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Abstract


Forced to be flat when nonsingularly described by the equations of general relativity
in a synchronous frame, a region outside matter sources is recognized to fail in defining
space-time curvature consistently with the material nature of the Lorentz transformation.
The curvature then extends to such a region only when there is a continuous background
medium there. Arising from vacuum decay in the universe, as any matter, this medium
is thus capable of avoiding the singularity of gravitational collapse as well. The theory
of general relativity is then suggested to stem from such a formulation of the generalized
postulate of relativity as also includes the covariance of energy-momentum conservation
for a macroscopically continuous material system, namely the universe. Implying identity
between gravitation and inertia, this formulation does not need the principle of equiva-
lence as a separate postulate. The Einstein tensor is thus interpretable as standing for
the energy-momentum of the gravitational field. In terms of the background medium, its
small-amplitude approximation underlain by matter dynamics and phase transitions also
describes what is viewable as gravitational waves. In the framework of such a macroscopic
interpretation, gravitation ought to be irrelevant to purely microscopic interactions.


1 Introduction


Ever since the theory of general relativity was completed [1, 2], its commonly recognized
aesthetic and conceptual appeal has been vitiated by mathematical issues whose implied po-
tential resolutions have been far short of the high scientific standard otherwise suggested by
this theory. Disapproved by Levi-Civita [3] and Lorentz [4] practically immediately after the
final version of the Einstein field equations emerged, the pseudotensorial character of energy-
momentum conservation formulated in [1, 2] is one of these issues. A source of concern for
other scientists as well [5, 6, 7], the viability of such a formulation has still been defended by
its author with his conceptual interpretations [7, 8, 9, 10, 11].


Einstein’s treatment of the issue of energy-momentum conservation has then become largely
accepted [7, 11, 12, 13, 14, 15]. It has typically been attributed to what is construed as a princi-
pal nonlocalizability of gravitational energy-momentum resulting from local application of the
equivalence principle [12, 16] in the absence of a natural background space-time structure [15].
Such a perspective has thus also lead either to other suggestions of the same kind [16, 17, 18, 19,
20] or to other ambiguities when strategies to avoid pseudotensors were adopted [16, 18, 20].
Implying the existence of a curved empty space-time, however, the equivalence principle [21]
is just a heuristic hypothesis based on such an aspect of gravity as independence of the grav-
itationally caused acceleration of the accelerated mass. The concept of energy-momentum
conservation then looks much more general and fundamental than such a phenomenologically
postulated relation between gravitation and inertia as the equivalence principle [22].
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Without later observational discoveries, in particular, introduction of the equivalence prin-
ciple to explain gravitation has also been motivated by the associated extension of the original
principle of relativity to noninertial reference frames [13, 16, 18, 19, 21]. Thus referred to as
the generalized principle of relativity, this extension is what actually underlies the invariance
of the Einstein field equations. Initially distinguished by humans, however, such a concept as
frame noninertiality could hardly affect the phenomena occurring in nature. From this perspec-
tive, the existence of a mathematical description of all these phenomena that is independent
of any reference frame would a priori have to be legitimately anticipated. Unfeasibility of
the corresponding covariant description in gravitation for such an otherwise universally estab-
lished concept as energy-momentum conservation could thus suggest inconsistency of the whole
logical construction leading from the equivalence postulate to the theory of general relativity.


In contrast to other gravity theories of space-time curvature, in addition, general relativity
is actually expected to be characterized by a so-called strong equivalence principle [19, 23, 24,
25, 26]. Consistent with the generalized principle of relativity and upheld by current theoretical
and observational research [23, 24, 26], however, this version of the equivalence principle still
goes beyond what has originally been suggested by Einstein [21, 25]. Were the theory of general
relativity to arise directly from an independently postulated generalization of the principle of
relativity, this theory might also have a covariant energy-momentum conservation law. It could
then imply validity of the strong equivalence principle as well. Explanation of gravitation in
terms of such related natural postulates as the generalized principle of relativity and covariant
energy-momentum conservation would thus seem to be conceptually much more preferable
compared to the combination of the former with a version of the equivalence principle.


Another mathematical issue has emerged in general relativity since a dynamical nature of
the universe was derived from this theory by Friedmann [27] and observationally confirmed by
Hubble [28, 29]. When extrapolated backwards in time, such a dynamics of the universe has
appeared to suggest the existence of a so-called cosmological singularity, which is associated
with the initially infinite matter density [12, 15, 17, 19, 29, 30]. Under certain restrictions on the
motion of matter, a singular behavior of the Einstein field equations themselves has also been
discovered later [17, 31, 32], apart from what had been broadly noted prior to this by Einstein
himself [33]. Such a behavior has then been generally established as well [34, 35, 36]. Typically
viewed to be unacceptable for description of nature, singularities have thus still been admitted
as a true physical element of general relativity under seemingly plausible assumptions [37].


In a recent work by the present author [38], however, a cosmological scenario rigorously
avoiding the Friedmann initial singularity on account of a sufficiently general consideration of
the equation of state for matter is reported. The present study is conceptually founded on such
a resolvability of the other singularity problems as well. It utilizes both certain observational
discoveries of several recent decades [29] and their general theoretical framework suggested in
[38]. An interpretation of the theory of general relativity and its manifestations that does arise
directly from the generalized principle of relativity and covariant energy-momentum conser-
vation is thus exposed herein. In agreement with the strong equivalence between gravitation
and inertia, this interpretation is not underlain by an equivalence postulate. The conservation
law originally proposed by Levi-Civita [3] and Lorentz [4] is then specifically reexamined in
terms of the suggested interpretation. Despite seemingly legitimate objections to that proposal
[11, 13, 14, 17], it is eventually found to be principally consistent both with what is generally
expected from energy-momentum conservation and with what is known about gravitation.


2 Background


The key outcome of the theory of general relativity is the Einstein field equations:


Gij = κTij ⇐⇒ Rij = κ(Tij −
1


2
gijT ). (1)
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Here gij, Rij, and Gij ≡ Rij−(1/2)gijR are the metric, Ricci, and Einstein tensors, respectively,
Tij is the matter energy-momentum tensor, i, j = 0, 1, 2, 3 (as all Latin indices are assumed
hereafter), T ≡ T ii , R ≡ Ri


i (= −κT ) is the Ricci scalar curvature, the sign conventions used
in [17] are adopted herein, and κ = 8πG/c4 is the Einstein constant, where G is the Newton
constant and c is the speed of light. As discussed in [38], the Einstein field equations without
explicit identification of the so-called cosmological constant could generally be used when all
phases of matter are allowed for. The vacuum phase of matter is thus also included (by Tij)
in Eqs. (1). Its existence has originally been postulated in [39].


