Light bulb concordance ( 20 min )
Thu (4D light bulb Gabai 2017 )


$$
R, R^{\prime} \longleftrightarrow X^{4}
$$

hope 2 -spheres
which have common dual sphere
Def Given $R C X^{4}$, say $G$ is a dual sphere for $R$ if $G=2$-sphere w/ trim. normal bundle and $R \cap G=p t$ and $\pi_{1}\left(X^{4}\right)$ has no 2-tarsian, Hen $R$ and $R^{\prime}$ are ambiently isotopic. statement when $\pi_{1}\left(x^{4}\right)$ has 2 torsion

7 modified
.

- Study hogumotory

Domain $s^{2} \times I$ between R R'

Gabai's condition: Every element of $T_{2}-\{1\}$ appears as a self-intersection
or 2 tension subge of $\pi, X$
$\Rightarrow R, R^{\prime}$ isotopic
Tum (Schwartz)
This condition is necessary.

3D analogue
Let $K \subset S^{1} \times S^{2}$ be a circle intersecting $p t \times S^{2}$ once (tronsuesely).
Then $K$ isotopic to $S^{\prime} \times p t$.
(Andlogue: $K=R^{\prime} \quad S^{\prime} \times p t=R, \quad p^{t} \times S^{2}=G$ )

What if $\left|K \cap p+x S^{2}\right|>1 ?$
Say $[K]=\left[S^{\prime} \times p t\right]$ in $H_{1}\left(S^{\prime} \times s^{2}\right)$


But
$\frac{\text { But }}{\text { Thu (Yildiz; Davis - Nagel-Park-Ray) }}$

$$
\text { If }[K]=\left[S^{\prime} \times p t\right] \text { in } H_{1}\left(S^{\prime} \times S^{2}\right)
$$ Her $K$ cencordent to $S^{\prime} \times p t$.

Pf thet $K$ cancordant to S'xpt

- K hamatopic to S'xpt through crossing changes


Build concerdance frem crossing chages

$$
\begin{aligned}
& \xrightarrow[t]{\left(s^{\prime} \times s^{2}\right) \times 0 \quad\left(s^{\prime} \times s^{2}\right) \times t}\left(s^{1} \times s^{2}\right) \times 1
\end{aligned}
$$

This is a picture of surface
EOD Aning Anulus
$\sim$ concerdence from $K$ to S'ppt.

Back to dim'n 4
Thm
If $R, R^{\prime} \hookrightarrow X^{4}$ htpe 2-sploes ${\underset{S}{\text { ' }} \text { pt }}_{R}$ has trensuerse sphere $G$
then $R$ and $R^{\prime}$ are concordent.
same
conditian

$$
\begin{aligned}
& \text { on } \\
& \text { homotapy }
\end{aligned}
$$

$$
\begin{aligned}
& n_{1}\left(s^{2}=s^{2}, K\right)=A_{s} s K_{\text {at }} \text { istpic } \\
& \text { to } s^{3} \text { pt (Due to Sato) }
\end{aligned}
$$

4DLBT Proof idea
Step 1
$R^{\prime}$ can be put into standard form: tubed surface R

R

single tube


Requaler Intpy of sutaces (see e.j.
Freedmen-Quinn)
Finges mare


Whitney

Thu (Swale)
If $R, R^{\prime}$ embeddeel
Wipe surfaces in $X^{4}$ then $R$ and $R^{\prime}$ are reg hope
Thu (Quinn?)
Then $f$ a sequence of finger moves $f_{1}, \ldots, f_{n}$ followed by hhitrey moves $w_{1}, \ldots, w_{n}$ ( $w$ ) intermediate isotepies) so

$$
R^{\prime} \rightarrow f_{1}, f_{2}, \ldots, f_{n}, w_{1}, \ldots, w_{n} \rightarrow R
$$

Hae $R^{\prime}$ isotopic to tubed suffice $R^{\prime \prime}$ on $R$
Gabar

$$
\begin{aligned}
& \sim \text { List } \\
& \left\{[\eta] \in \pi,\left(X^{4}, z\right)\right.
\end{aligned}
$$

$\eta$ a double tube $\left.\& \mathbb{R}^{\prime \prime}\right\}$
If every 2 -torsion element of $(X,(X)$ appears an even $\#$ of tines, then $R^{\prime \prime}$ isotopic to $R$.

