Homework assignments for M328K ==================================== Nr Section : Problems ------------------------------------ [1] 1.3 : 4,14,30 1.5 : 6,8,16,34 ------------------------------------ due Tue Jun 10 [2] 3.3 : 6,12,22 3.1 : 6 3.4 : 2,4 ... : A1 (see below) ------------------------------------ due Fri Jun 13 [3] 3.5 : 40,62d,66 3.7 : 2 ... : A2,A3,A4 (see below) 4.1 : 4,24,28 ------------------------------------ due Tue Jun 17 [4] 4.2 : 2bde,6,10,12,18 4.3 : 4a,4b,12,16 ------------------------------------ due Fri Jun 20 [5] 5.1 : 4,19,24 6.1 : 10,20,28 6.3 : 6,8,11 ------------------------------------ due Tue Jun 24 [6] 6.2 : 2,8,10 7.1 : 2e,8,12,19,22,38,40 ------------------------------------ due Fri Jun 27 [7] 7.2 : 1g,2e,6e,12,26 7.3 : 4c,29c 7.4 : 14 ------------------------------------ due Tue Jul 1 [8] 6.1 : 46 9.1 : 2,6,16 9.3 : 8,10 9.4 : 1,2,3,4,18 ------------------------------------ due Tue Jul 8 ================================================= NOTE: NO LATE HOMEWORK Unless stated otherwise in class, homework is assigned every Tuesday and Friday, and collected in class the following Friday and Tueday, respectively. Late homework will not be accepted. But as announced, the lowest homework score gets dropped before computing the homework average. ================================================= PROBLEMS A1 .. A4 A1. Show that if n|a and n|b then n|gcd(a,b). A2. Show that if a|n and b|n then lcm(a,b)|n. A3. Let a and b be positive integers with gcd(a,b)=1. Show that if a positive integer n divides ab, then n is the product of gcd(n,a) and gcd(n,b). A4. Let a and b be positive integers with gcd(a,b)=1. Show that any positive divisor n of ab can be written in a unique way as a product n=st, where s is a positive divisor of a and t a positive divisor of b.