In the absence of matter, Tij = 0, Eqs. (1) reduce to


Rij = 0. (2)


However, Eqs. (2) are still conventionally viewed as insufficient for the flatness of space-time.
The latter property is identified by vanishing of the Riemann tensor [12, 13, 15, 17, 18, 19]:


Rkilj = 0. (3)


A nonvanishing space-time curvature when Rkilj 6= 0 is thus expected to be principally
sustainable even when the entire space-time is empty. Such a space-time curvature would
have to imply a nonzero energy-momentum for the field of gravitation. The latter is then
interpreted as the source of itself. Construed in terms of general relativity, our experience may
also be viewed to suggest that the curvature is present when Eqs. (2) hold near a spatially
compact gravity source. This could be seen [14, 17] as contradicting the interpretation of Gij/κ
in Eqs. (1) as the gravitation energy-momentum tensor [3, 4]. Another argument in [14, 17]
against this interpretation of Gij/κ is discussed in Sec. 5.1, whereas objections of a largely
philosophical nature raised in this context by Einstein [11, 13] are considered in Sec. 5.2.


3 Nonsingular general relativity


3.1 Generally nonsingular gravitational collapse


From the present perspective, the main message of Ref. [38] is that a singularity resulting from
the attractive gravitation of matter could be eliminated when temperature is also allowed for
in the matter equation of state. In the Friedmann equations, in particular, the (large-scale)
temperature happens to be implicitly present automatically. It is represented in terms of the
scale factor. The singularity is thus avoided when the equation of state is generally permitted
to vary with the latter parameter [38]. This is due to a (temperature-dependent) transition
from matter to its vacuum phase [39] suggested by the Friedmann equations at the extreme
temperatures characterizing a vicinity of the universe initial state. Such a phase transition cir-
cumvents the strong energy condition required by the singularity theorems [15, 34, 35, 36, 37].


Since the vacuum phase thus has to be a high-temperature origin for all the matter of a con-
ventional phase existing in the universe [38], however, the above message could be consistently
generalized to the Einstein field equations themselves. One would then have to anticipate an
analogous phase-transition mechanism to become relevant at the extreme temperature condi-
tions usually expected to characterize a vicinity of the final state of any matter gravitational
collapse [40]. In particular, possibilities relevant to such a generalization in the context of black
holes have been discussed in [41]. Although the Schwarzschild black hole singularity arises at
a point, for example, it results from the gravitational collapse of a macroscopic object. It thus
has to be precluded in the framework of such a macroscopic theory as general relativity.


The dependence of a matter equation of state on temperature still generally makes the
number of unknowns in the Einstein field equations larger than the number of equations for the
tensor components. In principle, however, this is expected to be remediable with an additional
equation representing temperature dependence on the gravitationally caused matter motion.
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3.2 Nonsingular empty space-time


Under the strong energy condition [15, 34, 35, 36, 37], a singularity could however arise in an
empty space-time as well [37, 42]. The cosmological singularity when the space-time is empty
has in fact been a major element of the corresponding theoretical research [30]. The mechanism
of avoiding gravitational-collapse singularities discussed in Sec. 3.1 thus appears to be irrele-
vant. The empty space-time might then have to only stay flat to avoid its singularity [43, 44].


Generally constructible near a hypersurface of constant time [12, 15, 17, 19, 30, 32, 36, 37,
45, 46], the synchronous frame ought to be suitable for deriving invariant space-time properties.
The empty space-time in such a frame thus indeed gives rise to a singularity [17, 30, 32]. This
is seen from


−R0
0 =


1


2


∂χαα
∂t


+
1


4
χβαχ


α
β = 0, (4)


where χαβ ≡ −∂gαβ/∂t, gαβ with α, β = 1, 2, 3 (as assumed for all Greek indices hereafter) is
the spatial part of gij, χ


β
α ≡ −gβγχαγ, and t is the time. Upon using [17] scalar inequality


χβαχ
α
β ≥


1


3
(χαα)2, (5)


which is obvious when χβα turns diagonal with the coordinate transformation, one obtains


∂χαα
∂t


+
1


6
(χαα)2 ≤ 0⇐⇒ ∂


∂t
(


1


χαα
) ≥ 1


6
. (6)


When χαα 6= 0, χαα = [∂(−g)/∂t]/(−g) = −[∂(−g−1)/∂t]/(−g−1) in inequality (6) thus turns
infinite with either g ≡ det (gij) = det (gαβ) = 0 or g−1 = det (gij) = det (gαβ) = 0 within
a finite time interval [17, 30, 32]. In particular, [∂(−g)/∂t]/(−g) → ±∞ when either g → 0
or ∂(−g)/∂t → ±∞ ⇒ g → ∞ ⇔ g−1 → 0. Likewise, −[∂(−g−1)/∂t]/(−g−1) → ±∞ when
either g−1 → 0 or ∂(−g−1)/∂t → ∓∞ ⇒ g−1 →∞ ⇔ g → 0.


The above behavior has still been commonly attributed only to such a property of syn-
chronous coordinates as (caustic) intersection of their geodesically identified time lines [15, 17,
36, 37]. When the space-time is empty, however, such coordinates could not be rendered irrele-
vant by a matter pressure. Unrestrictedly constructible, they persist then as comoving [17, 47]
up until the singularity is reached. The invariance of g thus ought to suggest the existence of a
universal physical feature of space-time itself underlying their singular behavior. (Focusing of
hypersurface-orthogonal time-like geodesics in a curved empty space-time is in fact described
invariantly by the Raychaudhuri equation as well [15, 31, 36, 37], although such a description
also implies the relevance of synchronous coordinates.) This feature is discussed in Sec. 3.3.


In the synchronous frame, however, the singularity could be avoided only when χαα = 0.
Since dl2 = −gαβdxαdxβ = −gαβdxαdxβ is then the square of a spatial interval, both gαβ and
gαβ also have to be at least negative semidefinite. Without their singularities, when g 6= 0 and
g−1 6= 0, they could not have a zero eigenvalue and so are actually negative definite. Eq. (4)
(with χαα = 0) thus implies that all χαβ = χαβ = 0, for their components then arise from those
of a respective vector that has to be zero (for g 6= 0 and g−1 6= 0).


(When space-time is filled with a perfect fluid whose energy-momentum tensor meets the
strong energy condition, the above formalism still applies and leads to Tij = 0 [32]. This
contradiction is avoided if the synchronous frame is rendered physically unrealizable by pressure
gradients arising in the fluid [17, 48] and if the fluid phase transition to vacuum is allowed for.)


