥


∥


∥


∥


L2(R6)


≤ ‖fn(x, y)− f(x, y)‖L2(R6)


δ
→ 0, n → ∞


due to the one of our assumptions. Orthogonality conditions(1.12) and (2.25) yield


˜̃
f(a, σ) = 0,


˜̃
fn(a, σ) = 0, n ∈ N,


such that


˜̃
f(k, q) =


∫


√
k2+q2


a


∂
˜̃
f(s, σ)


∂s
ds,


˜̃
fn(k, q) =


∫


√
k2+q2


a


∂
˜̃
fn(s, σ)


∂s
ds, n ∈ N.


This enables us to write the first term in the right side of (2.26) as


∫


√
k2+q2


a


[


∂
˜̃
fn(s,σ)
∂s


− ∂
˜̃
f(s,σ)
∂s


]


ds
√


k2 + q2 − a
χAδ


. (2.27)


Obviously, (2.27) can be bounded from above in the absolute value by


‖(∇k +∇q)(
˜̃
fn(k, q)− ˜̃


f(k, q))‖L∞(R6)χAδ
.


This allows us to estimate theL2(R6) norm of (2.27) from above by


C‖(∇k +∇q)(
˜̃
fn(k, q)− ˜̃


f(k, q))‖L∞(R6) → 0, n → ∞


by means of the part a) of Lemma 5 of [26] under our assumptions. Therefore,
un(x, y) → u(x, y) in L2(R6) asn → ∞.


In the last section of the article we treat the situation whena free Laplace oper-
ator is added to the three dimensional Schrödinger operator.


3. Solvability in the sense of sequences with Laplacian and asingle potential


Proof of Theorem 4.Evidently, it is sufficient to solve problem (1.13) inL2(Rd+3),
since its square integrable solution will belong toH1(Rd+3) as well. Indeed, by
means of definition (1.14) it can be easily verified that‖LUu‖2L2(Rd+3)


is equal to


‖∇u‖2L2(Rd+3) +


∫


Rd+3


U(y)|u(x, y)|2dxdy, d ∈ N (3.28)
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whereu(x, y) is a square integrable solution of (1.13), the scalar potential function
U(y) is bounded due to Assumption 1 andφ(x, y) ∈ L2(Rd+3) by means of the
one of our assumptions. Then (3.28) implies that∇u(x, y) ∈ L2(Rd+3), such that
u(x, y) ∈ H1(Rd+3).


To establish the uniqueness of solutions for our equation, let us suppose that
(1.13) admits two square integrable solutionsu1(x, y) andu2(x, y). Then their dif-
ferencew(x, y) := u1(x, y)− u2(x, y) ∈ L2(Rd+3) is a solution of the equation


LUw = aw.


Since operator (1.14) does not have nontrivial square integrable eigenfunctions in
the whole space as mentioned above, we havew(x, y) = 0 a.e. inRd+3.


Let us first treat the case of our theorem whena = 0. We apply the generalized
Fourier transform (1.15) to both sides of equation (1.13). This yields


˜̂u(k, q) =
˜̂
φ(k, q)
√


k2 + q2
χ{√


k2+q2≤1
} +


˜̂
φ(k, q)
√


k2 + q2
χ{√


k2+q2>1
} (3.29)


with k ∈ R
d, q ∈ R


3. Clearly, the second term in (3.29) can be bounded from above


in the abosolute value by| ˜̂φ(k, q)| ∈ L2(Rd+3) due to the one of our assumptions.
Corollary 2.2 of [21] yields


| ˜̂φ(k, q)| ≤ 1


(2π)
d+3


2


1


1− I(u)
‖φ(x, y)‖L1(Rd+3),


such that the first term in (3.29) can be estimated from above in the abosolute value
by


1


(2π)
d+3


2


1


1− I(u)
‖φ(x, y)‖L1(Rd+3)


χ{√
k2+q2≤1


}


√


k2 + q2
.


This implies that
∥


∥


∥


∥


∥


˜̂
φ(k, q)
√


k2 + q2
χ{√


k2+q2≤1
}


∥


∥


∥


∥


∥


L2(Rd+3)


≤


≤ 1


(2π)
d+3


2


1


1− I(u)
‖φ(x, y)‖L1(Rd+3)


√


|Sd+3|
d+ 1


,


which is finite as assumed. Thus,u(x, y) ∈ L2(Rd+3) in the case of the theorem
whena = 0.


