Homework assignments for M361 =================================== Nr Section : Problems ----------------------------------- [1] 1.2 : 2,4,6,8,10,18,24 Jan 14 → Jan 21 ----------------------------------- [2] 1.3 : 2,4,8,20,26,28 Jan 21 → Jan 28 ----------------------------------- [3] 1.4 : 7,8,11,14,15,18,21 Jan 28 → Feb 11 ----------------------------------- [4] 1.5 : 18a-c,19,23,27a-b Feb 11 → Feb 18 ----------------------------------- [5] 1.6 : 2,3,10 2.1 : 2a,3,7 Feb 18 → Feb 25 ----------------------------------- [6] 2.1 : 4,12,13 2.2 : 1,5,9 (see R1 below) Feb 25 → Mar 6 ----------------------------------- [7] 2.3 : 1,2,7,10 Mar 4 → Mar 18 ----------------------------------- [8] 2.4 : 1,5,13,14,17 Mar 18 → Mar 25 ----------------------------------- [9] 2.5 : 2,3,5,10 3.1 : 3,4,6 Mar 25 → Apr 1 ----------------------------------- [10] 3.1 : 14 3.2 : 1,3,5b,8 Apr 1 → Apr 8 ----------------------------------- [11] 3.2 : 13,18 3.3 : 1a,1d,4,9,11 Apr 8 → Apr 15 ----------------------------------- [12] 4.1 : 2a,8 4.2 : 3,5,10 Apr 15 → Apr 22 ----------------------------------- [13] 4.3 : 3,8,20 extra problems ====================================================== REMARKS R1 .. Denote by C the set of all complex numbers. Definition. A bounded subset of C is said to be simply connected if both the set and its complement are connected. Theorem. (Cauchy's theorem) Let A be a simply connected bounded open subset of C, and let f: A→C be analytic. If γ is a closed piecewise C1 curve in A, then the integral of f along γ is zero: ∫γf(z)dz=0 R1. For the problems in Section 2.2 you can use Cauchy's theorem above. You may take for granted that disks and rectangles are simply connected.