As also highlighted in [17, 32], however, the Ricci and Riemann tensors defined with gαβ on
hypersurfaces of a constant time, Pαβ and Pγασβ, respectively, differ from their four-dimensional
(4D) counterparts only by terms that vanish with χαβ = 0. Since Pαβ = 0 ⇐⇒ Pγασβ = 0
generally holds, the existence of such a stationary reference frame as the synchronous one with
χαβ = 0 is thus found to be sufficient for the empty space-time to be flat [17, 32, 45, 49]. The
above singularity is then eliminated only when there holds equivalence relation


Rij = 0⇐⇒ Rkilj = 0, (7)
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whose underlying tensor equalities accentuate its validity independently of the reference frame.
This relation is thus what ought to generally identify a nonsingular empty space-time. Since
inequality (5) is key for arriving at (7), however, so is the nonlinearity of the Ricci tensor.


Strengthening [33], flatness is proved in [45] for a stationary space-time outside matter
sources that becomes asymptotically flat faster than in the Newtonian gravity. As the outside
flatness is suggested above to be generally enforceable, however, this proof in [45] is actually also
eventually underlain by reduction of the stationary space-time to that in a synchronous frame.
This reduction is permitted due to implications of the Hopf maximum-principle theorem.


Although test time-like trajectories arising from different points of a space-like hypersurface
may intersect even in flat space-time, such an intersection has to come from their distinct initial
directions. These intersecting trajectories do not thus actually qualify as time-like geodesics.
Since such respective geodesics have to be parallel in flat space-time, their invariantly-described
focusing has to suggest the presence of a Riemann curvature [50]. Also staying intact in terms
of the comoving coordinates, such an irrotational focusing for empty space-time could not
then be dismissed just as a failure of the synchronous frame [15, 17, 36, 37]. In particular, its
elimination above does formally lead to flat empty space-time with no focusing geodesics.


3.3 Reinterpretation of relevant theoretical findings


When no matter at all is present in the entire space-time, relation (7) simply suggests that
the space-time singularity prohibits a gravitational energy-momentum to be the only source
of itself. Since the boundary between matter and the nearby empty space-time is defined
invariantly, however, the outcome of Sec. 3.2 above has to be applicable to a 4D region outside
conventional sources of gravitation as well. The gravitational field could not then extend
beyond the boundaries of its material sources with the ambient space-time.


Without the interpretation emphasized herein below, such a curious mathematical property
has been discussed only for a lower-dimensional (2 + 1) general relativity [51]. Its validity
there is not underlain by a singularity of empty space-time. (In the 4D general relativity, an
analogous piecewise flat model has then been suggested and discussed in [52]. In an admittedly
curved empty space-time, concurrence of the 4D regions of nonzero energy-momentum for
gravitation and matter has also been discussed [53] as a hypothesis questioning reality of the
energy transfer by gravitational waves predicted for a binary pulsar [15, 24, 26, 54, 55].) Apart
from the existence of gravitational waves [9, 12, 15, 17, 18, 19, 24, 26, 42, 44, 54, 55, 56, 57, 58,
59, 60], the apparent curvature discontinuity at the source boundary in a real, 4D, space-time
thus simply appears to perspicuously contradict the associated elementary experience.


In particular, the conclusions of Sec. 3.2 also have to apply to the space-time around a
Schwarzschild mass [12, 13, 15, 17, 18, 19]. A transitional process with which such a space-time
reaches its (static) Schwarzschild metric would indeed be inevitable when one arrow of time is
dominant. The Birkhoff theorem [12, 17, 18, 19, 35, 61] then also suggests that such a transition
has to be spherically asymmetric. It ought to typically result from asymmetric initial condi-
tions. These could arise when a spherically symmetric source has asymmetric surroundings
or forms out of an asymmetric origin, as say in the recent observations of gravitational waves
[59]. In a synchronous frame, however, such a transitional process would have to formally take
an infinite time. Since the singularity then arises within a finite time, the outside space-time
flatness is thus enforced despite the mathematical existence of the nonflat static metric.


The conclusions of Sec. 3.2 have to apply even to a hypothetical situation when a finite
Schwarzschild mass alone grows out of nothing while its spherical symmetry is ever main-
tained. The Birkhoff theorem then still implies that this process could give rise to the (static)
Schwarzschild metric only with a spherically asymmetric transition. When the ambient space-
time is empty, however, there is literally no perturbation from which such a transient asym-
metry could arise. When this space-time is assumed to be originally flat, therefore, it would
have to remain such even after the (symmetric) formation of a finite Schwarzschild source.
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In special relativity, however, the Lorentz transformation of space and time intervals with
respect to a moving inertial frame applies only when such intervals are materially defined. For
the extended range of all reference frames in general relativity, the concept of local space-time
curvature thus also ought to be physically meaningful only within a macroscopically continuous
(in space and time) medium whose background presence would be implied [62, 63]. The above
seemingly paradoxical inferences would then have to be attributed to the absence of such
a medium in a truly empty space-time region. Matter is thus viewable as both a source of
space-time curvature and a facility due to which such a curvature acquires a physical definition.


From a purely mathematical perspective, one can still formally obtain nonflat exact solu-
tions of the Einstein field equations for an empty space-time region. Apart from the Schwarzschild
metric, for example, such solutions have been extensively discussed in the past in the context
of gravitational waves [18, 42, 44, 55, 56, 58]. To be principally measurable, however, these
solutions ought to imply the existence of a medium due to which their nonflat metrics could
actually be manifested. It is the requirement of physical meaningfulness for mathematical
variables, suggested by the singularity of empty space-time, that generally eliminates what
might be seen as a contradiction between the mathematical existence of nonflat solutions for
empty space-time and the respective space-time flatness inferred in Sec. 3.2.


In Sec. 3.2, the singularity highlighting what has just been emphasized arises from non-
linearity of the Einstein field equations. Singularities in whose context reality of gravitational
waves has repeatedly been discussed were also found to come from nonlinearities of these equa-
tions [18, 42, 43, 44, 55, 56]. The issue of physical identification for space-time curvature is still
more general and fundamental than a specific cause thus suggested for any of such singulari-
ties. Independent of the frame of reference, this issue implies no privilege for the synchronous
frame either. Due to the physical nature of its construction, however, such a frame relates
the singularity of an empty space-time region to the flatness of this region in terms of the
respective invariant descriptions. Always constructible and stably comoving in such an empty
region [17, 47], it thus happens to be endowed with the capacity of exposing how space-time
flatness generally results from the lack of physical meaning for the respective curvature.


