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This is a summary of the 30-minute lecture which I gave at the 2013 Simons

Symposium on Tropical and Non-Archimedean Geometry. The goal was to explain

some of the ideas behind the proof of the following recent theorem due to Eric Katz

and David Zureick-Brown [KZB]:

Theorem 1. Let X/Q be an algebraic curve of genus at least 2. Assume that

r := rankJ(Q) < g. Let p > 2r + 2 be a prime number, and let X be a proper

regular model for X over Zp. Then

#X(Q) ≤ #X̄sm(Fp) + 2r.

Katz and Zureick-Brown give an example in their paper where r < g − 1 and

this bound is sharp.

1. The method of Coleman and Chabauty

Around 1940, Claude Chabauty had the idea that in order to prove that X(Q) is

finite (the Mordell conjecture), one could try to show that X(Qp) ∩ J(Q) is finite,

where J(Q) is the p-adic closure of J(Q) in J(Qp) for some prime number p. Under

the assumption that r < g, Chabauty proved in [Ch] that this strategy actually

works!

In the mid-1980’s, Coleman [Co] made Chabauty’s finiteness theorem effective

in the sense that he was able to give an explicit upper bound for #X(Q). The

theorem of Katz and Zureick-Brown refines Coleman’s work, building on interme-

diate developments due to Lorenzini–Tucker [LT], McCallum–Poonen [MP], and

Stoll [St].

One way to summarize the combined ideas of Chabauty and Coleman is as

follows (here we follow closely an article of McCallum and Poonen). Let X/Q be

an algebraic curve and let J be its Jacobian. There is a canonical bilinear map

J(Qp)×H0(JQp ,Ω
1)→ Qp,

denoted 〈Q,ωJ〉 7→
∫ Q

0
ωJ , uniquely characterized by the following two properties:

• For fixed ωJ , the map ηJ : J(Qp) → Qp given by Q 7→
∫ Q

0
ωJ is a group

homomorphism.

• On some open subgroup U of J(Qp), one can compute
∫ Q

0
ωJ for Q ∈ U by

formally integrating power series in suitable local coordinates.
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Now, for Q,Q′ ∈ X(Qp) and ωX ∈ H0(XQp
,Ω1), we define∫ Q′

Q

ωX :=

∫ [Q′−Q]

0

ωJ ,

where ωJ is the differential corresponding to ωX under the canonical isomorphism

between H0(JQp ,Ω
1) and H0(XQp ,Ω

1).

If Q,Q′ ∈ X(Qp) have the same reduction in some proper regular model X for

X, then
∫ Q′

Q
ωX can be calculated by expanding ωX in a power series with respect

to a local parameter on X and formally integrating.

One deduces from this formalism:

Proposition 1. Let r := rankJ(Q) and fix P ∈ X(Q). Let

Vchab = {ω ∈ H0(XQp ,Ω
1) |

∫ Q

P

ω = 0 for all Q ∈ X(Q)}.

Then dimVchab ≥ g − r. In particular, if r < g then dimVchab > 0.

A Newton polygon argument, together with the assumption that p > 2r + 2,

yields the fundamental bound

#X(Q) ≤
∑

Q̄∈X̄sm(Fp)

(
1 + nQ̄

)
,

where nQ̄ = minω∈Vchab
ordQ̄(ω̄).

Thus if we let

Dchab =
∑

Q̄∈X̄sm(Fp)

nQ̄(Q̄) ∈ Div(X̄)

and set d = deg(Dchab), then the theorem boils down to the inequality d ≤ 2r.

Note that by considering a fixed nonzero ω ∈ Vchab, one obtains the bound d ≤
2g − 2. This gives the Lorenzini–Tucker and McCallum–Poonen bound #X(Q) ≤
#X̄sm(Fp)+2g−2. Coleman’s original bound was the special case of this inequality

when p > 2g and X has good reduction at p.

2. Stoll’s refinement

If X has good reduction at p and r < g − 1, Stoll improved the bound d ≤
2g − 2 to d ≤ 2r, which implies that #X(Q) ≤ #X̄sm(Fp) + 2r, by using Clifford’s

inequality. Indeed, in this case it is easy to see that Dchab and KX̄ − Dchab are

both linearly equivalent to effective divisors, so Clifford’s inequality implies that

r(KX̄ −Dchab) = h0(KX̄ −Dchab)− 1 ≤ 1

2
(2g − 2− d).

On the other hand, by the semicontinuity of h0, we have

h0(KX̄ −Dchab) ≥ dimVchab ≥ g − r.

Combining these two inequalities gives g − r − 1 ≤ 1
2 (2g − 2 − d) and therefore

d ≤ 2r as desired.
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3. The case of bad reduction and Clifford’s inequality for graphs

What to do if X has bad reduction at p? Well, first of all, Katz and Zureick-

Brown prove a lemma to the effect that one can reduce to the case where X̄ is

semistable; the point is that extending scalars only makes Dchab bigger. However,

it is well-known (see for example C-LS) that Clifford’s inequality fails in general for

singular curves, even semistable ones, so another idea is needed. It turns out that

one can use Clifford’s inequality for graphs (or, more generally, metrized complexes

of curves) to carry out Stoll’s idea in the bad reduction case. We now turn to a

brief explanation of this.

For simplicity, assume for the moment that X is a proper regular semistable

model for X which is totally degenerate, i.e., every irreducible component of X̄

is a smooth rational curve. Let G be the dual graph of X̄, so the vertices of G

correspond to the irreducible components and the edges correspond to crossings

between these components. There is a divisor D̄chab on G which records which

irreducible component of X̄ a given point lies on. Clifford’s theorem for graphs

(which is a consequence of the Riemann-Roch theorem for graphs [BN]) implies

that

r(KG − D̄chab) ≤ 1

2
(2g − 2− d)

and a variant of the so-called specialization inequality from [B] (the analogue in this

context of semicontinuity) implies that

r(D̄chab) ≥ dimVchab − 1 ≥ g − r − 1.

Combining these inequalities yields d ≤ 2r as before.

The general case, where X is a proper regular semistable model for X which is not

assumed to be totally degenerate, follows similarly replacing Clifford’s inequality

for graphs with Clifford’s inequality for metrized complexes of curves. The latter

can be deduced formally from the Riemann-Roch theorem for metrized complexes

of curves due to Amini–Baker [AB], which includes as special cases both Riemann-

Roch for graphs and Riemann-Roch for algebraic curves, or from the results of

[AC].
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