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Motivation & Background

Q: Why study diffeomorphism groups?

A1: The homotopy-type of diffeomorphism groups are related to some of the
most basic features of manifold theory.

eg1: The homotopy-equivalence Diff(S1 × D1) ≃ Z is (largely) a manifestation
of the linking number and Schönflies theorem.

In this presentation Diff(M) denotes all diffeomorphisms of M
that restrict to the identity on ∂M.



Motivation & Background

Q: Why study diffeomorphism groups?

A1: The homotopy-type of diffeomorphism groups are related to some of the
most basic features of manifold theory.

eg2: Diff(S1 × D2) ≃ {∗} is a manifestation of Dehn’s Lemma and Alexander’s
Theorem.



Motivation & Background

Q: Why study diffeomorphism groups?

A1: The homotopy-type of diffeomorphism groups are related to some of the
most basic features of manifold theory.

eg3: Diff(S1 × Dn−1) acts transitively on Emb(Dn−1, S1 × Dn−1).

Emb(Dn−1, S1 ×Dn−1) is the space of smooth embeddings Dn−1 → S1 ×Dn−1

that restrict to the standard inclusion ({1} × Dn−1), on the boundary. This
result is true for all n.



Motivation & Background

Q: Why study diffeomorphism groups?

A2: Diffeomorphism (families) are used to describe smooth bundles, clutching
map constructions, etc.

eg1: π0Diff(Dn−1) is isomorphic to the group of oriented homotopy n-spheres,
provided n ≥ 6.



Motivation & Background

Q: Why study diffeomorphism groups?

A3: Determining the structure of diffeomorphism groups of manifolds is one of
the few remaining big open problems in high-dimensional manifold theory.

eg1: ‘There is no compact manifold M of dimension 4 or larger for which we
know the homotopy-type of Diff(M).’ (Allen Hatcher)



Motivation & Background

Q: Why study diffeomorphism groups?

A3: Determining the structure of diffeomorphism groups of manifolds is one of
the few remaining big open problems in high-dimensional manifold theory.

eg2: ‘We choose to go to the moon in this decade and do the other things, not
because they are easy, but because they are hard.’ (John F. Kennedy)



Motivation & Background (Dim 1)

Theorem: The inclusion

O2 → Diff(S1)

is a homotopy-equivalence.

Proof uses the ‘straight-line homotopy’.

More geometrically, the ‘elastic bending energy’ functional (Kusner, J. Sullivan)
gives a deformation-retraction of Maps(S1, S1) to the ‘constant-speed
subspace.’ This deformation-retraction restricts to a deformation-retraction of
Diff(S1) to O2.

The question of whether or not the inclusion On+1 → Diff(Sn) is a
homotopy-equivalence is often called the Smale Conjecture (for spheres).



Motivation & Background (Dim 2)

The main results in dimension two are:

▶ Diff(S2) ≃ O3

▶ Diff(S1 × S1) ≃ S1 × S1 × GL2Z

▶ Diff(Σg ) ≃ π0Diff(Σg ) for g ≥ 2, i.e. Diff(Σg ) has contractible
components.



Motivation & Background (Dim 2)

A comment on the proofs

Earle-Eells (1967) geometric approach uses the fibre-sequence

Diff0(Σ) → C(Σ) → T (Σ)

where T (Σ) is the Teichmuller space associated to the surface Σ and C(Σ) is
the space of complex structures on Σ.

Smale (1959)-Gramain (1973) cut-and-paste approach, one considers fiber
sequences

Diff(Σ) → Emb(S1,Σ) Diff(Σ) → Emb(I ,Σ)

which reduce the study of Diff(Σ) to embeddings of curves in a surface, and by
induction to Diff(D2) ≃ {∗} (Smale).



Motivation & Background (Dim 3)

‘Tell me your 3-manifold M and I can tell you the homotopy-type of Diff (M).’

These results have two forms:

Generalized Smale conjectures: Diff(M) has the homotopy-type of a
(usually) compact subgroup of automorphisms, provided M is a geometric
manifold. Typically this subgroup is Isom(M). The top-level results of this
form are due to Hatcher, Gabai, Bamler-Kleiner (unpublished), but this builds
on the work of many others, including: Waldhausen, Ivanov, Rubinstein,
Bonahon, Otal, and many others.

For non-geometric manifolds there are theorems that describe the
homotopy-type of Diff(M) in terms of its geometric decomposition and
Diff(Ni ) where Ni are the irreducible or atoroidal bits. In the case of the
connect-sum decomposition there is the work of César de Sá, Rourke, Hendriks
and Laudenbach, which give non-compact automorphism subgroups in general.
In the case of incompressible surfaces there is the work of Hatcher and Ivanov.



Motivation & Background (high dimensions)

The Cerf-Morlet Comparison Theorem,

Diff(Dn) ≃ Ωn+1 (PLn/On) .