Within matter, in particular, the focusing of geodesics arising orthogonally from a space-like
hypersurface is physically meaningful. When pressure gradients form with the radiation phase,
however, it ceases to apply to matter motion [17, 48]. Under yet certain conditions [15, 34, 35,
36, 37], as suggested in Sec. 3.1, transition to the vacuum phase of matter would also prevent
the singularity of gravitational collapse for a conventional matter phase. If such geodesics are
still theoretically constructed in a curved empty space-time, the resulting singularity is thus
made unavoidable. This contradiction signals the lack of physical meaning for the space-time
curvature in such an empty region. Forced to be invariantly flat once the above geodesics have
given rise to a synchronous frame, the nonsingular empty space-time then renders the geodesics
parallel to avoid their focusing. This also eliminates the contradiction. Generally definable
with such geodesics, the synchronous frame thus has just a natural physical mechanism of
generating the singular behavior and thereby enforcing space-time flatness exactly when the
respective curvature would fundamentally have to be physically unrealizable in any frame.


3.4 Manifestation of the gravitation phenomenon


Even bar the mathematical inferences in Sec. 3.2, therefore, the entirely empty space-time still
has to be flat due to the lack of physical meaning for space-time curvature without matter. The
empty space-time area outside a material source of gravitation also has no physically identified
local curvature to be related to that within the source itself. Manifested in this failure of
space-time curvature to extend beyond such a gravity source, a curvature discontinuity thus
has to arise at the source boundary. Whether in our experience or ever since the very beginning
of the universe, however, gravitation seems to have never been such as would observationally
or theoretically be required to take place in a truly empty space-time region.
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What ought to have ever filled space-time to define its curvature is a medium arising from
vacuum decay in the universe [38]. This medium then has to consist of the decaying vacuum
itself and a macroscopically continuous product of the decay. Thus required to have equal
amounts of matter and antimatter and a nonzero pressure, such a product whose existence is
already established is Cosmic Microwave Background Radiation (CMBR) [40]. CMBR then
defines space intervals. Time intervals are thus identified by such interrelated processes as
cosmic-vacuum decay and the vacuum-driven CMBR spatial expansion. Characterized by
increasing entropy [64], these processes are representative of the second law of thermodynamics.


Expansion of the spatially flat universe [38] would have to continue to infinite values of the
scale factor [65]. At least one of the above components, CMBR, should still be present in such
a universe till the very end of the expansion process. Having a locally negligible gravitational
density, as in the present universe, the combination of CMBR with decaying vacuum at the final
stages of vacuum decay would then be ideally suitable for the role of the background medium.
In particular, such a medium would not require a discernible quantitative modification of any
of the predictions of general relativity formally obtained for the truly empty space-time region
when the singularity there (discussed in Sec. 3.2) is ignored. By eliminating that singularity
of empty space-time, however, this medium permits the space-time filled with it to actually
curve according to such predictions for other (more substantial) energy-momentum sources.
As suggested in Sec. 3.1, its possible transition from CMBR to the vacuum phase also allows
to avoid a singularity of the medium gravitational collapse. Such a phase transition could then
arrest a gravitational collapse of the other matter sources of space-time curvature as well.


The macroscopic nature of general relativity is thus essential for the gravity manifestations
described by this theory. What is viewed as a point source, therefore, actually has to be itself a
macroscopic object with the own internal structure, although it is often described on a yet larger
macroscopic scale as a δ-function. Gravitation thus ought to be absent in ideally microscopic
processes [66, 67], for no medium exists in such processes to define curvature of the ambient
space-time. Identified by the background medium, gravitational waves then have to be physi-
cally analogous to waves of a hydrodynamic nature rather than to electromagnetic radiation.


As an ”ether” for defining and transmitting space-time curvature [63], the background
medium could thus continuously extend the gravitational field beyond the main spatially com-
pact field sources. This is additionally discussed in Sec. 5.1. Despite the apparent contradiction
outlined in the end of Sec. 2, therefore, the outcome of Sec. 3.2 might imply that Gij/κ in Eqs.
(1) is indeed the energy-momentum tensor for gravitation [3, 4]. In the presence of background
medium, such a view would not disagree with our experience. Standardly rederived in Sec.
4.2, this energy-momentum tensor is then discussed in Sec. 5. Before the derivation, how-
ever, gravitation is discussed in Sec. 4.1 in terms of covariance of the total energy-momentum
conservation, which is thus interpreted to underlie this phenomenon in general relativity.


4 Generalized energy-momentum conservation


4.1 The principle of relativity and energy-momentum conservation


As mentioned above, the absence of a cosmological term other than that arising from a decaying
vacuum phase in the matter energy-momentum tensor is assumed in Eqs. (1). This is suggested
by the scenario of universe evolution derived in [38]. Without matter, Eqs. (1) are thus satisfied
by flat space-time, which is also their only nonsingular solution then.


Let us consider a material subsystem that is a part of such a larger total system as has
a background medium around the subsystem. Capable of transmitting space-time curvature,
this medium by itself is assumed to have negligible effects on such a curvature. Such an overall
finite system could stand for a spatially compact matter source filled with the background
medium around one or more of its smaller subsources in an otherwise flat empty space-time.
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The system could however also cover an open infinite space-time with say a spatially compact
gravity source surrounded by the background medium with or without other such sources [68].


In an inertial frame without gravitation, energy-momentum conservation for the above
subsystem is due to the homogeneity of its flat space-time [16, 69, 70]. A subsystem like this
could arise say from such a small energy density [71] of matter as just defines a reference
frame when other system gravity sources are absent. As also the background medium of the
overall system, such a subsystem would thus have a negligible gravitational effect on space-
time curvature while being relevant to nongravitational interactions. Upon its transition to a
noninertial frame, however, the space-time homogeneity is lost. In particular, this is illustrated
by v2/c2 (v is the subsystem relative velocity) in the Lorentz transform of space-time intervals.
Defined by matter alone, this magnitude would cease being constant in a noninertial frame.


However, the transition to a noninertial frame is meaningful only when there exists an
external material source within the overall system due to which the frame noninertiality could
be defined [72]. This transition is also accomplishable only on account of an additional energy-
momentum gradient associated with such a source. Unlike a constant energy-momentum shift
for switching between two inertial frames, therefore, this additional gradient inevitably becomes
a part of the differential balance for energy-momentum conservation in the system. It would
thus have to be allowed for by formulation of the generalized principle of relativity, i.e. when
the principle of relativity applied to inertial reference frames is extended to noninertial ones.


