Homework assignments for M361 =================================== Nr Section : Problems ----------------------------------- [1] 1.2 : 2,4,6,8,10,18,20,24 Aug 25 → Sep 1 ----------------------------------- [2] 1.3 : 2,4,8,20,26,28 1.4 : 11,14 Sep 1 → Sep 8 ----------------------------------- [3] 1.4 : 8,15,18,19,20,21 1.5 : 1,9 Sep 9 → Sep 15 ----------------------------------- [4] 1.5 : 18a-c,19,23,27a-b Sep 15 → Sep 29 ----------------------------------- [5] 1.6 : 1,3,10 2.1 : 3,7 Sep 29 → Oct 6 ----------------------------------- [6] 2.1 : 4,12,13 2.2 : 1,5,9 (see R1 below) Oct 6 → Oct 20 ----------------------------------- [7] 2.3 : 1,2,7,10 2.4 : 1,2,5,17,19 Oct 20 → Nov 3 ----------------------------------- [8] 2.5 : 2,3,5 3.1 : 3,4,6,14 Nov 3 → Nov 10 ----------------------------------- [9] 3.2 : 1,3,5b,8,13,25 3.3 : 1a,1d,4,14,18 Nov 10 → Nov 24 ----------------------------------- [10] 3.3 : 19 4.2 : 10,15 4.3 : 3,8,20 Nov 24 → Dec 1 ----------------------------------- ====================================================== REMARKS R1 .. Denote by C the set of all complex numbers. Definition. A bounded subset of C is said to be simply connected if both the set and its complement are connected. Theorem. (Cauchy's theorem) Let A be a simply connected bounded open subset of C, and let f: A→C be analytic. If γ is a closed piecewise C1 curve in A, then the integral of f along γ is zero: ∫γf(z)dz=0 R1. For the problems in Section 2.2 you can use Cauchy's theorem above. You may take for granted that disks and rectangles are simply connected.