
APPLICATIONS OF THE LI-YAU INEQUALITY IN ARITHMETIC
GEOMETRY

OMID AMINI

These are an extended version of the notes of a talk I gave at Simons Symposium on
Non-Archimedean and Tropical Geometry. The objective was to give a survey of some re-
cent applications of the spectral gap estimates in graphs and Li-Yau inequality in arithmetic
geometry 1.

1. Li-Yau inequality

1.1. Classical Li-Yau inequality. We start by recalling the Li-Yau inequality [20]. Let
M be a compact surface with a Riemannian metric g. We denote by dµ the volume form
corresponding to its metric, and by µ(M) the total volume of M . Consider the sphere S2 with
its standard metric g0, and let φ : M → S2 be a non-degenerate conformal map. The group
of conformal diffeomorphisms of S2, denoted by Diffc(S2) acts on the set of non-degenerate
conformal maps from M to S2 in a natural way. Define µc(M,φ) as the supremum volume
of M with the respect to the volume forms induced on M from S2 by the conformal maps in
the orbit of φ, i.e.,

µc(M,φ) := sup
ψ∈Diffc(S2)

∫
M
|∇(ψ ◦ φ)|2dµ.

The conformal area µc(M) of M (with respect to the conformal structure on M induced by
the metric g) is by definition the infimum of µc(M,φ) over non-degenerate conformal maps
φ : M → S2, i.e., µc(M) := infφ µc(M,φ).

Theorem 1.1 (Li-Yau [20]). Denote by λ1 > 0 the first non-zero eigenvalue of the Laplacian
of (M, g). Then λ1µ(M) ≤ 2µc(M).

This refines earlier results of Hersch [18] and Szegö [28]. We quickly sketch the proof of
the above theorem, which, like the earlier results, uses Hersch lemma.

Lemma 1.2 (Hersch lemma). Let φ : M → S2 a conformal map. Denote by x1, x2, x3 the
coordinate functions on S2 for the standard embedding S2 ↪→ R3; x2

1 + x2
2 + x2

3 = 1. There
exists ψ ∈ Diffc(S2) such that

∫
M xi ◦ ψ ◦ φdµ = 0 for i = 1, 2, 3.

Proof. Let p be a point of S2 and consider the stereographic projection πp of S2 to the
hyperplane Hp in R3 tangent to S2 at −p. For each t ∈ (0, 1), let αt,p : Hp → H be the
dilation by a factor 1/t in Hp, seen as an affine plane with origin at −p. Consider the family
of conformal maps ψt,p = π−1

p ◦αt,p ◦πp : S2 → S2. We claim the existence of a t such that for
ψ = ψt,p the conclusion of theorem holds. To see this, consider the map T : (0, 1)× S2 → B3,
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the closed unite ball in R3, which sends (t, p) to the point with coordinates
∫
M xi ◦ψt,p ◦φdµ

for i = 1, 2, 3. The map T can be extended to a map T : [0, 1] × S2/{1} × S2 ∼ B3, so that
on the boundary {0} × S2 = ∂B3, T restricts to the identity map. Assuming 0 not being in
the image of T , one gets a retraction of B3 to ∂B3, which leads to a contradiction. �

Proof of Theorem 1.1. Fix an ε > 0 and let φ be a non-degenerate conformal map M → S2

such that µc(M,φ) ≤ µ(M) + ε. By Hersch Lemma, up to replacing φ by a conformal map in
its orbit for the action of Diffc(S2), we can assume that

∫
M xi ◦ φdµ = 0 for i = 0, 1, 2, and

in addition
∫
M |∇φ|

2dµ ≤ µc(M,φ) ≤ µc(M) + ε.
By variational characterization of λ1, one has

λ1 = inf

∫
M |∇f |

2 dµ∫
M f2 dµ

,

where the infimum is taken over all Lipschitz functions f on M with
∫
M f dµ = 0. In

particular, one has

λ1

∫
M

(xi ◦ φ)2dµ ≤
∫
M
|∇xi ◦ φ|2 dµ.

Summing up over i, gives

λ1 µ(M) ≤
∫
M

∑
i

|∇xi ◦ φ|2 dµ =
∫
M
φ∗(
∑
i

|∇xi|2dµS2)

= 2
∫
M
φ∗(dµS2) = 2

∫
M
|∇φ|2 dµ ≤ 2µc(M) + 2ε.

This holds for any ε > 0, from which the theorem follows. �

Let M be a Riemann surface, equipped with a metric of constant curvature in its conformal
class, λ1 and µ the first non-trivial eigenvalue of the Laplacian and the volume of M , respec-
tively. Denote by γ(M) the gonality of M , the minimum degree of a (branched) covering
M → P1(C).

Corollary 1.3. For any Riemann surface M ,

λ1 µ(M) ≤ 8πγ(M).

Proof. It is easy to see that for a conformal map of positive degree d from M to N , one has
µc(M) ≤ dµc(N). It follows that

λ1 µ(M) ≤ 2γ(M)µc(S2).