Now prove concordance
Setup $R, R^{\prime}$ (reg) hope 2 -spheres in $X^{4}$
$G$ a transwose sphere for $R$
finger moves $f_{1}, \ldots, f_{n}$ then Whitney moves $w_{1}, \ldots, w_{n}$ takes $R^{\prime}$ to $R$.

Step 1

$$
S=R^{\prime} \text { after } f_{1}, \ldots, f_{n}
$$

$$
S_{+}=\text {gerus-n surface }
$$


$S$ immersed but tube $S_{+}$embedded.
Con also obtain $S_{+}$by attaching tubes to $R$.


This gives a cobardism $M$, from $R$ to $S_{+}$in $X^{4} \times I$ where $M=R \times I$ $u_{n}$ 1-hodles
To geometrically cancel 1 thole, we wort to attach 2-handles along these circles:


Isctape $S_{+}$near Whitney moves (in order, tubes disjoint fran interior of dish by dimensiadity)




Take Bi still centered about point $b_{i}$ in $\mathbb{R}$. Choose arcs from $b$ : to $z$ and compress $T_{i}$ along disks parallel to tube rand arcs $+G$ to obtain $R^{\prime \prime}$.


2-hardle
$\leadsto$ cebardism $M_{2} C X^{4} \times I$ from $S_{+}$to $R^{\prime \prime}$

$$
\begin{aligned}
& M_{2}=S_{+} \times I \cup n \text { 2-hadles } \\
& N=M_{1} \cup M_{2}
\end{aligned}
$$

= concardance frem $R^{\prime}$ to $R^{\prime \prime}$

uncrossed $w_{i} \leadsto$ single tubes crossed $w_{i} \rightarrow$ cable tubes

$$
\therefore \text { If } n_{1}\left(x^{4}\right) n_{0}
$$ 2-tersian, then $R^{\prime \prime}$ isotopic to $R \leadsto$ done.



The (YD (BT Gabai)
$L$ et $R, R^{\prime}$ be utpc 2 -sploes embedeled in $X^{4}$ with mutual tronsuese sphere $G$.

Say finger moves $f_{1}, \ldots, f_{n}$ followed by Whitney, mores $w_{1}, \ldots, w_{1}$ take $R^{\prime}$ to $R$.

Let $S=R^{\prime}$ after $f_{1}, \ldots, f_{n}$.
Let $\left(x_{1}, y_{1}\right) \ldots,\left(x_{2 n}, y_{2 n}\right)$ be preimages of self-intersections of $S$ (made $2 n$ choices)

Say wi Whitrey mare on disk $W_{i}$, bandary $W_{i}$ connects


Let $\eta_{i}$ be the arc in $X^{4}$ with bander on $R$ defining inverse finger mare to $w$ :
List $\left\{\left[\eta_{i}\right] \in \lambda,\left(x^{4}, z\right) \mid\right.$
$w_{i}$ crossed $\xi$
If every element of 2 -persian appears even \# of tines, then $R^{\text {is }}$ isotopic.

The
Same as abcue except only $R$ trossuose to $G$
$\Rightarrow$ conclucle $R$ and $R^{\prime}$ are concordant.

The remainder of the talk is joint work with Michael Klug.

Teichner-Schneiderman
Let $R, R^{\prime} \hookrightarrow X^{4} \quad 2$-spheres w/ common dual $G$. Assume $R, R^{\prime}$ hype. Then $R, R^{\prime}$ isotopic

$f q=$ Freedman -Quinn invariant
Defined for lomotapic pair of 2-spheres $A, B \hookrightarrow X^{4}$

$$
f_{q}(A, B) \subset \mathbb{F}_{2} T_{M} / \mu_{3}\left(\pi_{3} M\right)
$$

where $T_{M} \subset \pi_{1} X^{4}$ is the 2-tarsion subset $\left(T_{M}=\left\{\begin{array}{c}2-\text {-marion } \\ \text { element } \\ \text { of } \pi_{i} \\ \text { on d }\end{array}\right\}\right)$ and $\mathbb{F}_{2} T_{M}$ is a vector space.
$\operatorname{Def}\left(f_{q}\right)$


