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Abstract. An understanding of homogeneous nucleation of crystalline structure from


a disordered medium such as a liquid remains an important unsolved problem in


condensed matter physics. Guided by the results from a number of experiments


on granular and colloidal systems in the past two decades, including in particular


observations of homogeneous nucleation in colloidal and granular systems, we suggest


an alternative to the statistical mechanics approach to static granular matter initiated


by Edwards and Oakeshott in 1989.


1. Introduction


An important objective for a theoretical model of static, bulk, granular matter is to


understand the unusual mechanical properties of the material. For instance, how should


one understand why a very heavy vehicle can stand on, or even move slowly over, a deep


bed of dry sand? This question was raised many years ago for materials composed of


many molecules, where heavy weights can be supported by ice but not by water; matter


made of many H2O molecules may or may not support a heavy weight. Equilibrium


statistical mechanics used the notions of fluid and solid phases to sharpen the question,


and centered on the relevance of temperature and pressure.


In 1989 Edwards and Oakeshott [1] developed a theoretical approach to the


understanding of granular matter that was inspired by earlier modeling by Flory (see [2]),


de Gennes (see [3]), and Edwards (see Doi and Edwards [4]) and others, who adapted the


ensemble formalism of equilibrium statistical mechanics to model ‘soft’ nonequilibrium


matter such as a polymer chain of many segments in solution. One simplification in the


adaptation for polymers is to downplay or ignore the need to justify the appropriateness


of using ensemble averaging, which in statistical mechanics is based on the dynamics of


the particles. Edwards and Oakeshott went further and applied the approach to static


granular matter such as bulk sand, using microcanonical and canonical ensembles based


on packings of nonoverlapping stationary spheres, mechanically stable under gravity and


the contact forces among themselves and their container.
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A recent comprehensive review by Baule et al. [5] focuses on the statistical model


introduced by Edwards and Oakeshott and then generalized. The review did not address


the nucleation of grains into macroscopic granular crystals, as observed in a recent


experiment [6], which a theory of granular matter should accommodate, if not predict.


The recent results on homogeneous nucleation lead us to propose a modification of the


Edwards approach, focusing on physical granular matter subject to gravity and a certain


form of external energy - a ‘heat bath’ - and we discuss how these ingredients can be


used to give a coherent view of a range of granular experiments which are not addressed


in the Edwards approach.


2. Random close packing


The configuration of grains in physical granular matter is generally disordered but


difficult to characterize in detail. In 1960 G.D. Scott [7] conducted an experiment


on ball bearings poured repeatedly into a container, and he found that the volume


fraction φ occupied by the spheres ranged from about 0.60 up to a maximum of 0.64,


which he conjectured to be a fundamental upper limit, now called the random close


packed (RCP) volume fraction, φRCP . The RCP volume fraction is much smaller than


the maximal volume fraction occupied by a collection of identical spheres, which is


the volume fraction of hexagonal close packed (HCP) or face centered cubic (FCC)


crystalline arrays, φ = π/
√


18 ≈ 0.74 [8].


On the theoretical side, in 1959 J.D. Bernal [9] had already conjectured that “there


is an absolute impossibility of forming a homogeneous assembly of points of volume


intermediate between those of long-range order and closest packed disorder”. There is


an unstated probabilistic or entropy qualification, so to be more precise the claim is


that, in the sense of the Law of Large Numbers, there is a volume fraction (now called


RCP) such that ‘most’ homogeneous configurations of ball bearings with fixed volume


fraction below RCP are disordered and most homogeneous configurations with fixed


volume fraction above RCP have long range order.


In the half century following Bernal and Scott’s introduction of the RCP concept


of a fundamental limit in the volume fraction, many experiments have added increasing


support for a fundamental limit in φ (see, e.g., [10-14]). A recent example is an


experiment by Rietz et al. (2018) [6] on a granular system with an imposed oscillating


horizontal shear of small amplitude and low frequency. This experiment revealed a


gradual increase in φ until a plateau at φ = 0.645 was reached after 20000 shear cycles,


as illustrated in Fig. 1(a). The long plateau persisted for 50000 shear cycles, and then


the global volume fraction began to slowly increase as a polycrystalline state developed.


An earlier experiment by Huerta et al. [15] also imposed a small amplitude


horizontal oscillation but at a much higher frequency. The Huerta et al. and Rietz


et al. experiments can both be thought of as granular systems in contact with a heat


bath, where the frequency of oscillation is analogous to temperature. In this terminology


Huerta et al. used a bath at high temperature, 50 Hz, while Rietz et al. used a bath
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at low temperature, 0.5 Hz. The two experiments can be interpreted as indicating a


fluid/solid phase transition with decreasing temperature, with the RCP volume fraction


representing the nucleation barrier at the transition: the need for crystalline clusters to


reach a critical size, beyond which macroscopic crystalline matter automatically grows,


as will be discussed in the Section 4.