One concludes by observing that µc(S2) = 4π. �

1.2. Combinatorial Li-Yau inequality. We now discuss a combinatorial version of the
above Li-Yau inequality, established in [11].
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1.2.1. Metric graphs, tropical curves, harmonic morphisms and gonality. We start by recalling
some standard definitions and notations related to tropical geometry of curves, see [2] and
the references there for a more detailed discussion of the following definitions with several
examples.

Given r ∈ Z≥1, we define Sr ⊂ C to be a “star with r branches”, i.e., a topological space
homeomorphic to the convex hull in R2 of (0, 0) and any r points, no two of which lie on a
common line through the origin. We also define S0 = {0}.

A finite topological graph Λ is the topological realization of a finite graph. So Λ is a compact
1-dimensional topological space such that for any point p ∈ Λ, there exists a neighborhood
Up of p in Λ homeomorphic to some Sr; moreover there are only finitely many points p with
Up homeomorphic to Sr with r 6= 2.

The unique integer r such that Up is homeomorphic to Sr is called the valence of p and
denoted val(p). A point of valence different from 2 is called an essential vertex of Λ. The
set of tangent directions at p is Tp(Λ) = lim−→Up

π0(Up \ {p}), where the limit is taken over all
neighborhoods of p isomorphic to a star with r branches. The set Tp(Λ) has val(p) elements.

A metric graph is a finite connected topological graph Λ equipped with a complete inner
metric on Λ \ V∞(Λ), where V∞(Λ) ( Λ is some (finite) set of 1-valent vertices of Λ called
infinite vertices of Λ. (An inner metric is a metric for which the distance between two points
x and y is the minimum of the lengths of all paths between x and y.)

Let Λ be a metric graph. A vertex set V (Λ) is a finite subset of the points of Λ containing
all essential vertices. An element of a fixed vertex set V (Λ) is called a vertex of Λ, and
the closure of a connected component of Λ \ V (Λ) is called an edge of Λ. An edge which is
homeomorphic to a circle is called a loop edge. An edge adjacent to an infinite vertex is called
an infinite edge. We denote by Vf (Λ) the set of finite vertices of Λ, and by Ef (Λ) the set of
finite edges of Λ.

Fix a vertex set V (Λ). We denote by E(Λ) the set of edges of Λ. Since Λ is a metric
graph, we can associate to each edge e of Λ its length `(e) ∈ Λ ∪ {+∞}. Since the metric on
Λ \ V∞(Λ) is complete, an edge e is infinite if and only if `(e) = +∞. The notion of vertices
and edges of Λ depends, of course, on the choice of a vertex set; we will fix such a choice
without comment whenever there is no danger of confusion.

Fix now vertex sets V (Λ′) and V (Λ) for two metric graphs Λ′ and Λ, respectively, and let
φ : Λ′ → Λ be a continuous map.

• The map φ is called a (V (Λ′), V (Λ))-morphism of metric graphs if we have φ(V (Λ′)) ⊂
V (Λ), φ−1(E(Λ)) ⊂ E(Λ′), and the restriction of φ to any edge e′ of Λ′ is a dilation
by some factor de′(φ) ∈ Z≥0.
• The map φ is called a morphism of metric graphs if there exists a vertex set V (Λ′)

of Λ′ and a vertex set V (Λ) of Λ such that φ is a (V (Λ′), V (Λ))-morphism of metric
graphs.
• The map φ is said to be finite if de′(φ) > 0 for any edge e′ ∈ E(Λ′).

An edge e′ of Λ′ is mapped to a vertex of Λ if and only if de′(φ) = 0. Such an edge is said
to be contracted by φ. A morphism φ : Λ′ → Λ is finite if and only if there are no contracted
edges, which holds if and only if φ−1(p) is a finite set for any point p ∈ Λ. If φ is finite, then



4 OMID AMINI

p′ ∈ Vf (Λ′) if and only if φ(p′) ∈ Vf (Λ). The morphisms of interest are usually assumed to
be finite.

The integer de′(φ) ∈ Z≥0 in the definition above is called the degree of φ along e′ (it is
also sometimes called the weight of e′ or expansion factor along e′ in the literature). Since
`(φ(e′)) = de′(φ) · `(e′), it follows in particular that if de′(φ) ≥ 1 then e′ is infinite if and only
if φ(e′) is infinite. Let p′ ∈ V (Λ′), let v′ ∈ Tp′(Λ′), and let e′ ∈ E(Λ′) be the edge in the
direction of v′. The directional derivative of φ in the direction v′ is by definition the quantity
dv′(φ) := de′(φ). If we set p = φ(p′), then φ induces a map

dφ(p′) :
{
v′ ∈ Tp′(Λ′) : dv′(φ) 6= 0

}
→ Tp(Λ)

in the obvious way.

