Jsolopy classification of $\frac{1}{2}$-dines in 4 -manifolds,
joint with Danica Kosanović.

Nov. 4, 2022 Ban ff, Canada 4.5- dim. topology 1
A 13 pictures talk based on 2 recent papers.

Classical LBT: Emit $\left(\mathbb{D}_{2}^{1}, M^{3}\right) \longleftrightarrow C_{\partial}^{\infty}\left(D^{1}, M^{3}\right) \simeq \Omega M$ incluces isom. on π_{0}, i.e. isotopy \Longleftrightarrow homotopy for knotted arcs K sit. ∂K has a dual $G: S^{2} \hookrightarrow \partial M$. Space - level: $\forall d \geqslant 2, \operatorname{Emb}_{\partial}\left(D^{1}, M^{d}\right) \simeq \Omega_{u_{-}}^{u_{+}}\left(\Phi_{G}^{d-1}\left(M \cup \mathbb{D}^{\alpha}\right)\right)$

The :: $\begin{gathered}\forall d \leqslant n \leqslant d \\ 1 \leqslant k \leqslant \\ \operatorname{Emb}\left(D^{n}, M^{d}\right) \simeq\end{gathered}$ $[K T$-higl-dim, following Cerf $(n=d)]$
$\Omega_{u_{-}^{\varepsilon}}^{u^{\varepsilon}} E_{m b}^{\varepsilon}\left(D^{D^{n-1}}, M_{i i}^{G}\right)$ Mu l G
if ∂D^{n} has framed dual sphere $G: S^{d-n} \subset \partial M$.

$$
n=2, d=3
$$

Proof in 2 steps using $\frac{1}{2}$-disks $O^{n}=$:
$M \cong M_{G} \cdot v\left(u_{t}\right)$ uses only $\operatorname{Emn}_{u_{\underline{\varepsilon}}}\left(O^{n}, M_{G}\right) \simeq *$ which is the cheap unknotting ∇_{0}

On each homotopy group π_{i}, an inverse of

$$
\operatorname{Emb}_{\partial^{\varepsilon}}\left(O^{n}, M_{G}\right) \xrightarrow[\underline{n}]{\text { foliate }} \Omega \operatorname{Emb}_{\partial}^{\varepsilon}\left(\mathbb{D}^{n-1}, M_{G}\right)
$$

is given by the i-parameter version of ambient iso topS tho rem applied to U, e.g. $(n, d, i)=(1,3,0), \quad r:[0,1] \underset{\text { isotopy }}{\text { one }} \operatorname{Emb}\left([0, \varepsilon), M_{G}\right)$

Focus on $(n, d)=(2,4)$ and on π_{0}, i.e. on isotopy classes.

iso tory classes of $\frac{1}{2}$-disks:
Cor. 1 :

[Day, Dave, Danica]

- $l=u_{-} \cup u_{t}$ is the $\frac{1}{2}$-boundary condition,
- $\pi=\pi_{1} x, X^{4}$ oriented 4 - mfd. with $\partial x \neq \varnothing$,
- $u=$ "un-1-dish" with boundary k,
- $\operatorname{Dax}=D_{e x}$-invariant for homotopic $\frac{1}{2}$-disks.
$u \stackrel{g \in \pi}{\longmapsto} u+f_{m}(g)$

1) finger move on U $a \operatorname{lon} g \quad g \in \pi$,
2) push P_{t} off free boundary u_{t} along distinct sheets:
 action

Back to neat disks $\left(D^{2}, \partial\right) \longrightarrow\left(M^{4}, \partial\right)$ with ∂ - condition k that has dual $G: S^{2} \hookrightarrow \partial M$.

Cor. 2: There is a group structure on isotopy classes fitting into a central extension

The group commentator of K_{1}, K_{2} is

$$
\left[K_{1}, K_{2}\right]=\mathrm{U}+\operatorname{fm}\left(\lambda\left(-\mathrm{U} \cup K_{1},-\mathrm{U} \cup K_{2}\right)\right)^{G}
$$

Here the group $\mathbb{E}[\pi 1] /$ da
acts via

Jun particular, the group $\mathbb{D}\left(M_{j} \varepsilon\right)$ is
2- step nilpoknt but usually
nor-abelian, the extension does not split.

We use a subtle extension from $\mathbb{Z}[\pi \backslash 1]$ - to $\mathbb{E}[\pi]$-action by letting $1 \in \pi$ act via $K \longmapsto K_{\text {to }} \longmapsto K_{\text {to }}^{G}:$

My favorile algebraic to pologg result in [KT-4-dim]
Theorem 3.15. There is a commutative diagram of short exact sequences of abelian groups for any connected 4-manifold X will $\partial X \neq \varnothing$

$$
\begin{aligned}
& \Gamma\left(\pi_{2} X\right) \stackrel{\Gamma(-\circ H)}{\longrightarrow} \pi_{3} X \xrightarrow{\text { Hour }} H_{3} \tilde{X} \\
& \downarrow \Gamma\left(\mu_{2}\right) \quad \downarrow \operatorname{dax} \quad{ }^{\mu_{3}} \\
& \mathbb{Z}[\pi \backslash 1] /\langle\bar{g}-g\rangle \stackrel{g \mapsto g+\bar{g}}{ } \mathbb{Z}[\pi \backslash 1]^{\sigma} \longrightarrow \mathbb{Z}[\pi]^{\sigma} /\langle 1, g+\bar{g}\rangle \cong \mathbb{F}_{2}\left[\begin{array}{l}
\pi
\end{array}\right]
\end{aligned}
$$

In particular, $\operatorname{dax}(a \circ H)=\mu_{2}(a)+\overline{\mu_{2}(a)}=\lambda(a, a)$ for all $a \in \pi_{2} X$,

$$
\operatorname{dax}\left(\left[a_{1}, a_{2}\right]_{\mathrm{Wh}}\right)=\lambda\left(a_{1}, a_{2}\right)+\lambda\left(a_{2}, a_{1}\right) .
$$

and $\mathbb{E}[\pi \cdot 1]^{\sigma} / \operatorname{dax}\left(\pi_{3} X\right)$ is, up to an extension, determined by $\mu_{2}, \mu_{3} \nabla_{0}$