φ


φ


(a)	


(b)	


Figure 1: (a) The robustness of the RCP limit is illustrated by these data of Rietz et al.


[6] for a packing of 50000 glass spheres (3.00 mm diameter) in a (105 mm)3 box with slow


horizontal shear imposed by tilting two opposite sidewalls by ±0.6◦ with an oscillation


period of 2 s. The global volume fraction φ gradually increases with successive shear


cycles until a well-defined plateau is reached at φ = 0.645. (b) An expanded graph of


the plateau at φ = 0.645. The plateau persists for about 50000 shear cycles, and then


the volume fraction begins to slowly increase as crystallites emerge in the interior of the


sample.


3. A proposed alternative to the Edwards approach to static granular


matter


Edwards’ fundamental idea of using an ensemble approach to model granular matter


was very important as it suggested intuition based on materials in thermal equilibrium.
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The Edwards approach has not proved to be helpful in understanding the random close


packing phenomenon. A conjecture [16] that RCP might signify a sharp transition


analogous to the freezing of fluids in thermal equilibrium was based on physical


granular experiments showing crystalline clusters growing on side walls [17], not on


calculations using an Edwards ensemble. There are now calculations suggesting that


this interpretation of RCP is compatible with the Edwards model [18-19]. However, in


subsections 4.1 and 4.3 it will be argued that the homogeneous nucleation observed in the


experiment of Rietz et al. [6] indicates that disordered static packings of grains should


be considered as supercooled or glassy rather than in equilibrium as in the Edwards


approach.


We propose a theoretical approach for granular matter distinct from that of


Edwards et al. but consistent with various laboratory observations. An experiment by


Huerta et al. [15] revealed buoyancy behavior like that given by Archimedes’ Principle


for an ordinary fluid in thermal equilibrium. As mentioned, many granular experiments


have demonstrated the RCP limit, a well-defined upper bound on the volume fraction


of homogeneous disordered granular matter, as illustrated by Fig. 1. We interpret the


experiments on buoyancy, the RCP limit, and the emergence of a crystalline state [6] as


corresponding to granular matter at consecutively lower ‘temperatures’, illustrating a


fluid/solid freezing transition. We now describe in more detail several experiments that


lead us to propose this alternative approach to the Edwards model of granular matter.


3.1. Archimedes’ law of buoyancy


Huerta et al. [15] studied a bidisperse collection of spheres, of diameters 3 and 4 mm,


in a container with two opposite vertical side walls oscillating horizontally with small


amplitude (1 mm) but high frequency (50 Hz) and acceleration (up to 10g). The high


frequency oscillation maintained the granular array in a fluidized state. Having the


opposite walls oscillate with opposite phase eliminated convection. Low density objects


pulled downward into the denser granular medium by a string, and dense test objects


placed on top of the granular bed (away from the boundary) were observed to experience


buoyant forces like those in an ordinary fluid in thermal equilibrium. Similar behavior


was produced by shearing in Nichol et al. [20].


3.2. Colloidal systems


Extensive experiments have been conducted using concentrated suspensions of colloidal


particles in baths in thermodynamic equilibrium. Colloidal particles have been widely


considered as hard spheres, but Poon et al. [21] and Royall et al. [22] explain how in


reality colloidal particles are soft, as Fig. 2 illustrates.


Another experiment on which we base our theoretical approach to granular matter


was conducted by Rutgers et al. [23], who studied polystyrene spheres in water and used


different methods to reduce electrostatic screening in order to mimic hard spheres more


closely. There was still an uncertainty in the effective size of the particles, which was
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δ


(c)(a)


σ   /2eff σ /2c


(b)


σ  /2cs σ /2c σ   /2eff


Figure 2: Schematic representations of different models of “hard-sphere” colloids (Fig.


1 in Royall et al. [22]): (a) Sterically stabilized particle with surface ‘hair’ layer of


thickness δ̄ and core radius σc/2. (b) Microgel particle with an effective radius σeff/2,


formed by a heavily cross-linked polymer. (c) Charged colloid with an electrical double-


layer that gives an effective radius σeff/2.


handled through an adjustable parameter. Figure 3 (from Fig. 2 of Rutgers et al. [23])


shows a sharp transition in density, which Rutgers et al. interpret as analogous to the


fluid/crystal transition of the mathematical hard sphere model [24].