Let φ : Λ′ → Λ be a morphism of metric graphs, let p′ ∈ Λ′, and let p = φ(p′). The
morphism φ is harmonic at p′ provided that, for every tangent direction v ∈ Tp(Λ), the
number

dp′(φ) :=
∑

v′∈Tp′ (Λ′)

v′ 7→v

dv′(φ)

is independent of v. The number dp′(φ) is called the degree of φ at p′.
We say that φ is harmonic if it is surjective and harmonic at all p′ ∈ Λ′; in this case the

number deg(φ) =
∑

p′ 7→p dp′(φ) is independent of p ∈ Λ, and is called the degree of φ.

1.2.2. Tropical modifications and tropical curves. There is an equivalence relation among met-
ric graphs; an equivalence class for this relation will be called a tropical curve.

An elementary tropical modification of a metric graph Λ0 is a metric graph Λ = [0,+∞]∪Λ0

obtained from Λ0 by attaching the segment [0,+∞] to Λ0 in such a way that 0 ∈ [0,+∞] gets
identified with a finite point p ∈ Λ0.

A metric graph Λ obtained from a metric graph Λ0 by a finite sequence of elementary
tropical modifications is called a tropical modification of Λ0.

If Λ is a tropical modification of Λ0, then there is a natural retraction map τ : Λ → Λ0

which is the identity on Λ0 and contracts each connected component of Λ \ Λ0 to the unique
point in Λ0 lying in the topological closure of that component. The map τ is a (non-finite)
harmonic morphism of metric graphs.

Tropical modifications generate an equivalence relation ∼ on the set of metric graphs. A
tropical curve is an equivalence class of metric graphs (resp. metric graphs) with respect to
∼.

By abuse of terminology, we will often refer to a tropical curve in terms of one of its metric
graph representatives.

There exists a unique rational tropical curve, which we denote by TP1. Any rational metric
graph whose 1-valent vertices are all infinite is obtained by a sequence of tropical modifications
from the metric graph consisting of a unique finite vertex (of genus 0).

Let Λ (resp. Λ′) be a representative of a tropical curve C (resp. C ′), and assume we are
given a harmonic morphism of metric graphs φ : Λ′ → Λ.
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An elementary tropical modification of φ is a harmonic morphism φ1 : Λ′1 → Λ1 of metric
graphs, where τ : Λ1 → Λ is an elementary tropical modification, τ ′ : Λ′1 → Λ′ is a tropical
modification, and such that φ ◦ τ ′ = τ ◦ φ1.

A tropical modification of φ is a finite sequence of elementary tropical modifications of φ.
Two harmonic morphisms φ1 and φ2 of metric graphs are said to be tropically equivalent

if there exists a harmonic morphism which is a tropical modification of both φ1 and φ2.
A tropical morphism of tropical curves φ : C ′ → C is a harmonic morphism of metric

graphs between some representatives of C ′ and C, considered up to tropical equivalence, and
which has a finite representative.

A tropical curve C is said to have a (non-metric) graph G as its combinatorial type if C
admits a representative whose underlying graph is G.

Definition 1.4. A tropical curve C is called d-gonal if there exists a tropical morphism
C → TP1 of degree d.

The gonality of a tropical curve C is denoted by γ(C).

1.2.3. Morphisms of curves induce morphisms of tropical curves. LetX andX ′ be two smooth
proper curves over an algebraically closed complete non-Archimedean field K. Consider a
morphism φ‘ : X → X ′, and let φ : Xan → X ′an be the induced morphism between the
Berkovich analytifications of X and X ′an.

Recall (c.f. [5], see also [12, 13, 29]) that a semistable vertex set of the Berkovich analytic
curve Xan is a finite subset V of type-2 points of Xan such that Xan \ V is a disjoint union
of open balls and (a finite number of) open annuli. Semistable vertex sets are in bijection
with semistable models of X over the valuation ring of K. To each semistable vertex sets
is associated a skeleton Σ(X,V ) of the Berkovich curve Xan, which is a finite metric graph.
These metric graphs are tropically equivalent, and thus varying the semistable vertex sets
defines a tropical curve C associated to X.

The proof of the following theorem, as well as more precise statements concerning stronger
skeletonized versions of some foundational results of Liu-Lorenzini [22], Coleman [10], and
Liu [21] on simultaneous semistable reduction of curves, can be found in [2].

Theorem 1.5. Let φ : X → X ′ be a fintie morphism of smooth proper curves over K of
degree d. Let C and C ′ be the tropical curves associated to X and X ′. Then φ induces a
tropical morphism φ : C → C ′ of degree d.

Note that, in particular, the (algebraic) gonality of X over K is bounded below by the
(combinatorial) gonality of C. In general the inequality γ(X) ≥ γ(C) can be strict (see [2]
for an example of a genus 27 tropical curve C of gonality 4 such that any X over K of genus
27 with associated tropical curve C has gonality at least 5).

