Homework assignments for M361
===================================
Nr Section : Problems
-----------------------------------
[1] 1.2 : 2,4,6,8,10,18,24 Jan 14 → Jan 21
-----------------------------------
[2] 1.3 : 2,4,8,20,26,28 Jan 21 → Jan 28
-----------------------------------
[3] 1.4 : 7,8,11,14,15,18,21 Jan 28 → Feb 11
-----------------------------------
[4] 1.5 : 18a-c,19,23,27a-b Feb 11 → Feb 18
-----------------------------------
[5] 1.6 : 2,3,10
2.1 : 2a,3,7 Feb 18 → Feb 25
-----------------------------------
[6] 2.1 : 4,12,13
2.2 : 1,5,9 (see R1 below) Feb 25 → Mar 6
-----------------------------------
[7] 2.3 : 1,2,7,10 Mar 4 → Mar 18
-----------------------------------
[8] 2.4 : 1,5,13,14,17 Mar 18 → Mar 25
-----------------------------------
[9] 2.5 : 2,3,5,10
3.1 : 3,4,6 Mar 25 → Apr 1
-----------------------------------
[10] 3.1 : 14
3.2 : 1,3,5b,8 Apr 1 → Apr 8
-----------------------------------
[11] 3.2 : 13,18
3.3 : 1a,1d,4,9,11 Apr 8 → Apr 15
-----------------------------------
[12] 4.1 : 2a,8
4.2 : 3,5,10 Apr 15 → Apr 22
-----------------------------------
[13] 4.3 : 3,8,20 extra problems
======================================================
REMARKS R1 ..
Denote by C the set of all complex numbers.
Definition.
A bounded subset of C is said to be simply connected
if both the set and its complement are connected.
Theorem. (Cauchy's theorem)
Let A be a simply connected bounded open subset of C,
and let f: A→C be analytic.
If γ is a closed piecewise C1 curve in A,
then the integral of f along γ is zero: ∫γf(z)dz=0
R1. For the problems in Section 2.2 you can use Cauchy's theorem above.
You may take for granted that disks and rectangles are simply connected.