The motion of colloidal particles is Brownian (diffusive), not ballistic as assumed


in the hard sphere model, but such a simplification is not unusual for modeling soft


materials; indeed, the particles in the Edwards model are stationary. A more accurate


model would be based on Brownian motion, but such a model would only be appropriate


for a local analysis of individual particles, not of the bulk material, and would miss the


bulk crystalline state shown in Rutgers et al. unless one takes into account gravity. That


experiment shows that gravity produces particle assemblies with a significant vertical


density gradient. Gravity and diffusive motion are both used in the model by Burdzy


et al. [25], but they cannot analyze the region where Rutgers et al. see a discontinuous


transition. Note that the hard sphere model employed by Rutgers et al. assumes ballistic


motion but does not include gravity.


There are numerous differences between the behavior of the colloidal system in


Rutgers et al. and the granular system in Rietz et al., but there is also the remarkable


similarity of the phase transition exhibited in the two. Below we will exploit common


elements from Huerta et al. [15], Rietz et al. [6], and Rutgers et al. [23] in developing


a heat bath picture of granular matter with ‘typical’ configurations exhibiting a density


gradient like those in the colloidal system of Fig. 3.


3.3. Dilatancy and the solidity of granular matter


The homogeneous nucleation of crystalline structure in Rietz et al. indicates the creation


of a ‘solid’ state of granular matter. Crystallinity, observed for instance through X-


ray diffraction for molecular systems, is a standard characteristic of many solids in


thermodynamic equilibrium. (Quasicrystals are a notable exception.) However, there
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Figure 3: The equation of state for the osmotic pressure Π obtained by Rutgers et al.


(Fig. 2 of [23]) for an isothermal system of polystyrene spheres (0.720 µm diameter)


that was allowed to stabilize for three months before the measurements were made. The


calculated equation of state, shown by a solid line, agrees well with the measurements


of osmotic pressure. The inset shows 10 mm height of a sample: (A) supernatant fluid,


(B) liquid phase (the dashed line indicates the faint boundary between the supernatant


and the liquid phase), (C) sharp interface between the liquid phase and the phase with


crystallites, and (D) phase with crystallites visible due to Bragg scattering of light.


are characteristics other than crystallinity that might provide a clear distinction between


solids and fluids, such as the viscosity or the elastic shear modulus [26]. We do not use


such characteristics because there have yet to be experiments on mechanical properties of


‘crystalline’ granular matter. However, there is reason to expect that such an approach


should work.


In 1885 Osborne Reynolds [27] introduced ‘dilatancy’ to explain several


experimental instances of the resistance of granular matter to shear. He imagined a


crystalline arrangement of sand grains and argued that the arrangement would have to


expand to be strained through a small angle, producing a strong force in reaction.


Dilatancy in a horizontally sheared granular system was demonstrated and


measured by Nicolas et al. [17]. The system expanded when opposite side walls of
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the container were tilted slightly from the vertical position, thus decreasing the volume


fraction, as shown in Fig. 4, where compaction and dilation occurs alternately through


each successive cycle of shearing. Each successive maximum in the volume fraction


was higher, as some particles were pulled down by gravity into space that opened up


slightly in the dilated medium during the shearing process. In this experiment the


volume fraction continued increasing past the RCP limit as inhomogeneous nucleation


of a crystal occurred at the cell walls (see Fig. 5 in [17]).


φ


shear cycle number 


Figure 4: The volume fraction evolution observed by Nicolas et al. [17] during successive


cycles of shear of 41000 randomly distributed spheres in a parallelepiped box (Fig. 2 of


[17]). Shear was imposed by oscillating the tilt angle of two opposite sidewalls by ±5.4◦.


The star symbols mark the volume fraction maxima in successive shear cycles as the


sidewalls passed through the vertical position with the tilt angle increasing.


3.4. Dissipation in driven granular matter


For granular matter a comparison of experiments with simulations of molecular dynamics


and granular continuum equations has revealed that dissipation through inelasticity


(restitution coefficient less than unity) and sliding friction are both important in strongly


driven systems, such as vertically oscillating granular layers. Extensive experiments and


analyses on vertically oscillating granular layers has shown that when the downward


acceleration of the container exceeds g, it is necessary to include both forms of dissipation


(inelasticity and friction) to obtain agreement between observations and modeling [28-


30]. It is not yet clear to what extent dissipation may be a necessary ingredient in
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the qualitative near equilibrium or equilibrium behavior we wish to understand in this


paper.