In general if the base non-Archimedean field K is not algebraically closed, and φ : X → Y
is a finite morphism between two smooth proper geometrically connected curves X and Y
over K, then one gets a morphism between two tropical curves C and C ′ by looking at φ over
the completion of an algebraic closure of K.
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1.2.4. Statement of the combinatorial Li-Yau inequality. Let C be a tropical curve with com-
binatorial type a graph G with set of vertices V and set of edges E. Let λ1 be the first
non-trivial eigenvalue of the Laplacian ∆ of G. Recall that ∆ is the positive semidefinite
operator defined on the space of real valued functions on the vertices of G by

∆(f)(v) =
∑

u:uv∈E
f(v)− f(u),

for any function f : V → R.

Theorem 1.6 (Cornelissen-Kato-Kool [11]). For any tropical curve C with combinatorial
type G, we have

γ(C) ≥ d λ1

λ1 + 4dmax
|G|e,

where dmax denotes the maximum valence of vertices of G, and |G| is the number of vertices
in G.

Tree-wdith, graph minors, gonality and the spectral bound. We discuss below a generalization
of Theorem 1.6, based on the concept of tree-decompositions of graphs and the theory of
graph minors, as developed by Robertson-Seymour [25]. We note that Corollary 1.14 and
Theorem 1.15 might be slightly weaker than Theorem 1.6, however, they are enough for the
arithmetic applications of [11], discussed in Section 2

1.2.5. Tree-decomposition, minors, and graph minor theorem. We start by recalling some
basic terminology on tree-decompositions of finite graphs.

Let G = (V,E) be a connected graph. A tree-decomposition of G is a pair (T,X ) where
T is a finite tree on a set of vertices I, and X = {Xi : i ∈ I} is a collection of subsets of V ,
subject to the following three conditions:

(1) V = ∪i∈IXi,
(2) for any edge e in G, there is a set Xi ∈ X which contains both end-points of e,
(3) for any triple i1, i2, i3 of vertices of T , if i2 is on the path from i1 to i3 in T , then

Xi1 ∩Xi3 ⊆ Xi2 .
Note that the point (3) in the above definition simply means that the subgraph of T induced

by all the vertices i which contain a given vertex v of the graph G is connected.
The width of a tree-decomposition (T,X ) is defined as w(T,X ) = maxi∈I |Xi| − 1. The

tree-width of G, denoted by tw(G), is the minimum width of any tree-decomposition of G.

There is a useful duality theorem concerning the tree-width wich allows in practice to
bound the tree-width of graphs. The dual notion for tree-width is bramble (as named by B.
Reed [24]): a bramble in a finite graph G is a collection of connected subsets of V (G) such
that the union of any two of these subsets forms again a connected subset of V (G). (To be
more precise, we should say the graph induced on these subsets is connected.) The order of
a bramble is the minimum size of a subset of vertices which intersect any set in the bramble.
The bramble number of G, denoted by bn(G), is the maximum order of a bramble in G.

Theorem 1.7 (Seymour-Thomas [27]). For any graph G, tw(G) = bn(G)− 1.

(For a more general form of the duality theorem and a conceptual proof see [4].)
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Example 1.8. Let H be an n× n grid. It is easy to see that bn(H) = n by taking brambles
formed by crosses in the grid. This shows that grid graphs can have large tree-width. Thus,
the tree-width can be unbounded on planar graphs.

The other notion directly related to the concept of the tree-decompositions is the notion
of minor in graphs. A graph H is a minor of another graph G, and we write H � G, if H can
obtained from G by a sequence of operations consisting in
- contracting an edge of G, or
- removing an edge of G.

It is easy to see that tree-width is minor monotone, in the sense that if H � G, then
tw(H) ≤ tw(G). It follows that bounded tree-width graphs cannot have large grid minors.

The main theorem concerning the notion of graph minors is the Robertson-Seymour finite-
ness theorem which states:

Theorem 1.9 (Robertson-Seymour [25]). Let F be a family of graphs which is stable under
minors, i.e., if G ∈ F and H is a minor of G, then H belongs to F . Then there is a finite
number of graphs (possibly empty if F contains all finite graphs) H1, . . . ,Hk such that G
belongs to F if and only if G does not contain any of Hi as minor.

In particular, the above theorem is a far reaching generalization of Kuratowski theorem
which characterizes planar graphs as the family of graphs which do not contain the complete
graph on five vertices K5, and the complete bipartite graph K3,3 on two parts of size three
each.

Remark 1.10. Robertson and Seymour prove that tree-width is bounded on the class of
graphs with forbidden H-minor if and only if H is planar.

1.2.6. Gonality and tree-width. We have the following basic proposition relating the gonality
of a tropical curve with combinatorial type G to the tree-width of G.

Proposition 1.11. For any tropical curve C with combinatorial type G = (V,E), we have
2γ(C) ≥ tw(C).

