Homework  assignments  for  M361
===================================
Nr Section : Problems
-----------------------------------
[1]    1.2 : 2,4,6,8,10,18,24         Sep  1 → Sep  8
-----------------------------------
[2]    1.3 : 2,4,8,20,26,28           Sep  8 → Sep 15
-----------------------------------
[3]    1.4 : 7,8,11,14,15,18,21       Sep 15 → Sep 22
-----------------------------------
[4]    1.5 : 18a-c,19,23,27a-b
       1.6 : 2,3,10                   Sep 22 → Oct  6
-----------------------------------
[5]    2.1 : 1,7a,9,12
       2.2 : 1,5,9   (see R1 below)   Oct  6 → Oct 13
-----------------------------------
[6]    2.3 : 1,2,7,10                 Oct 13 → Oct 20
-----------------------------------   
[7]    2.4 : 1,5,13,17
       ... : A1  (see below)          Oct 20 → Oct 27
-----------------------------------
[8]    2.5 : 2,3,5,10
       3.1 : 3,4,6                    Oct 27 → Nov  3
-----------------------------------
[9]    3.2 : 1,3,5b,8,13,18           Nov  3 → Nov 10
-----------------------------------
[10]   3.3 : 1a,1d,4,9,11             Nov 10 → Nov 17
-----------------------------------
[11]   4.1 : 2a,8
       4.2 : 3,5,10                   Nov 17 → Nov 24
-----------------------------------
[12]   4.3 : 3,8,20                   extra problems


======================================================
REMARKS R1 .. 

Denote by C the set of all complex numbers.

Definition.
A bounded subset of C is said to be simply connected
if both the set and its complement are connected.

Theorem. (Cauchy's theorem)
Let A be a simply connected bounded open subset of C, and let f: AC be analytic.
If γ is a closed piecewise C1 curve in A then γf(z)dz=0.

R1. For the problems in Section 2.2 you can use Cauchy's theorem above.
You may take for granted that disks and rectangles are simply connected.

======================================================
PROBLEMS A1 .. 

A1. Let 0<a<1. Compute the integral I=(1+a2cos(t))-1dt where t ranges from 0 to .
Hint: Rewrite I as an integral γf(z)dz along the unit circle γ(t)=eit,
      using that cos(t)=(z+1/z)/2 for z=eit.