RATIONAL POINTS ON CURVES AND RIEMANN-ROCH FOR GRAPHS

MATT BAKER

This is a summary of the 30-minute lecture which I gave at the 2013 Simons Symposium on Tropical and Non-Archimedean Geometry. The goal was to explain some of the ideas behind the proof of the following recent theorem due to Eric Katz and David Zureick-Brown [KZB]:

Theorem 1. Let X / \mathbb{Q} be an algebraic curve of genus at least 2. Assume that $r:=\operatorname{rank} J(\mathbb{Q})<g$. Let $p>2 r+2$ be a prime number, and let \mathfrak{X} be a proper regular model for X over \mathbb{Z}_{p}. Then

$$
\# X(\mathbb{Q}) \leq \# \overline{\mathfrak{X}}^{\mathrm{sm}}\left(\mathbf{F}_{p}\right)+2 r
$$

Katz and Zureick-Brown give an example in their paper where $r<g-1$ and this bound is sharp.

1. The method of Coleman and Chabauty

Around 1940, Claude Chabauty had the idea that in order to prove that $X(\mathbb{Q})$ is finite (the Mordell conjecture), one could try to show that $X\left(\mathbb{Q}_{p}\right) \cap \overline{J(\mathbb{Q})}$ is finite, where $\overline{J(\mathbb{Q})}$ is the p-adic closure of $J(\mathbb{Q})$ in $J\left(\mathbb{Q}_{p}\right)$ for some prime number p. Under the assumption that $r<g$, Chabauty proved in [Ch] that this strategy actually works!

In the mid-1980's, Coleman [Co] made Chabauty's finiteness theorem effective in the sense that he was able to give an explicit upper bound for $\# X(\mathbb{Q})$. The theorem of Katz and Zureick-Brown refines Coleman's work, building on intermediate developments due to Lorenzini-Tucker [LT], McCallum-Poonen [MP], and Stoll [St].

One way to summarize the combined ideas of Chabauty and Coleman is as follows (here we follow closely an article of McCallum and Poonen). Let X / \mathbb{Q} be an algebraic curve and let J be its Jacobian. There is a canonical bilinear map

$$
J\left(\mathbb{Q}_{p}\right) \times H^{0}\left(J_{\mathbb{Q}_{p}}, \Omega^{1}\right) \rightarrow \mathbb{Q}_{p},
$$

denoted $\left\langle Q, \omega_{J}\right\rangle \mapsto \int_{0}^{Q} \omega_{J}$, uniquely characterized by the following two properties:

- For fixed ω_{J}, the map $\eta_{J}: J\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p}$ given by $Q \mapsto \int_{0}^{Q} \omega_{J}$ is a group homomorphism.
- On some open subgroup U of $J\left(\mathbb{Q}_{p}\right)$, one can compute $\int_{0}^{Q} \omega_{J}$ for $Q \in U$ by formally integrating power series in suitable local coordinates.

[^0]Now, for $Q, Q^{\prime} \in X\left(\mathbb{Q}_{p}\right)$ and $\omega_{X} \in H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right)$, we define

$$
\int_{Q}^{Q^{\prime}} \omega_{X}:=\int_{0}^{\left[Q^{\prime}-Q\right]} \omega_{J}
$$

where ω_{J} is the differential corresponding to ω_{X} under the canonical isomorphism between $H^{0}\left(J_{\mathbb{Q}_{p}}, \Omega^{1}\right)$ and $H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right)$.

If $Q, Q^{\prime} \in X\left(\mathbb{Q}_{p}\right)$ have the same reduction in some proper regular model \mathfrak{X} for X, then $\int_{Q}^{Q^{\prime}} \omega_{X}$ can be calculated by expanding ω_{X} in a power series with respect to a local parameter on X and formally integrating.

One deduces from this formalism:
Proposition 1. Let $r:=\operatorname{rank} J(\mathbb{Q})$ and fix $P \in X(\mathbb{Q})$. Let

$$
V_{\text {chab }}=\left\{\omega \in H^{0}\left(X_{\mathbb{Q}_{p}}, \Omega^{1}\right) \mid \int_{P}^{Q} \omega=0 \text { for all } Q \in X(\mathbb{Q})\right\}
$$

Then $\operatorname{dim} V_{\text {chab }} \geq g-r$. In particular, if $r<g$ then $\operatorname{dim} V_{\text {chab }}>0$.
A Newton polygon argument, together with the assumption that $p>2 r+2$, yields the fundamental bound

$$
\# X(\mathbb{Q}) \leq \sum_{\bar{Q} \in \overline{\mathfrak{X}}^{\mathrm{sm}}\left(\mathbf{F}_{p}\right)}\left(1+n_{\bar{Q}}\right)
$$

where $n_{\bar{Q}}=\min _{\omega \in V_{\text {chab }}} \operatorname{ord}_{\bar{Q}}(\bar{\omega})$.
Thus if we let

$$
D_{\text {chab }}=\sum_{\bar{Q} \in \overline{\mathfrak{X}}^{\mathrm{sm}}\left(\mathbf{F}_{p}\right)} n_{\bar{Q}}(\bar{Q}) \in \operatorname{Div}(\overline{\mathfrak{X}})
$$

and set $d=\operatorname{deg}\left(D_{\text {chab }}\right)$, then the theorem boils down to the inequality $d \leq 2 r$.
Note that by considering a fixed nonzero $\omega \in V_{\text {chab }}$, one obtains the bound $d \leq$ $2 g-2$. This gives the Lorenzini-Tucker and McCallum-Poonen bound $\# X(\mathbb{Q}) \leq$ $\# \overline{\mathfrak{X}}^{\mathrm{sm}}\left(\mathbf{F}_{p}\right)+2 g-2$. Coleman's original bound was the special case of this inequality when $p>2 g$ and X has good reduction at p.