Proof. Let φ : C → TP1 be a morphism of degree γ(C). Consider the restriction of φ to a
finite harmonic morphism from a metric graph representative Λ of C with vertex set V and
edge set E, and denote by T the image of Λ in TP1, so T is a finite tree. Let I1 be a vertex
set for T which contains φ(V ), and E1 be the corresponding set of edges. For each edge e in
T1 take a point in the interior of e, and let I be the new vertex set for T obtained by adding
to I1 all these new vertices.

A tree decomposition (T,X ) of G can be defined as follows. For each vertex i in I, consider
the preimage φ−1(i) of i. This set consists of some (possibly empty) vertices v1, . . . , vs ofG and
some (possibly empty) points x1, . . . , xl in the interior of some edges e1 = u1w1, . . . , el = ulwl
of G. Define Xi = {v1, . . . , vs, u1, w1, . . . , ul, wl}. Since φ is of degree γ(C), |φ−1(i)| ≤ γ(C)
and thus, Xi has cardinality at most 2γ(C). It is easy to check that (T,X = {Xi}i∈I) is a
tree-decomposition of G. This proves the proposition. �

As a corollary, if a graph G is a model of a tropical curve with bounded gonality, then the
tree-width of G is bounded, and thus, G cannot contain a large grid as minor.
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1.2.7. Eigenvalue estimates on proper minor-closed family of graphs and generalization of
Theorem 1.6. Let H be a given graph. Consider the family FH of all connected graphs G
which do not contain H as minor. Note that FH is minor closed. For any graph G on n
vertices, denote by λ0(G) = 0 < λ1(G) ≤ λ2(G) ≤ · · · ≤ λn−1(G) all the eigenvalues of the
graph Laplacian ∆G.

Theorem 1.12 ([19]). There is a constant h = h(H) such that for any graph G in FH and
any 1 ≤ k, we have λk(G) ≤ hdmaxk

|G| where dmax is the maximum valence of vertices in G and
|G| is the number of vertices in G.

For graphs which can be embedded in a surface of genus at most g, the following more
precise statement holds

Theorem 1.13 ([3]). There is a universal constant c such that for any graph G which can
be embedded in a surface of genus at most g, we have

λnrk (G) ≤ cdmax(g + k)
m

,

where λnrk are the eigenvalues of the normalized Laplacian of G, and m is the number of edges
of G.

(Note that in any graphG, with min- and max-degrees dmin and dmax, one has dminλ
nr
k (G) ≤

λk(G) ≤ dmaxλ
nr
k (G), and similarly, dmin|G|/2 ≤ m ≤ dmax|G|/2. )

We end this subsection with a discussion of the above results in the case of bounded tree-
width graphs. A graph of tree-width bounded by some constant N does not contain a grid of
size N ×N as minor. It follows that there is an increasing function f : N→ N such that for a
graph G of tree-width tw(G), one has λk(G) ≤ f(tw(G))dmaxk/|G|, where |G| is the number
of vertices of G. Combined with Proposition 1.11, one obtains the following corollary.

Corollary 1.14. For any tropical curve C of combinatorial type G, one has f(2γ(C)) ≥
λk(G).|G|dmax

k . In particular, if in a family of tropical curves Ci of combinatorial type Gi, dmax

is bounded and for some constant k, λk(Gi).|Gi| tend to infinity, then one has γ(Ci)→∞.

Note that since λ1 ≤ dmax, the case of k = 1 in this theorem can be regarded as a version of
Theorem 1.6 (with some possibly weaker constant). Indeed, the case of λ1 (i.e., k = 1) in the
above corollary, is a result of Chandran-Subramanian [8], and is very similar to Theorem 1.6.

Theorem 1.15 ([8]). For any graph G = (V,E), the following holds

tw(G) ≥ b3|G|
4

λ1

2λ1 + dmax
c − 1.

We briefly sketch the proof of the above theorem. First recall the following variational
characterization of λ1:

λ1 = inf
f :V→R with

P
v f(v)=0

∑
uv∈E

(
f(u)− f(v)

)2∑
v∈V f(v)2

.

Let Y and Z be two disjoint subsets of V . Applying this to the (test) function f defined by
f(y) = 1

|y| for y ∈ Y , f(z) = − 1
|Y | for y ∈ Y and f(w) = 0 for any w ∈ V \ (X ∪ Y ), which is
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a test function for the minimum in the right term of the above equation, we get

(1) λ1 ≤
(
|E| − |E(Y )| − |E(Z)|

)( 1
|Y |

+
1
|Z|

)
,

where E(A) denotes the set of all edges with both endpoints in A. This is used repeatedly in
the proof.

