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1 Complex Monge-Ampère equation
Assume there are given

• X a compact Kähler manifold of dimension d;

• ω a Kähler form on X with Kähler class [ω];

• Ω a volume form on X such that∫
X

Ω =

∫
X

ω∧d.

Then there exists a unique (1, 1) form η on X such that

• η ∈ [ω] ∈ H1,1(X,C);

• η∧d = Ω.

This result was conjectured by Calabi (1954) who proved the uniqueness and
was proved by Yau (1978).
A geometric version of this result reads as follows.

• X a projective smooth complex variety of dimension d;

• L an ample line bundle on X;

• Ω a volume form on X such that∫
X

Ω =

∫
X

c1(L)∧d.

Then there exists a smooth metric ‖ · ‖ on L, unique up to scaling, such that

c1(L, ‖ · ‖)∧d = Ω.

Here c1(L) denotes the first Chern class of L, while c1(L, ‖ · ‖) denotes the
first Chern form of (L, ‖ · ‖).
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2 Non-Archimedean setup
For the remainder of the notes we fix the following setup

• K a complete field with respect to a discrete valuation, | · | the absolute
value;

• K◦ the corresponding DVR, S = Spec(K◦);

• K̃ the residue field;

• X a normal projective variety over K, Xan the associated analytic
Berkovich space;

• L a line bundle on X.

Definition. A model of X is a projective flat scheme X over S such that
the generic fibre of X is X. A model of L is a line bundle L on X such
that L |X= L.

A model L of L defines a continuous metric ‖ · ‖L on Lan as follows.
Given the model X , there is a reduction map red: Xan → Xs, where Xs is
the special fibre of the model. Let p ∈ Xan and let U be a neighborhood of
red(p) with a trivialization ϕ : L |U

'−→ OU . Then, for s ∈ L(U ∩X),

‖s(p)‖L := |ϕ(s)(p)|.

Definition. • A metric ‖·‖ on Lan is called a model metric if there exists
an integer k ≥ 1 and a model L of L⊗k such that ‖ · ‖⊗k = ‖ · ‖L .

• Such model metric is called semipositive if L is nef.

• A continuous semipositive metric is a uniform limit of semipositive
model metrics.
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Let (L1, ‖ · ‖1), . . . , (Ld, ‖ · ‖d) be line bundles on X with semipositive con-
tinuous metrics. Then there is a unique Radon measure µ on Xan, denoted

c1(L1, ‖ · ‖1) ∧ · · · ∧ c1(Ld, ‖ · ‖d)

and called the Chambert-Loir measure, such that

1. It is linear in each (Li, ‖ · ‖i);

2. If, for each i = 1, . . . , d, ‖ · ‖i = ‖ · ‖Li
is a model metric defined on a

common normal model X , then

µ =
∑
Y

multXs(Y ) · degL1,...,Ld
(Y ) · δξY ,

where Y runs through the set of irreducible components of the special
fibre Xs and ξY is the unique point of Xan whose reduction is the
generic point of Y .

3. µ is continuous in the weak topology with respect to uniform conver-
gence of metrics.

• The Chambert-Loir measure appears in equidistribution theory.

• The total mass of the Chambert-Loir measure is given by

µ(Xan) = degL1,...,Ld
(X).

3 Non-Archimedean Monge-Ampère equation
We are now in position to state the non-Archimedean analogue of the Monge-
Ampère equation.
Assume that L is ample, and let µ be a Radon measure on Xan such that

µ(Xan) = degL(X).

Question: Does there exist a continuous semipositive metric ‖ · ‖ on Lan such
that

c1(L, ‖ · ‖)∧d = µ?

• Yuan and Zhang (2011) have proven the unicity up to scaling.
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The existence of solutions to the Non-Archimedean Monge-Ampère equation
was established by Boucksom, Favre and Jonsson under some hypothesis.

Theorem 1 ([BFJ]). Assume

1) char(K̃) = 0;

2) X is smooth with an SNC model X . Let ∆X ⊂ Xan be the skeleton of
X ;

3) µ is a positive Radon measure with supp(µ) ⊂ ∆X ;

†) X is defined over the function field of a curve C over K̃ and K is the
completion of K̃(C) at a closed point of C.

Then there exists a continuous semipositive metric ‖ · ‖ on Lan such that
c1(L, ‖ · ‖)∧d = µ.

• The algebraicity hypothesis † allows the use of global methods on a
model of X over the curve C.

• The aim of this work is to remove the algebraizability hypothesis †
giving a local proof of this theorem.

• The main tools for this local approach are the non-Archimedean vol-
umes and the holomorphic Morse inequalities.

4 Algebraic volumes, cohomological functions
and holomorphic Morse inequalities

Let k be a field, Y a projective variety over k of dimension d, and D a Cartier
divisor on Y . The volume of D measures the asymptotic growth of the space
of global sections of O(mD).

vol(D) = lim sup
m→∞

h0(Y,O(mD))

md/d!
∈ [0,∞[.

