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Abstract: The article deals with the easily verifiable necessary condition of the
preservation of the nonnegativity of the solutions of a system of parabolic equa-
tions in the case of the mixed diffusion when the standard Laplacian in the firstm
variables is added to the Laplace operator in the rest of the variables in a fractional
power in the space of an arbitary dimension. This necessary condition is crucial for
the applied analysis community since it imposes the necessary form of the system
of equations that must be treated mathematically.


AMS Subject Classification:35K55, 35K57
Key words: mixed diffusion, parabolic systems, nonnegativity of solutions


1. Introduction


The solutions of various systems of convection-diffusion-reaction equations arising
in biology, physics or engineering describe such quantities as population densities,
pressure or concentrations of nutrients and chemicals. Hence, a natural property to
require for the solutions is their nonnegativity. Models that do not guarantee the
nonnegativity are not valid or break down for small values ofthe solution. In many
situations, showing that a particular model fails to preserve the nonnegativity leads
to the better understanding of the model and its limitations. One of the first steps in
analyzing ecological or biological or bio-medical models mathematically is to test
whether solutions originating from the nonnegative initial data remain nonnegative
(as long as they exist). In other words, the model under consideration ensures that
the nonnegative cone is positively invariant. We recall that if the solutions (of a
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given evolution PDE) which correspond to the nonnegative initial data remain non-
negative as long as they exist, we say that the system satisfies the nonnegativity
property.


For scalar equations the nonnegativity property is a directconsequence of the
maximum principle (see [2] and the references therein). However, for systems of
equations the maximum principle is not valid. In the particular case of monotone
systems the situation resembles the case of scalar equations, sufficient conditions
for preserving the nonnegative cone can be found in [9], [10]. For systems includ-
ing the standard diffusion, transport and general interaction terms (not necessarily
monotone) the necessary and sufficient conditions for preserving the nonnegative
cones were obtained in [2].


In the present work we aim to prove a simple and easily verifiable criterion,
that is, the necessary condition for the nonnegativity of solutions of systems of
nonlinear convection-mixed diffusion-reaction equations arising in the modelling
of life sciences. We believe that it could provide the modeler with a tool, which is
easy to verify, to approach the question of positive invariance of the model.


The present article deals with the preservation of the nonnegativity of solutions
of the system of reaction-diffusion equations in the space of an arbitrary dimension
d ∈ N, d ≥ 2, namely


∂u


∂t
= A[α∆x,m − β(−∆x,d−m)


s]u+
d
∑


l=1


Γl ∂u


∂xl


− F (u), (1.1)


where the Laplace operators


∆x,m :=


m
∑


l=1


∂2


∂x2
l


, ∆x,d−m :=


d
∑


l=m+1


∂2


∂x2
l


, 1 ≤ m ≤ d− 1, 0 < s < 1,


A, Γl, 1 ≤ l ≤ d areN×N matrices with constant coefficients, which is relevant to
the cell population dynamics in Mathematical Biology. Hereα, β > 0 are constants
as well. The case ofβ = 0 corresponds to the normal diffusion treated in [2]. The
situation whenα = 0 corresponds to the anomalous diffusion studied recently in
[3]. As distinct from the present article, the power of the negative Laplace operator


in [3] was restricted to0 < s <
1


4
due to the solvability conditions for the Poisson


type equation involving the fractional Laplacian in one dimension (see [14]). Note
that the model analogous to (1.1) can be used to study such branches of science as
the Damage Mechanics, the temperature distribution in Thermodynamics. In the
present work the space variablex corresponds to the cell genotype,uk(x, t) stands
for the cell density distributions for various groups of cells as functions of their
genotype and time,


u(x, t) = (u1(x, t), u2(x, t), ..., uN(x, t))
T .
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The operator(−∆x,d−m)
s in system (1.1) describes a particular case of the anoma-


lous diffusion actively treated in the context of differentapplications in plasma
physics and turbulence [1], [4], surface diffusion [5], [7], semiconductors [8] and so
on. Anomalous diffusion can be described as a random processof particle motion
characterized by the probability density distribution of jump length. The moments
of this density distribution are finite in the case of normal diffusion, but this is not the
case for the anomalous diffusion. Asymptotic behavior at infinity of the probability
density function determines the values of the power of the negative Laplacian [6].
The operator(−∆x,d−m)


s is defined by virtue of the spectral calculus. Front propa-
gation problems with anomalous diffusion were treated actively in recent years (see
e.g. [11], [12]). The solvability of the single equation involving the Laplacian with
drift relevant to the fluid mechanics was studied in [13]. Letus assume here that
(1.1) contains the square matrices with the entries constant in space and time