When the nature of frame noninertiality is due to a conventionally nongravitational in-
teraction, the system energy-momentum conservation is admittedly maintained. The energy-
momentum gradient associated with the space-time inhomogeneity affecting the subsystem is
then offset by the gradient of energy-momentum for the external matter by interaction with
which the subsystem noninertiality arises. The rate of energy-momentum change characterizing
this interaction with the subsystem could thus in principle be of any magnitude. (In particular,
such an energy-momentum conservation is often viewed as the third law of Newton.)


In terms of energy-momentum conservation for the system as a whole, however, nonin-
ertiality of the subsystem is actually permitted even without nongravitational interactions.
In particular, such a subsystem noninertial motion still has to be defined by the existence
of an outside matter source. The energy-momentum gradient for the underlying (noninertial)
space-time curvature could then be offset merely by the gradient of material energy-momentum
arising from this external source. Although the background medium defines a relatively nonin-
ertial space-time curvature, it could not be the matter source responsible for energy-momentum
balance in the presence of this curvature. Such an energy-momentum source thus has to be an
element of the total system other than the background medium surrounding the subsystem.


Due to its very presence, therefore, an outside source permits the existence of a noninertial
frame for the subsystem at the expense of the matter energy-momentum gradients generated by
this source [72]. Such a reference frame thus ought to be allowed for by a frame-independent de-
scription. Once the subsystem density [71] has ceased being gravitationally negligible, however,
its energy-momentum would likewise determine the frame space-time curvature specifying the
relative acceleration of the outside matter [73]. This attributes gravitation to such a relative
noninertial space-time curvature as results from the very existence of a conventionally noninter-
acting matter, by which the noninertiality is defined, within a material system and the overall
energy-momentum conservation in this system being maintained for any reference frame.


Gravitation is thus interpretable in terms of generalization of the concept of energy-
momentum conservation to noninertial reference frames. This concept is particularly relevant
when substantial energy sources in a matter system to which it is applied are connected only
by a gravitationally negligible medium that allows their noninertial space-time curvature to
form with respect to each other. Since such a curvature is then defined by a matter-generated
frame, as suggested by the generalized principle of relativity, its matter-related dynamics ought
to be described invariantly. Obtained by variation of the total action in the components of the
metric tensor, this description is due to the Einstein field equations [12, 13, 15, 17, 18, 19].
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The (generalized) principle of relativity is thus a fundamental postulate, as in the special
relativity theory for inertial frames. Consistent with the strong equivalence principle [19, 23, 24,
25, 26], as suggested by the above discussion in terms of inertial effects alone, this interpretation
does not need such a principle as a separate postulate. Since the equivalence postulate is often
viewed as contradicting the localizability of gravitational energy-momentum [12, 16], however,
elimination of this postulate in the presence of inertial-frame flat space-time background [15]
has to permit the local energy-momentum conservation to be covariantly maintained.


4.2 Reinterpretation of standard formalism


Describing interaction between two matter fields arising together from the flat background of
empty space-time, Eqs. (1) thus have to covariantly stand for the total energy-momentum con-
servation. That flat space-time is seen from Sec. 3.2 to be the only nonsingular solution of these
equations without matter is then a posteriori consistent with such interpretation of Eqs. (1).
In this nonsingular framework, the metric tensor also defines a purely dynamical variable [15].
In terms of such a variable, space-time curvature underlying the energy-momentum for gravi-
tation is identified as coming from frame noninertialities within the respective macroscopically
continuous matter system. The formalism giving rise to the first Noether theorem [16, 69, 70]
then has to lead to a proper conservation law that is consistent with Eqs. (1). It still applies
solely when the matter and gravitational field actions are varied together, as is the only non-
singular option for them to nontrivially exist. Such total action is thus [12, 13, 15, 17, 18, 19]:


ST = − 1


2cκ


∫
Ω
R
√
−gdΩ +


1


c


∫
Ω


Λ
√
−gdΩ, (8)


where R and Λ are the Lagrangian densities for the mutually interacting material fields of
noninertial space-time curvature and matter itself, respectively. Filled with matter, Ω is then
the curved integration area. It has coordinates xi and boundary ∂Ω.


In the present context, ST in Eq. (8) is invariant to infinitesimal translations of flat space-
time coordinates zi. The latter form four-vector z. Let ST thus undergo the variation under
such translations dzi ≡ εδzi for an infinitesimal ε. Coordinates xi of their four-vector x then
transform into the coordinates x


′i = xi+εξi+o(εδzi) of four-vector x
′
, where ξi ≡ (∂xi/∂zj)δzj


are the components of four-vector ξ. Such a coordinate translation is still identifiable by the
permitted coordinate transformation. For the contravariant metric tensor, this implies [74]:


g
′ij(x


′
) = g


′ij[x+ εξ + o(εδz)] = gkl(x)
∂x


′i


∂xk
∂x


′j


∂xl
= gij(x) + ε(gilξj,l + gjkξi,k) + o(εδz). (9)


Since matter is absent and space-time is flat beyond Ω, however, the integrands in Eq. (8)
vanish there. Arising when ST is varied, the integrals of divergence for their products with ξ
are therefore eliminated although ξ|∂Ω (= δz|∂Ω) 6= 0 is relevant to assume [75]. At the order
of ε, the variation of either integral in Eq. (8) resulting from the above translations is then
reduced to the integral of ordinary variation for the respective integrand alone [13]. Identical to
the Lie derivative [12, 15, 19] at this order, £−ξg


ij(x), such a variation of gij(x) thus becomes:


δgij(x) = g
′ij(x)− gij(x) = ε(−ξkgij,k + gikξj,k + gjkξi,k) + o(εδz) = ε(ξi;j + ξj;i) + o(εδz). (10)


Applying to ST in Eq. (8) the formalism typically used (say in [17, 19]) in the context of scalar
invariance of the matter action alone, one could obtain from the invariance of ST to the above
coordinate translations at the flat empty background (when space-time is flat outside Ω [75])
that ∫


Ω
(Gj


i − κT
j
i );jξ


i√−gdΩ = 0. (11)


Consistently with its definition in Eqs. (1), the Einstein tensor arises here as


Gij =
1√
−g


[
∂(R∗


√
−g)


∂gij
− ∂


∂xk
∂(R∗


√
−g)


∂gij,k
], (12)
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where R∗ is defined in terms of Christoffel symbols Γkij as


R∗ ≡ gij(ΓkilΓ
l
jk − ΓlijΓ


k
lk). (13)


R∗ thus stands for the terms in R with only first derivatives of gij, whereas the validity of√
−g(gikδΓlik − gilδΓkik) = 0 for the flat space-time beyond Ω naturally eliminates such terms


with the second derivatives [76]. The matter energy-momentum tensor is then defined as