Let us conclude the proof by addressing the case b) of the theorem. Let us apply
the generalized Fourier transform (1.15) to both sides of problem (1.13) and derive


˜̂u(k, q) =
˜̂
φ(k, q)


√


k2 + q2 − a
.
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We introduce the set


Bδ := {(k, q) ∈ R
d+3 | a− δ ≤


√


k2 + q2 ≤ a+ δ}, 0 < δ < a. (3.30)


Hence


˜̂u(k, q) =
˜̂
φ(k, q)


√


k2 + q2 − a
χBδ


+
˜̂
φ(k, q)


√


k2 + q2 − a
χBc


δ
. (3.31)


Clearly, the second term in the right side of (3.31) can be estimated from above


in the absolute value by
| ˜̃φ(k, q)|


δ
∈ L2(Rd+3) due to the one of our assumptions.


Evidently, we have the representation


˜̂
φ(k, q) =


˜̂
f(a, σ) +


∫


√
k2+q2


a


∂
˜̂
φ(s, σ)


∂s
ds.


This allows us to express the first term in the right side of (3.31) as


˜̂
φ(a, σ)


√


k2 + q2 − a
χBδ


+


∫


√
k2+q2


a


∂
˜̃
φ(s,σ)
∂s


ds
√


k2 + q2 − a
χBδ


. (3.32)


Apparently, we have the upper bound for the second term in (3.32) from above in
the absolute value by


‖(∇k +∇q)
˜̂
φ(k, q)‖L∞(Rd+3)χBδ


∈ L2(Rd+3).


Note that under our assumptions(∇k +∇q)
˜̂
φ(k, q) ∈ L∞(Rd+3) via Lemma 12 of


[19]. It can be easily verified that, the first term in (3.32) issquare integrable if and


only if ˜̃
φ(a, σ) vanishes, which is equivalent to orthogonality relation (1.16).


We conclude the article with establishing the solvability in the sense of se-
quences for our problem in the case of a free Laplacian added to a three dimensional
Schrödinger operator.


Proof of Theorem 5.Supposeu(x, y) andun(x, y), n ∈ N are the unique solutions
of problems (1.13) and (1.17) inH1(Rd+3) with a ≥ 0 respectively and it is known
thatun(x, y) → u(x, y) in L2(Rd+3) asn → ∞. Then, it will can be shown that
un(x, y) → u(x, y) in H1(Rd+3) asn → ∞ as well. Indeed, from (1.13) and (1.17)
we easily obtain that


LU(un(x, y)− u(x, y)) = a(un(x, y)− u(x, y)) + [φn(x, y)− φ(x, y)].


Clearly, this yields


‖LU(un(x, y)− u(x, y))‖L2(Rd+3) ≤ a‖un(x, y)− u(x, y)‖L2(Rd+3)+
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+‖φn(x, y)− φ(x, y)‖L2(Rd+3) → 0, n → ∞
due to our assumptions. Let us express


‖LU(un(x, y)− u(x, y))‖2L2(Rd+3) = ‖∇(un(x, y)− u(x, y))‖2L2(Rd+3)+


+


∫


Rd+3


U(y)|un(x, y)− u(x, y)|2dxdy,


where the scalar potentialU(y) is bounded via Assumption 1. Hence, in the equality
above the left side along with the second term in the right side tend to zero as
n → ∞. This implies that∇un(x, y) → ∇u(x, y) in L2(Rd+3) asn → ∞, such
thatun(x, y) → u(x, y) in H1(Rd+3) asn → ∞ as well.


In the case a) (1.13) and (1.17) admit unique solutionsu(x, y), un(x, y) belong-
ing to H1(Rd+3) respectively withn ∈ N by means of the part a) of Theorem 4
above. We apply the generalized Fourier transform (1.15) toboth sides of problems
(1.13) and (1.17). This gives us


˜̂u(k, q) =
˜̂
φ(k, q)
√


k2 + q2
, ˜̃un(k, q) =


˜̂
φn(k, q)
√


k2 + q2
, n ∈ N.


Hence˜̂un(k, q)− ˜̂u(k, q) can be expressed as


˜̂
φn(k, q)− ˜̂


φ(k, q)
√


k2 + q2
χ{√


k2+q2≤1
} +


˜̂
φn(k, q)− ˜̃


φ(k, q)
√


k2 + q2
χ{√


k2+q2>1
}. (3.33)


Obviously, the second term in (3.33) can be trivially estimated from above in the


absolute value by| ˜̂φn(k, q)− ˜̂
φ(k, q)|, such that


∥


∥


∥


∥


∥


˜̂
φn(k, q)− ˜̂


φ(k, q)
√


k2 + q2
χ{√


k2+q2>1
}


∥


∥


∥


∥


∥


L2(Rd+3)