(A)k,j := ak,j, (Γl)k,j := γl
k,j, 1 ≤ k, j ≤ N, 1 ≤ l ≤ d


and that the given matrixA is anN × N matrix with a positive symmetric part
A+A∗ > 0 (parabolicity assumption) for the sake of the well posedness of problem
(1.1). HereA∗ denotes the adjoint of matrixA. Hence, system (1.1) can be rewritten
in the form


∂uk


∂t
=


N
∑


j=1


ak,j[α∆x,m − β(−∆x,d−m)
s]uj +


d
∑


l=1


N
∑


j=1


γl
k,j


∂uj


∂xl


− Fk(u), (1.2)


where1 ≤ k ≤ N and0 < s < 1. In the present article the interaction of species
term


F (u) = (F1(u), F2(u), ..., FN(u))
T ,


which in principle can be linear, nonlinear or even nonlocal. Let us assume its
smoothness in the theorem below for the sake of the well posedness of our problem
(1.1), although, we are not focused on the well posedness issue in the present work.
From the perspective of applications, the space dimension can be chosen arbitrarily,
d ∈ N, d ≥ 2 since the space variable here corresponds to the cell genotype but not
to the usual physical space. Let us denote the inner product as


(f(x), g(x))L2(Rd) :=


∫


Rd


f(x)ḡ(x)dx. (1.3)


As for the vector functions, their inner product is defined using their components as


(u, v)L2(Rd,RN ) :=
N
∑


k=1


(uk, vk)L2(Rd). (1.4)


Obviously, (1.4) induces the norm


‖u‖2L2(Rd,RN ) =
N
∑


k=1


‖uk‖2L2(Rd).
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By the nonnegativity of a vector function below we mean the nonnegativity of the
each of its components. Our concern is not the study of the existence of solutions
but their qualitative behavior. Hence, in the sequel we assume that for any initial
data


u0 ∈ K+ := {u : Rd → R
N | ui(x, t) ≥ 0 a.e. in R


d, i = 1, ..., N}


there exists a unique solution (satisfying the appropriateestimates) to carry out our
calculations. Our main proposition is as follows.


Theorem 1.LetF : RN → R
N , such thatF ∈ C1, the initial condition for problem


(1.1) isu(x, 0) = u0(x) ≥ 0 andu0(x) ∈ L2(Rd,RN), d, N ∈ N, d, N ≥ 2. Then
in order to preserve the non-negative cone for system (1.1) the necessary condition
is that the matricesA andΓ are diagonal and for all1 ≤ k ≤ N


Fk(s1, ..., sk−1, 0, sk+1, ..., sN) ≤ 0 (1.5)


holds , wheresl ≥ 0 and 1 ≤ l ≤ N, l 6= k.


Remark 1. In the case of the linear interaction of species, namely whenF (u) =
Lu, whereL is a matrix with elementsbi,j , 1 ≤ i, j ≤ N constant in space and time,
our necessary condition leads to the condition that the matrix L must be essentially
nonpositive, that isbi,j ≤ 0 for i 6= j, 1 ≤ i, j ≤ N .


Remark 2. Our proof yields that, the necessary condition for preserving the non-
negative cone is carried over from the ODE (the spatially homogeneous case, as
described by the ordinary differential equationu′(t) = −F (u)) to the case of the
anomalous diffusion and the convective drift term.


Remark 3. In the forthcoming papers we intend to consider the following cases:
a) the necessary and sufficient conditions of the present work,
b) the density-dependent diffusion matrix,
c) the stochastic perturbation of the deterministic case,
d) the effect of the delay term in the cases a), b) and c).


Remark 4. Note that in the present work as distinct from [3] we do not assume the
nonnegativity of the off diagonal elements of the matrixA.


We proceed to the proof of our main statement.


2. The preservation of the nonnegativity of the solution of the system with mixed diffusion


Proof of Theorem 1.We note that the maximum principle actively used for the
studies of solutions of single parabolic equations does notapply to systems of such
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equations. Let us consider a time independent, square integrable, nonnegative vec-
tor functionv(x) and estimate


(


∂u


∂t


∣


∣


∣


∣


∣


t=0


, v


)


L2(Rd,RN )


=


(


limt→0+
u(x, t)− u0(x)


t
, v(x)


)


L2(Rd,RN )


.


By virtue of the continuity of the inner product, the right side of the equality above
is equal to


limt→0+
(u(x, t), v(x))L2(Rd,RN )


t
− limt→0+


(u0(x), v(x))L2(Rd,RN )


t
. (2.6)


We choose the initial condition for our systemu0(x) ≥ 0 and the constant in time
vector functionv(x) ≥ 0 to be orthogonal to each other inL2(Rd,RN). This can be
achieved, for example for


u0(x) = (ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x)), vj(x) = ṽ(x)δj,k, (2.7)


with 1 ≤ j ≤ N , whereδj,k is the Kronecker symbol and1 ≤ k ≤ N is fixed.
Hence, the second term in (2.6) vanishes and (2.6) is equal to


limt→0+


∑N


k=1


∫


Rd uk(x, t)vk(x)dx


t
≥ 0


by means of the nonnegativity of all the componentsuk(x, t) andvk(x) involved in
the formula above. Hence, we obtain


N
∑


j=1


∫


Rd


∂uj


∂t


∣


∣


∣


∣


∣


t=0


vj(x)dx ≥ 0.