Tij =
2√
−g


[
∂(Λ
√
−g)


∂gij
− ∂


∂xk
∂(Λ
√
−g)


∂gij,k
]. (14)


Since δz 6= 0 could be arbitrary at any z, ξi are also viewable as arbitrary. Eq. (11) thus
leads to


(Gj
i − κT


j
i );j = 0. (15)


Due to the contracted differential Bianchi identities, in particular, Eqs. (15) also imply


T ji;j = 0. (16)


Irrespective of their status for the conservation law, Eqs. (1) still arise with matter as
describing dynamics of the material field of relative space-time curvatures from the extremum
of ST . The latter is then varied in the metric tensor components as these (and their Christoffel
symbols) are fixed beyond Ω by the space-time flatness there. When uniquely derived from
both Eqs. (1) and (15), however,


(Gj
i − κT


j
i ),j = 0 (17)


are attributable to the background space-time flatness. Eqs. (17) thus covariantly express the
total energy-momentum conservation underlying Eqs. (1) as well. Gj


i/κ is then also what is
viewable as the energy-momentum tensor for gravitation [3, 4, 77, 78], i.e. for the tensor field
of materially defined space-time curvatures arising from the respective noninertial frames.


5 Summary and further discussion


5.1 The covariant conservation law in theory and observations


Viewed as a property of empty space-time, energy-momentum of the gravitational field has been
typically sought to be such as would turn Eqs. (16) into an ordinary divergence [16, 18]. Failing
to yield a unique tensorial representation, this has given rise to a multitude of pseudotensors
[16, 17, 18, 19, 20]. Identified up to an arbitrary term with vanishing ordinary divergence
[16, 18], the suggested pseudotensors have thus largely originated from the so-called canonical
expression for energy-momentum tensors in flat space-time [2, 18]. Arising then from the scalar
invariance of the matter action, however, the matter energy-momentum tensor defined by Eqs.
(14) still generalizes such an expression to allow for the available space-time curvature. When
described by Gij/κ, where Gij is given by Eqs. (12) [consistently with its definition in Eqs. (1)],
the gravitation energy-momentum is endowed with both a tensorial nature and the same form
as for its matter counterpart in Eqs. (14). This joint form arises since a nontrivial existence
is nonsingularly permitted only for the total action, such as is entirely defined with matter.


First suggested in [3, 4], however, Gij/κ is so implied by general relativity as the energy-
momentum for gravitation only because an empty space-time region nonsingularly described
by this theory is thus rendered flat. Relation (7) for such a region is then found to be irrelevant
to our observational experience since the actual space-time between spatially compact gravity
sources is filled with a macroscopically continuous medium whose local gravitational effects
ought to be negligible. Eliminating the singularity of empty space-time, this medium arises
from vacuum decay in the universe. It thus also prevents a singularity of the own gravitational


10







collapse. It is due to such a background medium that space-time curvature extends beyond
its main sources consistently with the materiality of the Lorentz transform for inertial frames.


Interpreted as proportional to the energy-momentum tensor for the gravitational field, Gij


thus has to describe transmission of the field space-time curvature. This phenomenon would
be generated by transients adjusting the gravitational field to matter dynamics and phase
transitions. Physically identified by the background medium, small-amplitude counterparts of
these transients could be viewed as gravitational waves [9, 12, 15, 17, 18, 19, 24, 26, 42, 44, 54,
55, 56, 57, 58, 59, 60]. Responsible for such a proliferation of space-time curvature, the Einstein
field equations with the background medium around all main gravity sources then describe the
total energy-momentum conservation for matter consistently with known observations.


In the presence of a background space-time curvature, in particular, the energy-momentum
of (relatively short) gravitational waves is typically approximated by an averaged second-order
perturbation of the Einstein tensor [12, 17, 60]. This perturbation then represents what is
relevant in the Einstein tensor itself when observed decay in the orbital period of a binary
pulsar is also inferred from the radiated energy thus described far from the source [15, 24, 26,
54, 55], where a deviation of the background curvature from flatness is neglected. The above
medium in terms of which space-time curvature and gravitational waves themselves ought to
be defined is then implied as negligible for such a background curvature as well. Agreement
with the observations achieved under this (quadrupole) approximation would therefore have
to be unaffected by the nature of gravitational waves and energy-momentum suggested herein.


When gravitation is treated to be a feature of empty space-time, Gij/κ is also typically
disqualified [14, 17] as its energy-momentum tensor for being thus defined with Eqs. (12)
conceptually differently from the symmetric Tij in Eqs. (14) (say in [17, 19]). Although such
Tij results from the variation of its respective action in the gravitational field components as
well, unlike for Gij in Eqs. (12), such field coordinates are then viewable as external to the
matter. From the present perspective, however, a nontrivial action for the gravitational field
cannot exist alone. Actually defined only in terms of the matter field, it is just a constituent
of the total action for matter. The total energy-momentum tensor thus arises from the total-
action invariance specified by the flat empty background rather than by the scalar nature of
the action constituents. Differentiation with respect to the metric-tensor components and their
first derivatives is then just an intermediate stage in such a procedure as has to formally define
the total energy-momentum tensor, in which Gij/κ merely stands for the gravitational part.


Minimizing the total action, Eqs. (1) thus arise with matter and its frames [72] as the
Euler—Lagrange equations [15, 18] for the materially defined field of relative space-time cur-
vatures. As discussed say in [17, 19] and thereby implied in Sec. 4.2, when Eqs. (15) are
derived, the matter equations of motion in such a prescribed field of gravitation are taken into
account as well. [The equations of matter motion are also derivable from Eqs. (16) and thus
from Eqs. (1) themselves [12, 57].] As generally expected, Eqs. (17) are then based both on
the invariance of total action to symmetries of the flat empty background and on the equations
of motion for matter [70]. Although their derivation from Eqs. (15) is also based on Eqs. (1),
the material Euler—Lagrange dynamics of gravitation in Eqs. (1) actually expresses the same
total energy-momentum conservation for the matter fields as a whole as Eqs. (17) themselves.