$$
\begin{aligned}
& f: S^{2} \times I \leftrightarrow X^{4} \times I \\
& f\left(S^{2} \times 0\right)=A \times 0 \\
& f\left(S^{2} \times 1\right)=B \times 1
\end{aligned}
$$

track - of hanotapy

$$
x^{4}
$$

Domain


$$
\begin{array}{r}
f_{q}(A, B)=\sum a_{i} \gamma_{i} \in \mathbb{F}_{2} T_{M} / \mu_{3} \pi_{3} M \\
\gamma_{i} \in T_{M}, a_{i}=\text { \#times } \gamma_{i} \text { a self.int }
\end{array}
$$

of $f$ with connected double cower (mod 2)
Turns out this does not depend on choice of $f$. Rim If $A B$ to $\mu_{3} r_{3} M$ ) then $f q(A, B)=0$.
If $\pi_{1} X^{4}$ no 2 -torsion, then $f_{q}(A, B)=0$.

Sunukjian (2013)
If $R, T \hookrightarrow X^{4}$ are 2 -spheres

- R,T hamotopic
- $i: \pi_{1}(X \backslash R) \rightarrow \pi_{1}(X)$ isomosplism (i.e. meridion of $R$ nullhtpe in $\times \backslash R$ )
- $r_{1}(X)$ no 2 -tarsion
then $R$ and $T$ are concardant.
Didn't mentian this before
Because ariginally no 2 -torsion
Idea of proct
- First prove for $\pi_{1} X=0$
- Naw far other $\pi_{1}$, lift to universal cover

away equivariantly
Problem: What if $\gamma \in \pi, \times$ fixes some circle setwise? ' a 0

$$
\gamma^{2}=1
$$


Let $R, T \hookrightarrow X^{4}$ 2-spheres

- $R, T$ hamatopic
- i: $\lambda_{1}(X \backslash R) \rightarrow \lambda_{1}(X)$ isomaphism

Then $R, T$ concordant iff $f_{q}(R, T)=0$

Lightbulbs (Ltpe spheres w/ canmon dual)


Htpe spheres, one has dud


Zeeman:
5-twist spun tufoil ${ }^{K}$ has grap $A_{s} \times \underset{\mathbb{Z}}{i}$ surger $\mu$ to get $s^{2} \times s^{2}$, Kutpec to $S^{2} \times p t$ $\pi_{1}\left(S^{2} \times S^{2} \backslash K\right) \cong A_{s}$ so $K$ not isot pic to $s^{2} \times p t$

Pf
Recletine $f q$ in terms of covering spaces

equivariant
wit $\pi_{1} X^{4} \curvearrowright \tilde{X} \times I$
Now $U S^{2} \times I$ has circle self.ints, which are acted an by $\pi, X^{4}$
If no circle of self-intersection is fixed by same nantrivid $\gamma \subset \pi, X^{4}$, then Sunukjian: Ambiently $\frac{\text { equivariantly }}{\text { Sanger }}$ surges the self.intersections away


Say $C \subset M_{1} \cap M_{\eta}$ a circle of self-int fired setwise by $\gamma$
so $\gamma \cdot 1=\eta \quad \gamma \cdot \eta=1$

$$
\Rightarrow \gamma^{2}=1
$$

Def $f q(R, T)=\sum a_{i} \gamma_{i}$
wer $\gamma_{i} \subset T_{2} \quad\left(2\right.$-tarsion in $\left.n_{1} x\right)$
$a_{i}=\# M_{1} \cap M_{\gamma}$ fixed by $\gamma$;
$(\bmod 2)$

$$
\left(\text { in } \mathbb{F}_{2} T_{2} / \mu_{3} r_{3} M\right)
$$

Thm (KM) Equivalest to
Schneiderman_Teichner definition $\Rightarrow$ If nanzero, then R, T nat concodnt

And if $=0$
(ignoe $\mu_{3} \lambda_{3} M$ part)
Then have eien \# circles in $M, \cap M_{\gamma}$ fixed by $\gamma$

$$
\tilde{x}^{4} \times I
$$

 surger firg
 setuire
by $\gamma$

(6)


2 fixed circles


Repeat until no fixed circles,
then apply Sunatejian's construction
$\Rightarrow R, T$ are concordant.