Proof of Theorem 1.15. Denote by n the number of vertices of G. For the sake of a contra-
diction, assume the inequality does not hold and let (T,X = {Xi}) be a tree decomposition
of G such that

|Xi| ≤ b
3n
4

λ1

2λ1 + dmax
c − 1,

for any vertex i of T . Denote by ρ the quantity in the right hand side of the above equation.
The following argument shows the existence of a subset X of size at most ρ in G such that
each component of G \X has size at most n−|X|

2 : suppose this is not the case, then we can
give orientations to edges of the tree T as follows: consider a vertex i of the tree. The set
Xi has size at most ρ. For each neighbor j of i in the tree, let Aj be the union of all the Xk

with k in the subtree of T − {i} which contains j. Our assumption implies one of the sets
Aj \ Xi has size strictly larger than n−|Xi|

2 , for j adjacent to i. Give the orientation i → j
to the edge e = {i, j} of the tree. Doing this for any vertex, we given orientation to edges
of the tree exactly |V (T )| times. Since T has |V (T )| − 1 edges, at least one edge {i, j} gets
orientated twice, which leads to a contradiction since both Ai \ (Xi ∩Xj) and Aj \ (Xi ∩Xj)
contain strictly larger than n−|Xi∩Xj |

2 vertices.
Let X be the set of size at most ρ such that all the connected components Y1, . . . , Ys of G\X

has size at most n−|X|
2 . Applying Inequality (1) to the disjoint sets Yi and Zi = V \ (X ∪ Yi),

and noting that the quantity |E| − |E(Yi)| − |E(Zi)|) is bounded by |X|dmax, show that each
Yi has size at most n

4 . Consider now the smallest j such that Y j = Y1 ∪ · · · ∪ Yj has size at
least n

4 . Since each Yi has size at most n
4 , Y j has size at most n

2 . Applying now Inequality (1)
to Y j and Zj = V \ (X ∪ Y j) leads to a contradiction. �

2. Applications

In this section we discuss some recent applications of the above Li-Yau inequalities in
arithmetic geometry.

2.1. Rational points and Galois representations. We start by giving an overview of the
recent applications of Theorem 1.1 to arithmetic geometry over number fields from [14].

2.1.1. Rational points. Let k be a number field. Let X be a smooth geometrically con-
nected curve over k. Consider a family Xi of étale covers of X defined over k. Consider an
Archimedean place of k, an embedding to C, and denote by Xi,C and XC the corresponding
Riemann surfaces associated to Xi and X. The fundamental group π1(Xi,C) is a subgroup
of π1(XC) (we omit the base points), and fixing a symmetric set of generators S for π1(XC)
(i.e., S = S−1) allows to define the Cayley graph Cay(π1(Xi,C)\π1(XC);S) as the quotient of
Cay(π1(XC);S) by the left action of π1(Xi,C) on Cay(π1(XC);S). To simplify the notation,
we simply write Cay(Xi/X;S) to denote this finite Cayley graph.
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Consider the combinatorial Laplacian of Cay(Xi/X;S) and let λ(i)
1 be its first non-trivial

eigenvalue.

Theorem 2.1 (Burger [7]). There is a constant C > 1 depending only on XC such that
C−1λ1(Xi,C) ≤ λ(i)

1 ≤ Cλ1(Xi,C) for any i.

Here Xi,C is equipped with a metric of constant curvature.

Proof. By going to the universal cover X̃ and taking a tiling of X̃ obtained by fixing a
fundamental domain for the action of π1(XC) on X̃, one can see that each surface Xi,C
admits a decomposition into domains isometric to a fixed domain F with piecewise smooth
boundary (independent of i) such that the dual complex associated to this tiling is precisely
the Cayley graph Cay(Xi/X;S). The theorem now follows by looking at the discretization
functional φ : C∞(Xi,C) → C0(Cay(Xi/X;S)) which sends f to φ(f) taking a value at a
vertex v of Cay(Xi/X;S) equal to the average of f on the domain corresponding to v in the
tiling of Xi,C. The inverse of φ sends a discrete function defined on vertices of the Cayley
graph to a smoothing of the function constant on each domain of the surface Xi,C. The
ratio between λ

(i)
1 and λ1(Xi,C) remains bounded away from zero and infinity, by a non-zero

function depending on the first Neumann eigenvalue of the Laplacian operator on F . �

Corollary 2.2. Assume λ(i)
1 |Cay(Xi/X;S)| tends to infinity. Then the gonality of Xi tends

to infinity.

Proof. The volume of Xi,C is |Cay(Xi/X;S)| times the volume µ of X. By Li-Yau inequality,
λ1(Xi,C)|Cay(Xi/X;S)|µ ≤ 8πγ(Xi,C). Since λ(i)

1 |Cay(Xi/X;S)| tends to infinity, and λ
(i)
1

is within a constant factor of λ1(Xi,C), it follows that γ(Xi,C) tends to infinity and the result
follows. �

Theorem 2.3 ([14]). Let Xi/X be a family of étale covers of X. Assume that λ(i)
1 |Cay(Xi/X;S)| →

∞. For any d, the set ⋃
k1:[k1:k]≤d

Xi(k1)

is finite for all but finitely many i.