5.2 Thermodynamics and matter creation


Even when viewed to imply the existence of a curved empty space-time, the Einstein field
equations have been repeatedly suspected and examined in terms of having a thermodynamic
identity as their fundamental origin [79]. Such interpretations have still largely come from
phenomenological extrapolations of the black hole thermodynamics [80]. When space-time cur-
vature is defined only by matter itself and viewed as a relative measure of energy-momentum,
however, this underlying fundamental identity is found to be the covariant formulation of total
energy-momentum conservation for the respective macroscopically continuous material system.
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Raised by Einstein [11, 13], a conceptual objection to such an interpretation [3, 4] of his
equations might stem from treating gravitation as an attribute of empty space-time. The zero
total energy maintained by Eqs. (1) irrespective of the existence of matter thus seemed to
disallow an energy-related mechanism for creation of the material world out of nothing. When
Eqs. (1) are viewed to be entirely of a material nature, however, a phase of matter has to always
persist in the universe described by them [38]. The mechanism for creation of conventional
matter phases then also results naturally from general relativity. Like attractive gravitation
[81], it is manifested consistently with the second law of thermodynamics. As initially noted by
Levi-Civita [3, 11], this mechanism is due to Eqs. (1) and the contracted differential Bianchi
identities, from which Eqs. (16) arise. It is represented by decay of the (high-temperature)
vacuum phase of matter and creation of (low-temperature) conventional matter phases when
Eqs. (1) [and (16)] are nonsingularly applied to the universe [27, 38]. Although such processes
were hardly conceivable when energy-momentum conservation was discussed by T. Levi-Civita
and A. Einstein [11], their thermodynamic origin thus comes from that of Eqs. (1) themselves.


When the Friedmann scale factor a = 0, in particular, the vacuum-universe energy is zero
[82], despite its nonzero energy density. (As discussed in [82], this is due to the lack of definition
for a nonzero vacuum momentum and the relativistic invariance of the energy-momentum
vector.) A constant part of the vacuum density then has to be offset by the corresponding term
permitted in the left-hand side of the Einstein field equations. This generalized interpretation
in [38] is currently viewable as a consequence of the total energy-momentum conservation. It is
also attributable to the absence of noninertial frames with respect to the vacuum of a constant
density. Manifestation of the second law of thermodynamics, decay of the vacuum phase of
matter into a conventional matter phase thus proceeds in compliance with the first law as well.


As broadly discussed in [38], the creation of matter (and of the respectively implied antimat-
ter) is then driven by the overall thermodynamic energy balance for vacuum. Like the inertial
energy in attractive gravitation, this vacuum energy arises with matter when a increases from
0. Its conservation gives rise to vacuum decay into a new matter, which is meaningful due to
the matter parts already created and relatively accelerated by the decaying phase. The vac-
uum density is thus decreased to offset the enhancement of the overall vacuum energy by the
expansion work. When the density and pressure of the created matter are also (invariantly)
allowed for, such work is done against the vacuum pressure and matter attractive gravitation
by the repulsive vacuum gravitation and radiation pressure while the latter two act on the
created matter. Described by the Friedmann equations, these processes are thus suggested
by the Einstein field equations themselves. Manifested in terms of the above scale factor, the
effect of temperature on the matter equation of state still has to be allowed for.


6 Conclusions


Conceptually extending the formalism applied to the Friedmann equations in [38], a singularity
resulting from the attractive gravitation of matter is assumed here to be generally avoidable.
This assumption implies that temperature-dependent phase transitions changing the equation
of state would fundamentally have to be ubiquitously anticipated at the extreme conditions
engendered by a matter gravitational collapse. The vacuum phase of matter thus formed would
then prevent such a singularity. Since a curved empty space-time region is also recognized
here as invariantly singular, however, implications of avoiding this type of singularity are
examined as well. These are found to involve foundations of general relativity and existence of
a covariant formulation for energy-momentum conservation in this theory. They also suggest
a reinterpretation of the very nature of gravitation.


Due to nonlinear features of the Ricci tensor in a synchronous frame, the singularity of
empty space-time is generally avoided only when the space-time in the empty region is invari-
antly flat. Inevitable focusing of geodesics arising orthogonally from a space-like hypersurface
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in such a curved space-time is thus suggested to be a property of space-time itself. Consistently
with the potential of matter to undergo phase transitions and thereby avoid its gravitational
collapse, this singular character of empty space-time is attributed to the lack of physical mean-
ing for space-time curvature there. Relevance of such interpretation is particularly pronounced
when the curvature is viewed to be compatible with the Lorentz transform. The latter is ad-
mittedly defined by matter alone. The synchronous frame is then also highlighted to generate
an invariantly singular comoving behavior of its time lines and thus to enforce space-time
flatness where the respective curvature could fundamentally have no physical identification.


Consistently with the observational experience, space-time curvature is still extendible be-
yond its spatially compact sources when the space-time outside them is filled with a macroscop-
ically continuous medium. It is due to such a background medium that the variation of space
and time intervals is definable. Having locally negligible gravitational effects, the most obvious
real constituents of this medium could be the decaying cosmic vacuum and such a product of
its disintegration as CMBR at the final stage of vacuum decay. Matter and its vacuum-phase
decay thus comprise what endows space-time curvature with the physical meaning.


Based on the above understanding, the generalized principle of relativity is postulated and
highlighted to imply the extension of energy-momentum conservation to noninertial reference
frames. This postulate then also suggests direct identification of gravitation with inertia. Con-
sistent with the strongest version of the equivalence principle, it does not thus require such a
principle to underlie the theory of general relativity as a separate postulate. The equivalence
postulate is also found to be inadequate in equating the relative space-time curvature (defined
by matter) in conventional interactions to that of an empty space-time region, where no curva-
ture has a material realization. Gravitation then arises when energy-momentum conservation
is covariantly applied to a matter system whose different parts are connected at least by a
background medium. This medium is what also defines the space-time curvature affecting the
system parts in their relatively noninertial frames. Such frames are permitted on account of the
energy-momentum gradients created by the matter sources to which the frames are identified.


In the context of the outlined macroscopic picture of gravity manifestation, gravitation
ought to be irrelevant to solely microscopic interactions. Having only such a macroscopic ori-
gin as the vacuum phase of matter, whose decay also gives rise to the background medium,
repulsive gravitation is still expected to link the microscopic creation of matter and antimatter
with either respective thermodynamics. Consistently with the first and second [81] laws of
thermodynamics in attractive gravitation, this link is manifested in terms of the energy con-
servation and entropy increase for the vacuum-phase decay. Macroscopically separated, two
opposite cosmological time arrows then arise consistently with the respective thermodynamics
of matter and antimatter from the microscopic CPT symmetry [38, 83].