2. Stoll's Refinement

If X has good reduction at p and $r<g-1$, Stoll improved the bound $d \leq$ $2 g-2$ to $d \leq 2 r$, which implies that $\# X(\mathbb{Q}) \leq \# \overline{\mathfrak{X}}^{\mathrm{sm}}\left(\mathbf{F}_{p}\right)+2 r$, by using Clifford's inequality. Indeed, in this case it is easy to see that $D_{\text {chab }}$ and $K_{\bar{X}}-D_{\text {chab }}$ are both linearly equivalent to effective divisors, so Clifford's inequality implies that

$$
r\left(K_{\bar{X}}-D_{\text {chab }}\right)=h^{0}\left(K_{\bar{X}}-D_{\text {chab }}\right)-1 \leq \frac{1}{2}(2 g-2-d)
$$

On the other hand, by the semicontinuity of h^{0}, we have

$$
h^{0}\left(K_{\bar{X}}-D_{\text {chab }}\right) \geq \operatorname{dim} V_{\text {chab }} \geq g-r .
$$

Combining these two inequalities gives $g-r-1 \leq \frac{1}{2}(2 g-2-d)$ and therefore $d \leq 2 r$ as desired.

3. The case of bad reduction and Clifford's inequality for graphs

What to do if X has bad reduction at p ? Well, first of all, Katz and ZureickBrown prove a lemma to the effect that one can reduce to the case where $\overline{\mathfrak{X}}$ is semistable; the point is that extending scalars only makes $D_{\text {chab }}$ bigger. However, it is well-known (see for example C-LS) that Clifford's inequality fails in general for singular curves, even semistable ones, so another idea is needed. It turns out that one can use Clifford's inequality for graphs (or, more generally, metrized complexes of curves) to carry out Stoll's idea in the bad reduction case. We now turn to a brief explanation of this.

For simplicity, assume for the moment that \mathfrak{X} is a proper regular semistable model for X which is totally degenerate, i.e., every irreducible component of $\overline{\mathfrak{X}}$ is a smooth rational curve. Let G be the dual graph of $\overline{\mathfrak{X}}$, so the vertices of G correspond to the irreducible components and the edges correspond to crossings between these components. There is a divisor $\bar{D}_{\text {chab }}$ on G which records which irreducible component of $\overline{\mathfrak{X}}$ a given point lies on. Clifford's theorem for graphs (which is a consequence of the Riemann-Roch theorem for graphs [BN]) implies that

$$
r\left(K_{G}-\bar{D}_{\text {chab }}\right) \leq \frac{1}{2}(2 g-2-d)
$$

and a variant of the so-called specialization inequality from [B] (the analogue in this context of semicontinuity) implies that

$$
r\left(\bar{D}_{\text {chab }}\right) \geq \operatorname{dim} V_{\text {chab }}-1 \geq g-r-1
$$

Combining these inequalities yields $d \leq 2 r$ as before.
The general case, where \mathfrak{X} is a proper regular semistable model for X which is not assumed to be totally degenerate, follows similarly replacing Clifford's inequality for graphs with Clifford's inequality for metrized complexes of curves. The latter can be deduced formally from the Riemann-Roch theorem for metrized complexes of curves due to Amini-Baker [AB], which includes as special cases both RiemannRoch for graphs and Riemann-Roch for algebraic curves, or from the results of [AC].

References

[AB] O. Amini and M. Baker, Linear series on metrized complexes of algebraic curves. Preprint available at http://arxiv.org/abs/1204.3508.
[AC] O. Amini and L. Caporaso, Riemann-Roch theory for weighted graphs and tropical curves. Adv. Math. 240 (2013), 1-23.
[B] M. Baker, Specialization of linear systems from curves to graphs. Algebra \& Number Theory 2 (2008), no. 6, 613-653.
[BN] M. Baker and S. Norine, Riemann-Roch and Abel-Jacobi theory on a finite graph. Adv. Math. 215 (2007), no. 2, 766-788.
[Ca] L. Caporaso, Linear series on semistable curves. Int. Math. Res. Not. 13 (2011), 2921-2969.
[Ch] C. Chabauty, Sur les points rationnels des courbes algébriques de genre supérieur à lunité. C. R. Acad. Sci. Paris 212 (1941), 882-885 (French).
[Co] R. F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), no. 3, 765-770.
[KZB] E. Katz and D. Zureick-Brown, The Chabauty-Coleman bound at a prime of bad reduction and Clifford bounds for geometric rank functions, to appear in Comp. Math. Preprint available at arxiv.org/1204.3335.
[LT] D. J. Lorenzini and T. J. Tucker, Thue equations and the method of Chabauty-Coleman, Invent. Math. 148 (2002), no. 1, 47-77.
[MP] W. McCallum and B. Poonen, The method of Chabauty and Coleman, June 14, 2010. Preprint, http://www-math.mit.edu/~poonen/papers/chabauty.pdf, to appear in Panoramas et Synthèses, Société Math. de France.
[St] M. Stoll, Independence of rational points on twists of a given curve, Compos. Math. 142 (2006), no. 5, 1201-1214.

E-mail address: mbaker@math.gatech.edu

[^0]: Date: June 1, 2013.