Küronya has introduced the asymptotic cohomological functions that measure
the asymptotic growth of the higher cohomology groups of O(mD).

ĥq(D) = lim sup
m→∞

hq(Y,O(mD))

md/d!
∈ [0,∞[
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• In the definition of the volume the limsup is actually a limit. This is
not known for the asymptotic cohomological functions.

• Clearly ĥ0(D) = vol(D).

The holomorphic Morse inequalities give us a bound of the asymptotic co-
homological functions.

Theorem (Holomorphic Morse inequalities). Let D and E be nef Cartier
divisors on Y . Then

ĥq(D − E) ≤
(
n

q

)
Dn−qEq.

• Proved by Demailly (1985) in the case k = C with analytic methods.

• Proved by Angelini (1996) when char(k) = 0 with algebraic methods.

• Lazarsfeld (2016) in an Appendix to [BGJKM] gives a proof valid for
any projective scheme over any field.

5 Non-Archimedean volumes
The local non-Archimedean analogue of the algebraic volumes are the non-
Archimedean volumes.
We go back to the non-Archimedean setup and let ‖ · ‖ be a metric on Lan.
The space of small sections of L is

Ĥ0(X,L, ‖ · ‖) = {s ∈ Γ(X,L) | ‖s‖sup ≤ 1}.

It is a finite K◦ module.

Definition. Given two continuous metrics ‖·‖1 and ‖·‖2, the non-Archimedean
volume is defined as

vol(X,L, ‖ · ‖1, ‖ · ‖2) = lim sup
m→∞

d!

md+1
`K◦

(
Ĥ0(X,L⊗m, ‖ · ‖⊗m1 )

Ĥ0(X,L⊗m, ‖ · ‖⊗m2 )

)
∈ R

where the length of a virtual module is defined as

`K◦(M1/M2) = `K◦(M1/(M1 ∩M2))− `K◦(M2/(M1 ∩M2)).
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Theorem 2 (BGJKM). If ‖ · ‖1 and ‖ · ‖2 are semipositive metrics on L,
then

vol(X,L, ‖·‖1, ‖·‖2) =
−1

d+ 1

d∑
j=0

∫
Xan

log
‖ · ‖1
‖ · ‖2

c1(L, ‖·‖1)∧(d−j)c1(L, ‖·‖2)∧j.

• Boucksom and Erikson have an independent proof.

• Boucksom and Bergman have proven an Archimedean analogue.

6 Differentiability
Theorem 3 (BGJKM). Let ‖ · ‖ be a continuous semipositive metric on Lan

and f : Xan → R a continuous function. Then

vol(L, e−εf‖ · ‖, ‖ · ‖) = ε

∫
Xan

fc1(L, ‖ · ‖)d + o(ε)

when ε→ 0.

• K̃ of arbitrary characteristic.

• No global assumption as the condition † in Theorem 1.

• This result was proposed by Kontsevich-Tschinkel.

• Differentiability for arithmetic volumes was proved by Chen and Yuan
using global methods.

• Inspired by the strategy of Abbes-Bouche and Yuan.

• In the global case it is enough to prove a one sided bound. In the
local case one needs a two sided bound. This is achieved through
the holomorphic Morse inequalities and the asymptotic cohomological
functions, that allow us to have a better control on the first cohomology
groups.
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7 Orthogonality
Now we assume

• char(K̃) = 0.

• X smooth projective variety over K.

• L ample line bundle on X.

• ‖ · ‖ a continuous metric on Lan.

Definition. The semipositive envelope of ‖ · ‖ is the metric

P (‖ · ‖) = inf{‖ · ‖′ | ‖ · ‖′ ≥ ‖ · ‖ continuous and semipositive}
where the infimum is taken pointwise.

Theorem 4 ([BFJ]). P (‖ · ‖) is a continuous semipositive metric.

Lemma 5 ([BGJKM]). vol(L, ‖ · ‖, P (‖ · ‖)) = 0.

Theorem 6 (Orthogonality property [BGJKM]).∫
Xan

log

(
P (‖ · ‖)
‖ · ‖

)
c1(L, P (‖ · ‖))∧d = 0.

Proof. Write

ϕ := log

(
P (‖ · ‖)
‖ · ‖

)
≥ 0.

Then ϕ is continuous by Theorem 4. For ε ∈ [0, 1],

‖ · ‖ ≤ e−εϕP (‖ · ‖) ≤ P (‖ · ‖).
Therefore P (e−εϕP (‖ · ‖)) = P (‖ · ‖). By Lemma 5 and Theorem 3

0 = vol(L, e−εϕP (‖ · ‖), P (‖ · ‖)) = ε

∫
Xan

ϕc1(L, P (‖ · ‖))∧d + o(ε).

• Boucksom Favre and Jonsson prove the same result assuming the hy-
pothesis † to reduce to the complex case and to use global arguments
on a model over the curve.

Theorem 7. Theorem 1 holds without the hypothesis †.
Proof. Same proof as in [BFJ] once the orthogonality property is established
without the hypothesis †.
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