Obtained from minimization of the total action for matter to the components of the metric
tensor, the Einstein field equations are thus what invariantly describes the relative space-time
curvature engendered by the field of matter and its noninertial frames. With such equations of
motion for this curvature and their flat empty background, the differential energy-momentum
balance is derivable as underlying these equations from the background invariance of the total
action to infinitesimal coordinate translations. The Einstein tensor then has to stand for
the energy-momentum of the gravitational field. Its small-amplitude approximation also has
to describe what could be viewed as gravitational waves. Defined in terms of the background
medium, their underlying nonlinear curvature transients ought to result from matter dynamics
and phase transitions. The conceptual issue raised by Einstein [11, 13] in the context of such an
original interpretation of his field equations [3, 4] is also eliminated with the entirely material
nature of these equations and the cosmological scenario of vacuum decay derived in [38]. The
absence of a constant part of the cosmological term suggested in [38] from this scenario is then
interpretable as a particular manifestation of the total energy-momentum conservation as well.
Gravitation is thus fully described in terms of covariant energy-momentum conservation for
such a macroscopically continuous material system with no proper motion as the universe.
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English translation by M. A. Tavel, arXiv:physics/0503066v2 (2015);
Y. Kosmann-Schwarzbach, The Noether Theorems. Invariance and Conservations Laws
in the Twentieth Century. Translated by B. E. Schwarzbach. Springer (2011), for English
translation of the Noether paper, see pp. 3–22.


[70] D. E. Neuenschwander, Emmy Noether’s Wonderful Theorem. Johns Hopkins University
Press (2011).


[71] The pressure, if any, is implied to be related to the energy density by a finite number.


[72] The understanding of general relativity suggested herein arises from the generalized princi-
ple of relativity alone, when this postulate is applied to a material system whose elements
are connected at least by the background medium. As opposed to the view that space-time
as such could possess curvature, it could thus be potentially consistent with certain inter-
pretations of what is referred to as Mach’s principle [12, 13, 15, 18, 19]. Any matter source
itself thus defines a reference frame associated with it and would then have to contribute
to the relative space-time curvature affecting all other such sources. A detailed discussion
of Mach’s principle and its relevant interpretations is however outside the present scope.


[73] Standing for the so-called passive gravitational density as well, the inertial density of
a perfect fluid complying with Eqs. (1) arises from the contracted differential Bianchi
identities as ρ + p [48], where ρ is the fluid energy density and p is the pressure. The
corresponding active gravitational density is however ρ + 3p, as suggested say by the
Friedmann acceleration equation. Since these densities do not coincide, the conventional
third law of Newton does not generally apply to gravitation. This could be attributed
to the gravitation-related space-time curvature arising within the background medium
independently of a conventional interaction between different matter sources, although
such a curvature is still a part of the overall energy-momentum balance with its sources.


[74] The comma and semicolon denote the ordinary and covariant differentiations, respectively.


18







[75] Apart from spatially compact Ω, as assumed in Sec. 4.1, this also applies when Ω (filled
with matter) is generally an open infinite space-time [68]. The integrands of Eq. (8), δgij


in Eqs. (10), as well as Gj
i and T ji then still vanish in the limit at ∂Ω.


[76] This applies to the derivation of the Einstein field equations themselves as well. In many
courses on general relativity, such a derivation from the action principle seems to suggest
that the first derivatives of the metric tensor in the directions normal to the hypersurface
serving as the boundary of the integration area also have to be explicitly prescribed at this
boundary, apart from the metric tensor itself. This issue is recognized in (Appendix E of
Ref.) [15] as well, where an extra term is thus added to the gravitational action to cancel
the nonzero contribution from the boundary when the metric tensor alone is prescribed
there. From the present perspective on general relativity, the boundary features due to
which the second derivatives of the metric tensor in the Lagrangian density for gravitation
are rendered irrelevant arise naturally from the space-time change to its flatness at ∂Ω.
This takes place when Ω (filled with matter) is either just spatially compact or such as
generally stands for an open infinite space-time [68] that becomes flat in the limit at ∂Ω.


[77] Eqs. (17) could also result either from Eqs. (1) alone or from Eqs. (1) and (15) when Eqs.
(15) arise from the scalar invariance of ST . Unless treated so already in Eqs. (1), however,
Gj
i/κ is not then viewable as the gravitation energy-momentum tensor yet. Unlinked to


the background flatness, in particular, such procedures are not unequivocally defined.


[78] Eqs. (17) result from Eqs. (1) and (15) when Eqs. (15) arise from the scalar invariance
of ST as well [77]. Although Eqs. (17) coincide with the ordinary divergence of Eqs. (1),
the second Noether theorem [16, 69] then still fails to turn Eqs. (17) into an improper
conservation law. As the Euler—Lagrange equations [15, 18] for a materially defined field
of space-time curvature, in particular, Eqs. (1) do not yet qualify as also such equations
for the field of matter itself. With the material nature of space-time curvature, Eqs. (15)
actually arise in Sec. 4.2 from flatness of the space-time background. For such a separate
invariance, Eqs. (17) come from Eqs. (1) and (15) as the proper conservation law implied
by the first Noether theorem [16, 69, 70]. This law is thus what underlies Eqs. (1) as well.


[79] T. Jacobson, Phys. Rev. Lett. 75, 1260–1263 (1995);
T. Padmanabhan, Phys. Rep. 406, 49–125 (2005);
T. Padmanabhan, Rep. Prog. Phys. 73, 046901 (2010);
E. Verlinde, J. High Energy Phys. 04 (2011) 029;
T. Padmanabhan, Res. Astron. Astrophys. 12, 891–916 (2012);
T. Padmanabhan, Gen. Rel. Grav. 46, 1673 (2014);
T. Padmanabhan, Curr. Sci. 109, 2236–2242 (2015).


[80] J. D. Bekenstein, Phys. Rev. D 7, 2333–2346 (1973);
J. M. Bardeen, B. Carter, S. W. Hawking, Comm. Math. Phys. 31, 161–170 (1973);
S. W. Hawking, Comm. Math. Phys. 43, 199–220 (1975);
G. W. Gibbons, S. W. Hawking, Phys. Rev. D 15, 2738–2751 (1977);
G. ’t Hooft, arXiv:gr-qc/9310026 (1993);
L. Susskind, J. Math. Phys. 36, 6377–6396 (1995);
R. M. Wald, Liv. Rev. Rel. 4, 6 (2001);
R. Bousso, Rev. Mod. Phys. 74, 825–874 (2002).


[81] R. Penrose, Ann. N. Y. Acad. Sci. 571, 249–264 (1989) and references therein.


[82] Y. B. Zeldovich, Sov. Phys. Usp. 11, 381–393 (1968).


[83] A. D. Sakharov, Sov. Phys. JETP 52, 349–351 (1980);
R. Peierls, Phys. Today 47(11), 115–115 (1994).


19