A simple picture of the evolution of the granular matter in Rietz et al. is that


the effect of shearing is mainly to provide slow motion to the particles and break any


contacts between them, which allows mobility of the particles so they can occasionally


fall under gravity into holes that develop beneath them due to dilatancy (see Fig. 4). The


particles in a colloid only diffuse, and the material as a whole stays somewhat localized


(see Fig. 3 and [25]). In the granular experiment of Rietz et al. particles are mostly


driven horizontally, and that, together with gravity, also leads to matter remaining


near the floor. We will use the similarity of the colloidal experiment of Rutgers et al.


and the granular experiments of Huerta et al. and Nicolas et al. to fashion a common


picture based on a system of hard particles evolving under external energy input and


gravity. We hope that such a picture will capture the essential qualitative features of


the experiments, even ignoring dissipation.


4. Nucleation and glassy materials


4.1. Observations of homogeneous nucleation


Granular experiments with physical hard sphere packings have occasionally observed


inhomogeneous nucleation at a bounding surface [17, 31-38], where two-dimensional


layers easily form a triangular lattice that serves as the base for a three-dimension


HCP/FCC cluster, like the oranges stacked in a market. In contrast, the recent


experiment by Rietz et al. revealed homogeneous nucleation, the spontaneous creation of


crystalline clusters of ‘critical size’ far from any bounding wall. An example of a growing


crystallite in the granular experiment is shown in Fig. 5(a); crystallites of FCC, HCP,


and mixed symmetries were observed to form and grow. Similarly, an experiment on


colloidal particles by of Gasser et al. [39] revealed homogeneous nucleation of crystallites,


as illustrated by the example in Fig. 5(b). The homogeneous nucleation of crystallites is a


bulk property of the granular and colloidal systems, not a consequence of an interaction


of the material with its boundaries, which is a surface phenomenon not necessarily


indicative of any bulk property.


Nucleation has been most thoroughly analyzed for materials in thermal equilibrium


[40]. A static fluid in thermal equilibrium at fixed pressure and slowly decreasing


temperature will freeze at a ‘freezing’ temperature Tf to a solid, typically a crystalline


solid. With a slowly increasing temperature that solid will melt at a ‘melting’


temperature Tm. With care one finds Tf = Tm, although a fluid can easily be driven


with decreasing temperature to a supercooled (metastable, nonequilibrium) state at


some temperature T < Tf , where T is the container temperature. Quasistatic freezing


of a fluid to its equilibrium solid state generally occurs through nucleation, but unless


care is taken to avoid it, the nucleation is inhomogeneous. If such nucleation sites are


absent the fluid will supercool until it nucleates spontaneously, so-called homogeneous
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Figure 5: (a) A crystallite with 600 spheres that nucleated in the interior of a sheared


granular medium (unpublished figure from the experiment reported in Rietz et al. [6]).


The red spheres have FCC local symmetry, and yellow spheres have HCP local symmetry.


(b) A crystallite that Gasser et al. observed to nucleate following shear melting of a


colloidal system with φ = 0.47 (Fig. 3C in [39]). The 206 red particles have crystalline


order and are drawn to scale, while the neighboring blue particles, reduced in size for


clarity, share at least one crystal-like bond.


nucleation, at unpredictable sites. If a fluid is cooled sufficiently quickly, it will fail to


nucleate at all and will enter a nonequilibrium long-lived glassy state.


Homogeneous nucleation appears in fluids in thermal equilibrium as the


temperature is slowly reduced below the freezing point. Within a thermodynamic phase,


mechanical and other responses of matter in thermal equilibrium can be estimated by


linear response of the equilibrium state. A different approach, not necessarily part of a


theory of bulk matter, is needed to model the nucleation of a new phase in response to


a change of state at a phase transition.


The observation in [6] of homogeneous nucleation in static granular matter


subjected to gentle cyclic shear suggests that one consider the static material to be


either glassy or supercooled, but not in equilibrium.


4.2. Nucleation theory


The observations of nucleation in granular and colloidal matter could perhaps provide


insight into nucleation more generally. The current state of the art in nucleation theory


is a collection of models called Classical Nucleation Theory (CNT) [40], which has


developed over many years to describe the spontaneous development of small crystalline


clusters in a fluid. In CNT there exists a ‘critical’ size of a crystalline cluster which, once


surpassed, will grow to macroscopic size. Such a critical size has been observed in the


recent experiments on nucleation in colloidal and granular systems, as Fig. 6 illustrates:


in the colloidal system crystalline clusters with fewer than ∼ 100 particles shrank while


larger clusters grew (Gasser et al. [39]), and in the granular experiment crystalline
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clusters with fewer than ∼ 10 spheres shrank while larger clusters predominantly grew.