By means of (2.7), only thek th component of the vector functionv(x) is nontrivial.
This gives us


∫


Rd


∂uk


∂t


∣


∣


∣


∣


∣


t=0


ṽ(x)dx ≥ 0.


Therefore, by means of (1.2) we derive


∫


Rd


[


N
∑


j=1, j 6=k


ak,j[α∆x,m − β(−∆x,d−m)
s]ũj(x) +


d
∑


l=1


N
∑


j=1, j 6=k


γl
k,j


∂ũj


∂xl


−


−Fk(ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x))


]


ṽ(x)dx ≥ 0.
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Since the nonnegative, square integrable functionṽ(x) can be chosen arbitrarily, we
arrive at


N
∑


j=1, j 6=k


ak,j[α∆x,m − β(−∆x,d−m)
s]ũj(x) +


d
∑


l=1


N
∑


j=1, j 6=k


γl
k,j


∂ũj


∂xl


−


−Fk(ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x)) ≥ 0 a.e. (2.8)


For the purpose of the scaling, we replace all theũj(x) by ũj


(


x


ε


)


in the inequality


above, whereε > 0 is a small parameter. This gives us


N
∑


j=1, j 6=k


ak,j


[


α


ε2
∆y,m − β


ε2s
(−∆y,d−m)


s


]


ũj(y) +
d
∑


l=1


N
∑


j=1, j 6=k


γl
k,j


ε


∂ũj(y)


∂yl
−


−Fk(ũ1(y), ..., ũk−1(y), 0, ũk+1(y), ..., ũN(y)) ≥ 0 a.e. (2.9)


Obviously, the
1


ε2
term in the left side of (2.9) is the leading one asε → 0. In


the case ofak,j < 0 we can choose herẽuj(y) = ey
2


in a neighborhood of the
origin, smooth and decaying to zero at the infinity. A trivialcalculation yields that
∆y,mũj(y) > 0 near the origin. Ifak,j > 0, then we can consider̃uj(y) = e−y2


around the origin, smooth and tending to zero at the infinity.An easy computation
shows that∆y,mũj(y) < 0 in a neighborhood the origin. Thus, the left side of (2.9)
can be made as negative as possible which will violate inequality (2.9). Note that
the last term in the left side of (2.9) will remain bounded. Therefore, for the matrix
A involved in system (1.1), the off diagonal terms should vanish, such that


ak,j = 0, 1 ≤ k, j ≤ N, k 6= j.


Hence, from (2.9) we arrive at


d
∑


l=1


N
∑


j=1, j 6=k


γl
k,j


ε


∂ũj(y)


∂yl
−


−Fk(ũ1(y), ..., ũk−1(y), 0, ũk+1(y), ..., ũN(y)) ≥ 0 a.e. (2.10)


In the case ofγl
k,j < 0 involved in the sum in the left side of (2.10), we can choose


ũj(y) = e
√


y2+1 in a neighborhood of the origin, smooth and decaying to zero at
the infinity, such that


∂ũj(y)


∂yl
=


yl
√


y2 + 1
e
√


y2+1 > 0, yl > 0


6







near the origin. Ifγl
k,j > 0, we consider̃uj(y) = e−


√
y2+1 near the origin, smooth


and decaying to zero at the infinity, such that


∂ũj(y)


∂yl
= − yl


√


y2 + 1
e−


√
y2+1 < 0, yl > 0


in a neighborhood of the origin. By making the parameterε sufficiently small, we
can violate the inequality in (2.10). This yields for1 ≤ l ≤ d that


γl
k,j = 0, 1 ≤ k, j ≤ N, k 6= j.


Therefore, by virtue of (2.8) we arrive at


Fk(ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN(x)) ≤ 0 a.e.,


whereũj(x) ≥ 0 andũj(x) ∈ L2(Rd) with 1 ≤ j ≤ N, j 6= k.


Remark 5. Let us assume that the components of the reaction term satisfy for all
1 ≤ k ≤ N


Fk(t, s1, ..., sk−1, 0, sk+1, ..., sN) ≤ 0,


wheresl ≥ 0 with 1 ≤ l ≤ N, l 6= k andF ∈ C1
t,x, t ∈ [0, τ ], x ∈ R


d for some
τ > 0. Then it is not difficult to see that the analog of Theorem 1 holds.
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