Proof. Under the hypothesis of the theorem, the gonality γ(Xi) of Xi tends to infinity so
there is Nd such that for i ≥ Nd, γ(Xi) > 2d. By Faltings-Frey theorem [15], the set⋃
k1:[k1:k]≤dXi(k1) is finite for any i ≥ Nd. �

2.1.2. Examples of Cayley graphs with large eigenvalues. The basic example is the example
of a family of Cayley graphs of fixed valence which form a family of expanders, i.e., such that
the first non-trivial eigenvalue of the Laplacian of graphs in the family is lower bounded by
a constant. Consider e.g. a finite index subgroup G of SLn(Z) for n ≥ 3. Then G satisfies
Kazhdan (T) property, and as a consequence, for a fixed symmetric set of generators S for
G, the family of Cayley graphs Cay(H\G;S) where H runs over all finite index subgroup of
G form a family of expanders.

Example 2.4. Let X be a smooth curve over a number field k of genus at least two. There
exists a family of étale covers Xi → X such that the Cayley graphs Cay(Xi/X;S), as defined
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in the previous section, form a family of expanders with sizes tending to infinity. This is
because the topological fundamental group of XC has a quotient which is isomorphic to
SL3(Z). By the above results, γ(Xi) tends to infinity.

The following recent result of Pyber-Szabó [23] (see also [6]) provides a rich class of examples
of Cayley graphs with large eigenvalues. For earlier results of similar type see [16, 17].

Let m be an integer and consider a family of subgroups Gp of GLm(Fp) indexed by all but
finitely many prime numbers p. Let Sp, Sp = S−1

p , be a generating set for Gp of order at most
a constant s, for any p. Consider the family of Cayley graphs Cay(Gp;Sp).

Theorem 2.5 (Pyber-Szabó [23]). If the groups Gp are non-trivial perfect groups generated by
their elements of order p, then λ1(Cay(Gp;Sp))|Cay(Gp;Sp)| → ∞, when p tends to infinity.
More precisely, λ1(Cay(Gp;Sp)) >> 1

log |Gp|A for some constant A.

2.1.3. Galois representations.

Theorem 2.6 (Ellenberg-Hall-Kowalski [14]). Let k be a number field and X/k a smooth
geometrically connected algebraic curve. Let A → X be a principally polarized abelian scheme
over X of dimension g ≥ 1, defined over k, and let

ρ : π1(XC)→ Sp2g(Z)

be the associated monodromy representation. For any finite extension k1/k and a rational
point t ∈ X(k1), let

ρt,` : Gal(k/k1)→ Sp2g(F`)
be the Galois representation associated to the `-torsion points of At.

Assume that the image of ρ is Zariski dense in Sp2g. Then the set⋃
k1: [k1:k]=d

{t ∈ X(k1) | the image of ρt,` does not contain Sp2g(F`)}

is finite for any d ≥ 1 and any but finitely many ` (depending on d).

Proof. By assumption the image I of ρ is dense in Sp2g(Z) which implies that the image I` of
the reduction map I → Sp2g(F`) is the whole Sp2g(F`) for all but finitely many `. Suppose that
for each conjugacy class of a maximal subgroup of Sp2g(`) a fixed representative is designed,
and consider all the pairs (`, J) where ` is such that I` = Sp2g(F`) and J < Sp2g(F`) runs over
the representatives of the conjugacy classes of maximal subgroups of Sp2g(F`). Each such
pair (`, J) gives rise to an étale cover X`,J → X with the property that Cay(X`,J/X;S) =
Cay(J\Sp2g(F`);S).

In particular, the set of all k1-rational points t of X such that I` is not in the image of ρt,`
lies in the image of k1-rational points of a pair (`, J) under the map π`,J . So the theorem
follows as soon as it is shown that the number of k1-rational points of the constructed étale
covers X`,J of X are finite for any fixed d ≥ 1 and for extensions [k1 : k] = d. For this,
it will be enough to show that the family of étale covers X`,J/X verifies the condition of
Theorem 2.3.

The group Sp2g(F`) is perfect for ` ≥ 5 and is generated by its elements of order `. In
addition each maximal subgroup J of Sp2g(F`) is of index at most 1

2(`g−1). By Theorem 2.5,
the Cayley graphs Cay(Sp2g(F`);S) have λ1(Cay(Sp2g(F`);S)) >> 1

log |Sp2g(F`)|A
. The Cayley
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graph Cay(J\Sp2g(F`);S) is by definition the quotient of Cay(Sp2g(F`);S) under the left
action of J , and thus have the same λ1. An easy calculation now shows that

λ1(Cay(J\Sp2g(F`);S)) |Cay(J\Sp2g(F`);S)| → ∞

when (`, J) runs over all pairs as above with ` ≥ 5, which finishes the proof. �

2.2. Gonality and rational points of bounded degree of Drinfeld modular curves.
In this section, we discuss arithmetic consequences of the combinatorial Li-Yau inequality
from [11]. The main theorem is a linear lower bound in the genus for the gonality of Drinfeld
modular curves. This extends the work of Abramovich [1] to positive characteristic case.