≤ ‖φn(x, y)− φ(x, y)‖L2(Rd+3) → 0


asn → ∞ via the one of our assumptions. Let us obtain the upper bound in the the
absolute value for the first term in (3.33) via the Corollary 2.2 of [21] by


1


(2π)
d+3


2


1


1− I(U)
‖φn(x, y)− φ(x, y)‖L1(Rd+3)


χ{√
k2+q2≤1


}


√


k2 + q2
,


such that
∥


∥


∥


∥


∥


˜̂
φn(k, q)− ˜̂


f(k, q)
√


k2 + q2
χ{√


k2+q2≤1
}


∥


∥


∥


∥


∥


L2(Rd+3)


≤


≤ 1


(2π)
d+3


2


1


1− I(U)
‖φn(x, y)− φ(x, y)‖L1(Rd+3)


√


|Sd+3|
d+ 1


→ 0, n → ∞
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via the one of our assumptions. Therefore,un(x, y) → u(x, y) in L2(Rd+3) as
n → ∞ when the parametera = 0.


Finally, let us proceed to the proof of the part b) of the theorem. For eachn ∈ N


problem (1.17) has a unique solutionun(x, y) ∈ H1(Rd+3) via the result of the part
b) of Theorem 4 above. By means of (1.16) along with Corollary2.2 of [21], we
estimate for(k, q) ∈ Sd+3


a


∣


∣


∣


∣


∣


(φ(x, y),
eikx


(2π)
d
2


ηq(y))L2(Rd+3)


∣


∣


∣


∣


∣


=


∣


∣


∣


∣


∣


(φ(x, y)− φn(x, y),
eikx


(2π)
d
2


ηq(y))L2(Rd+3)


∣


∣


∣


∣


∣


≤


≤ 1


(2π)
d+3


2


1


1− I(U)
‖φn(x, y)− φ(x, y)‖L1(Rd+3) → 0, n → ∞.


Note that under our assumptionsφn(x, y) → φ(x, y) inL1(Rd+3) via the elementary
argument on p.116 of [26]. Thus, we arrive at


(


φ(x, y),
eikx


(2π)
d
2


ηq(y)


)


L2(Rd+3)


= 0, (k, q) ∈ Sd+3
a . (3.34)


Therefore, problem (1.13) has a unique solutionu(x, y) ∈ H1(Rd+3) via the result
of the part b) of Theorem 4 above. Let us apply the generalizedFourier transform
(1.15) to both sides of equations (1.13) and (1.17). This yields


˜̂un(k, q)− ˜̂u(k, q) =
˜̂
φn(k, q)− ˜̂


φ(k, q)
√


k2 + q2 − a
χBδ


+
˜̂
φn(k, q)− ˜̃


φ(k, q)
√


k2 + q2 − a
χBc


δ
(3.35)


with the setBδ defined in (3.30). Evidently, the second term in the right side of


(3.35) can be estimated from above in the absolute value by
| ˜̂φn(k, q)− ˜̂


φ(k, q)|
δ


,


such that
∥


∥


∥


∥


∥


˜̂
φn(k, q)− ˜̂


φ(k, q)
√


k2 + q2 − a
χBc


δ


∥


∥


∥


∥


∥


L2(Rd+3)


≤
‖φn(x, y)− φ(x, y)‖L2(Rd+3)


δ
→ 0, n → ∞


due to the one of our assumptions. Orthogonality relations (1.16) and (3.34) imply
that


˜̂
φ(a, σ) = 0,


˜̂
φn(a, σ) = 0, n ∈ N,


such that


˜̂
φ(k, q) =


∫


√
k2+q2


a


∂
˜̂
φ(s, σ)


∂s
ds,


˜̂
φn(k, q) =


∫


√
k2+q2


a


∂
˜̂
fn(s, σ)


∂s
ds, n ∈ N.
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This allows us to express the first term in the right side of (3.35) as


∫


√
k2+q2


a


[


∂
˜̂
φn(s,σ)
∂s


− ∂
˜̂
φ(s,σ)
∂s


]


ds
√


k2 + q2 − a
χBδ


. (3.36)


Apparently, (3.36) can be bounded from above in the absolutevalue by


‖(∇k +∇q)(
˜̂
n̂(k, q)− ˜̂


φ(k, q))‖L∞(Rd+3)χBδ
,


which us to estimate theL2(Rd+3) norm of (3.36) from above by


C‖(∇k +∇q)(
˜̂
φn(k, q)− ˜̂


φ(k, q))‖L∞(Rd+3) → 0, n → ∞


by virtue of the part b) of Lemma 5 of [26] under the given assumptions. This
proves thatun(x, y) → u(x, y) in L2(Rd+3) asn → ∞.
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