While Classical Nucleation Theory provides a qualitative picture of nucleation that


is consistent with observations, it is not a fundamental theory that can be tested


quantitatively in physical experiments. Perhaps detailed measurements of nucleation


in colloidal and granular systems will guide the development of a quantitative theory


of nucleation that can be tested in experiments on both macroscopic and microscopic


systems.


Figure 6: In both the granular and colloidal systems small crystalline clusters usually


shrink while crystallites above a critical size grow, as demonstrated by these results: (a)


in sheared granular matter (from Fig. 4(a) of Rietz et al. [6]), and (b) in a colloidal


system with φ=0.47 (Fig. 2 of Gasser et al. [39]).


4.3. Glassy states of granular matter


Nucleation is significant because of the difficulty of a (disordered) fluid to freeze to an


ordered (crystalline) solid. There can also be barriers between different phases of a


solid, a well known example being diamond, which is pure carbon and obviously not the


equilibrium state at room temperature and pressure, which is graphite. In this sense one
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could consider diamond at room temperature and pressure to be a glassy state of carbon.


The stability of diamonds implies the barrier is high against nucleation to the graphite


phase. Understanding such barriers in their generality is an essential part of the ‘glass


problem’. One view of the granular experiment of Rietz et al. [6] is that the experiment


revealed an appropriate physical protocol to ‘equilibrate’ supercooled granular matter to


a crystalline state, smoothly but with an observable nucleation barrier, which turned out


to explain RCP. This suggests that granular matter under cyclic shear can provide an


unusual setting to help understand some of the phenomena involved in glass formation.


A similar claim has been made [39] for the nucleation of hard colloids, but precision for


colloids is limited by the 3-6% uncertainty in the determination of particle size, which


is illustrated by the images in Fig. 2 (from [22]).


Any sufficiently large gas such as the atmosphere, or even a typical small solid such


as a rock conglomerate, is heterogeneous at the largest scale, and basic physical theory


is usually applied first to homogeneous parts and then extended to the heterogeneous


material. In particular, we expect typical granular matter, such as a sand pile, to be


heterogeneous in density (and composition). At least since the 1996 experiment by


Nowak et al. [41], researchers have tried multi-axis shaking [31-33], cyclic shear [17,


34-35], continuous shear [20, 36-37] and sedimentation [38] to prepare homogeneous


granular matter to which one could apply the Edwards theory, with its ensembles of


static spheres. In contrast, when a granular material is fluidized as in [15] or [20] and


the external vibration is quickly removed, the static material can be considered ‘glassy’,


with mechanical properties different from, and harder to analyze than, those of the fluid.


The interpretation that the static state is the result of such a quench derives from the


difference of its disordered state from the granular matter at the end of the experiment


of Rietz et al., at low but still positive temperature. The result of quenching from such


a crystalline state would still be crystalline, and quite different from commonly observed


disordered granular matter.


The above discussion on the glassy state of granular matter should be distinguished


from those theories which associate a glassy state, or transition to a glassy state, in


analyses of hard sphere models without the ingredient of gravity; see for example [42].


5. Conclusions


We have sketched a way to understand the properties of granular matter composed


of grains moving in response to a certain type of heat bath, explicitly drawing the


approach from physical experiments that reveal relevant properties of granular and


colloidal matter. The present view uses well-defined properties of granular and colloidal


matter to explain how control parameters can turn granular matter from fluid-like to


solid-like behavior through a sharp phase transition. Along the way this approach


interprets several experiments on RCP that are outside the purview of the Edwards


model.


With this perspective on granular matter it is natural to seek an ensemble model
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such as that of Edwards, from which one could in principle compute material properties.


However, if the interest were ultimately in the properties of static granular matter, as


in the solidity of a dry bed of sand as discussed in the Introduction, such a model would


only be of use for (rare) systems with volume fraction above RCP, i.e., above φ = 0.645.


In the heat bath approach static systems with density below RCP are treated as glassy,


and an ensemble model of fluidized granular matter would be of little direct use. That


said, the experiment of Rietz et al. exhibits a simple physical protocol, namely, very


small angle (0.6◦) and very low rate (0.5 Hz) of shear perpendicular to gravity, which


‘equilibrates’ any static initial state into a crystalline state; hence high density granular


matter is now a natural target for study. Aside from the inherent interest in this


crystalline state of physical granular matter, this protocol would also be of potential use


in investigating the general phenomenon of the nucleation of crystalline structure out


of disorder.
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