2.2.1. Lower bound on the gonality of XΓ. Let K be a function field of genus g over the field
of constants k = Fq, of characteristic p. Let ∞ be a fixed place of K of degree δ, and let A
be the ring of functions f ∈ K which have poles at most at ∞.

Let K∞ be the completion of K at ∞, and denote by C∞ the completion of an algebraic
closure of K∞. Let Ω = P1(C∞)\P1(K∞) = C∞ \K∞. The group GL2(K) acts by fractional
linear transformations on Ω.

Consider now Γ an arithmetic subgroup of GL2(K): Γ is a congruent subgroup of GL(Y ) ⊆
GL2(K) for a rank-two A-lattice Y in K∞. This means that Γ contains a subgroup of the
form GL(Y, n) := ker{GL(Y )→ GL(Y/nY )} for an ideal n of A.

The group Γ acts on Ω, and the quotient Γ\Ω is a smooth analytic curve which is the
analytification of a smooth affine curve YΓ defined over a finite (abelian) extension of K∞.
The Drinfeld modular curve XΓ is the compactification of YΓ obtained by adding a finite
number of points, called cusps, to YΓ.

Theorem 2.7 (Cornelissen-Kato-Kool [11]). Let Γ be an arithmetic subgroup of GL2(K).
There is a constant c = c(K, δ), such that the gonality γ(XΓ) over K satisfies

γ(XΓ) ≥ c . (g(XΓ)− 1),

where g(XΓ) is the genus of XΓ.

We briefly discuss the proof of this theorem.

Reduction graph of XΓ. The group Γ acts by automorphisms on the Bruhat-Tits tree T of
PGL2(K∞), and the quotient is a finite graph G with a finite set of infinite rays corresponding
to the cusps of XΓ. The Drinfeld curve XΓ is a Mumford curve with reduction graph over
Fqδ isomorphic to G.

Maximum valence of G. The Bruhat-Tits tree T is a regular tree of valence qδ + 1. The graph
G being the finite part of a quotient of this tree by a subgroup of the automorphism group,
it has maximum valence dmax bounded by qδ + 1.

First non-trivial eigenvalue of the Laplacian of G for Γ = GL(Y, n). In the case Γ = GL(Y, n),
the Laplacian of G can be described in terms of the projection of the Hecke operator on T

corresponding to the characteristic function of ∞, and a zero-one matrix corresponding to
the infinite rays of the quotient of T by GL(Y, n). Ramanujan-Petersson conjecture for global
function fields, proved by Drinfeld, gives an estimate of the form λ1 ≥ qδ − 2qδ/2 for the first
non-trivial eigenvalue of the Laplacian.
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Number of vertices of G for Γ = GL(Y, n). A direct comparison argument between the two
quotient graphs G and G0 associated to GL(Y, n) and GL(Y ), respectively, involving the
stabilizer of the vertex v0 of T corresponding to the root vertex of T, leads to a lower bound
of the type

|G| ≥ 1
q(q2 − 1)

[GL(Y ) : GL(Y, n)],

where |G| is the number of vertices of G.

Gonality of XΓ for Γ = GL(Y, n). Combining the above estimates with the combinatorial
Li-Yau inequality gives the existence of a constant c0, depending only on q and δ, such that
for Γ = GL(Y, n),

(2) γ(XΓ) ≥ c0 . [GL(Y ) : Γ].

The bound on the genus is obtained by applying the Riemann-Hurwitz formula to the cover
XGL(Y,n) → XGL(Y ), and a careful analysis of the degree of the ramification divisor. Riemann-
Hurwitz gives

[GL(Y, n) : GL(Y )] = (g(XGL(Y,n))− 1)
2(q − 1)

2(g(XGL(Y ))− 1) +R
,

so it will be essentially enough to give a lower bound on R since g(XGL(Y )) is a constant,
depending only on K and δ.

Theorem for general Γ. This follows by looking at the cover XGL(Y,n) → XΓ. This gives
γ(XΓ) ≥ γ(XGL(Y,n))|Γ ∩ Z|/[Γ : GL(Y, n)], where Z ' F∗q is the centralizer of GL(Y ).
Combining the theorem for GL(Y, n) with Riemann-Hurwitz for the cover XGL(Y,n) → XΓ

gives the result for general Γ.
Note that the inequality (2) holds for more general Γ, for a constant c0 = c0(q, δ).

2.2.2. Rational points of bounded degree. It is possible to apply the analogue in positive char-
acteristic of Faltings-Frey theorem [26, 9], along the linear lower bound on the gonality (2)
to prove the following theorem.

Suppose that XΓ is defined over the finite extension L of K.

Theorem 2.8 ([11]). There is a constant c0 = c0(q, δ) such that the set⋃
L′: [L′:L]≤ 1

2
(c0[GL(Y ):Γ]−1)

XΓ(L′)

is finite.

References

[1] D. Abramovich, A linear lower bound on the gonality of modular curves, Internat. Math. Res.

Notices 20 (1996), 1005–1011.
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