This theorem is mostly used as a device to compare the homotopy groups of
PLn and On, i.e. at present we have no direct method of analysing the
homotopy of PLn, the space of PL automorphisms of Rn.

In proper context this should be viewed as a precursor to smoothing theory,
i.e. this has a more natural interpretation as a homotopy description of the
space of smooth structures on Dn.



Motivation & Background (high dimensions)

Definition: A pseudo-isotopy diffeomorphism of a manifold N is a
diffeomorphism of I × N that is the identity on {0} × N ∪ I × ∂N.

Such a diffeomorphism would be an isotopy (to the identity map) provided the
level-sets {t} × N for t ∈ I were preserved, explaining the usage of pseudo.

PDiff(N) = {f : pseudoisotopy diffeo of N}.

There is a fibre-bundle

Diff(I × N) → PDiff(N) → Diff(N)

called the pseudo-isotopy fiber sequence.



Motivation & Background (high dimensions)

Theorem: (Hatcher-Wagoner) assuming n ≥ 6,

π0Diff(S1 × Dn−1) ≃ π0Diff(Dn)⊕ π0Diff(Dn−1)⊕
⊕
∞

Z2.

The infinite-rank 2-torsion factor on the right is the image of the
pseudo-isotopy fiber sequence

π0Diff(I × S2 × Dn−1) // π0PDiff(S1 × Dn−1)
! // π0Diff(S1 × Dn−1) .



Motivation & Background (high dimensions)

Theorem: (Hatcher-Wagoner) assuming n ≥ 6,

π0Diff(S1 × Dn−1) ≃ π0Diff(Dn)⊕ π0Diff(Dn−1)⊕
⊕
∞

Z2.

There is a homotopy-equivalence

Diff(S1 × Dn−1) ≃ Diff(Dn)× Emb(Dn−1, S1 × Dn−1).

Hatcher-Wagoner is further saying that

π0Emb(Dn−1, S1 × Dn−1) ≃ π0Diff(Dn−1)⊕
⊕
∞

Z2.



Motivation & Background (high dimensions)

Theorem: (Cerf) PDiff(M) is connected provided m ≥ 5 and M is
simply-connected.

Corollary: Every diffeomorphism of a simply-connected manifold M of
dimension m ≥ 6 that has an interval factor (M ≃ N × I ) is isotopic to one
that is level-preserving in the I -factor.



Motivation & Background (high dimensions)

One of Cerf’s central constructions is the observation that one can almost
reconstruct elements of f ∈ PDiff(M) from the composite:

I ×M

π◦f
$$

f // I ×M

π

��

I

This gives a homotopy-equivalence between PDiff(M) and the space of smooth
functions I ×M → I without critical points (with the appropriate boundary
conditions), allowing us to think of PDiff(M) as the non-singular strata of the
space of smooth functions I ×M → I .



Motivation & Background (high dimensions)

Theorem: (Hatcher, Igusa) The inclusion map PDiff(M) → PDiff(M × I )
induces an isomorphism of homotopy groups in the range i < min{m−4

3
, m−7

2
}.

Now this is known as the Igusa Stable Range. It was stated incorrectly in
Hatcher’s Higher Simple Homotopy Theory and later proven in Igusa’s Ph.D
thesis.



Motivation & Background (high dimensions)

Definition: The collection of diffeomorphisms of ∆k ×M that restrict to the
identity on ∆k × ∂M and preserve the faces di∆

k ×M, as a simplicial set, is
called the space of block diffeomorphisms of M, D̃iff(M).

Theorem: (Hatcher) Spectral sequence for computing the homotopy

groups of D̃iff(M)/Diff(M) in terms of the homotopy of PDiff(M × Dk).



Motivation & Background (high dimensions)

Theorem: (Hatcher*, Igusa) There is a map

PDiff(M) → ΩWh(M)

that is an isomorphism on homotopy groups in the Igusa stable range.
The space Wh(M) is the Whitehead space of M, sometimes called ’higher
simple homotopy theory’. Wh(M) is the classifying space of the ‘category of
spaces with arrows the simple homotopy equivalences’ interpreted appropriately.

* Hatcher stated this in PL category, but proof was wrong. Igusa stated and
proved in smooth category. Burghelea later gave a PL version of theorem for
smoothable PL-manifolds.



Motivation & Background (high dimensions)

Theorem: (Casson, Sullivan, Wall, Quinn, Ranicki) The homotopy of

HomEq(M)/D̃iff(M)

is computable via L-theory (a spectrum).

i.e. The gap between Diff(M) and D̃iff(M) controlled by pseudo-isotopy.

The gap between D̃iff(M) and HomEq(M) controlled by L-theory.



Motivation & Background (dim 4)

Theorem: (Quinn) Homotopic diffeomorphisms of a closed
simply-connected smooth 4-manifold are isotopic after taking a connect-sum
with (perhaps several copies of) S2 × S2.

Theorem: (Ruberman) Stabilization can be necessary.


