Homework assignments for M361
===================================
Nr Section : Problems
-----------------------------------
[1] 1.2 : 2,4,6,8,10,18,20,24 Aug 25 → Sep 1
-----------------------------------
[2] 1.3 : 2,4,8,20,26,28
1.4 : 11,14 Sep 1 → Sep 8
-----------------------------------
[3] 1.4 : 8,15,18,19,20,21
1.5 : 1,9 Sep 9 → Sep 15
-----------------------------------
[4] 1.5 : 18a-c,19,23,27a-b Sep 15 → Sep 29
-----------------------------------
[5] 1.6 : 1,3,10
2.1 : 3,7 Sep 29 → Oct 6
-----------------------------------
[6] 2.1 : 4,12,13
2.2 : 1,5,9 (see R1 below) Oct 6 → Oct 20
-----------------------------------
[7] 2.3 : 1,2,7,10
2.4 : 1,2,5,17,19 Oct 20 → Nov 3
-----------------------------------
[8] 2.5 : 2,3,5
3.1 : 3,4,6,14 Nov 3 → Nov 10
-----------------------------------
[9] 3.2 : 1,3,5b,8,13,25
3.3 : 1a,1d,4,14,18 Nov 10 → Nov 24
-----------------------------------
[10] 3.3 : 19
4.2 : 10,15
4.3 : 3,8,20 Nov 24 → Dec 1
-----------------------------------
======================================================
REMARKS R1 ..
Denote by C the set of all complex numbers.
Definition.
A bounded subset of C is said to be simply connected
if both the set and its complement are connected.
Theorem. (Cauchy's theorem)
Let A be a simply connected bounded open subset of C,
and let f: A→C be analytic.
If γ is a closed piecewise C1 curve in A,
then the integral of f along γ is zero: ∫γf(z)dz=0
R1. For the problems in Section 2.2 you can use Cauchy's theorem above.
You may take for granted that disks and rectangles are simply connected.