
Differential forms and currents on Berkovich spaces

Antoine Chambert-Loir

Abstract. — This is a summary of my lecture at the Simons Symposium on Non-
archimedean and tropical geometry, held in St John, April 1–6, 2013. My notes of the talk
have been lost with my luggage which got stolen while returning from St John to New
York. I thank Matt Baker and Sam Payne for passing their notes to me, as well as Sam for
patiently requiring that I put them in form, well beyond the initial deadline.

These notes explain the construction of differential forms and currents on
Berkovich spaces, following the joint paper [4] with Antoine Ducros. The talk
was following a two hour talk by Walter Gubler (see [7]) who introduced tropi-
calizations of algebraic varieties and differential forms on the associated analytic
spaces. As in the workshop, I shall assume that the reader is acquainted with this
theory. In fact, our paper [4] is more general in so that forms and currents can be
defined on arbitrary (good) analytic spaces; this is of course essential if one wants
that forms/currents give rise to sheaves, but I shall try to keep silent about such
subtleties here.

1. Calibrations

1.1. Calibrations of a real affine space. — Before we can integrate (n, n)-forms
on an analytic space, we need to explain, following Lagerberg [8], the definition of
the integral of an (n, n)-form on Rn. If

α = f d′ x1 ∧ d′′ x1 ∧ · · · ∧ d′ xn ∧ d′′ xn

is such a form, where f is an integrable function on Rn, set∫
α =

∫
Rn

fdx1 · · · dxn.

Algebraically, and more intrinsically, this construction can be understood as follows:
set V = Rn, with its canonical basis (e1, . . . , en), and view d′′ x1 ∧ · · · ∧ d′′ xn as an
element of

∧n V ∗; what we did is contracting the d′′-part of α with the n-vector
µ = e1 ∧ · · · ∧ en. In general, one defines a calibration of an n-dimensional affine
space V as the datum of an orientation of V plus an n-vector µ ∈

∧n V . If α is an
(n, n)-form on V , we can then define

∫
V
α by contracting the d′′-part of α with µ.
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1.2. Calibrations of polyhedra. — In this paper, a cell is the convex hull of a
finite set of points in a real affine space, and a polyhedron is a locally finite union
of cells. A cell decomposition of a polyhedron is a locally finite family of cells which
cover the polyhedron and whose pairwise intersections are cells which have empty
interior in both larger cells.

If P is a polytope of a real affine space, with a cell decomposition, a (n-
dimensional) calibration of P is the datum of a calibration of its n-dimensional
cells. We identify two calibrations of a polyhedron (associated to two cell decompo-
sitions) if they agree up to refining the respective cell decompositions to a common
one.

1.3. Canonical calibration of analytic spaces. — We fix a field k which is
complete for a non-archimedean absolute value (trivial or not). All analytic spaces
that appear below are k-analytic spaces in the sense of Berkovich [2].

If X is an analytic space, a moment map is an analytic map f : X → T an from X
to the analytic space associated to a (split) algebraic torus T ' Gd

m. Let N =
Hom(Gm, T ) ' Zd be the lattice of cocharacters of T ; the tropicalization of T is the
real space Ttrop = NR ' Rd. Also recall that the tropicalization map T an → Ttrop
admits a canonical section s whose image is the skeleton of T an. In coordinates, the
tropicalization map trop : T an → Ttrop is the continuous map that sends x ∈ (Gd

m)an

to the tuple (− log|T1(x)|, . . . ,− log|Td(x)|), while s(t1, . . . , td) is the point of T an

such that for every ϕ =
∑
ϕmT

m ∈ k[T±11 , . . . , T±1d ],

|ϕ(s(t1, . . . , td))| = max
m∈Zd
|ϕm|e−m1t1−···−mdtd .

In particular, s(0) is the Gauss norm on the ring k[T±11 , . . . , T±1d ] of Laurent series
with coefficients in k. (The minus sign and the choice of a basis of logarithms are
irrelevant.) We let ftrop = trop ◦ f : X → Ttrop.

If X is compact and n-dimensional, then it is known that ftrop(X) is a polyhedron
of dimension 6 n. We define in [4] a (n-dimensional) calibration of ftrop(X) as
follows; we call it the canonical calibration of ftrop(X). Consider the diagram

X T an Ttrop C

(Gn
m)an Rn q(C).

f

ftrop

trop

q qtrop 1-1

s

Here, C is an n-dimensional cell of ftrop(X), and q : T → Gn
m is any morphism of

tori chosen in such a way that the induced map from C to q(C) is one-to-one (this
property holds generically). The fundamental property of this diagram is that the
induced map

q ◦ f |f−1
trop(C) : f−1trop(C)→ (Gn

m)an
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is finite and flat over s(q(C)) provided that q(C) and q ◦ ftrop(∂X) do not meet.
(It is finite because it is zero-dimensional and we avoid the boundary, it is flat
because the local ring at a point of the skeleton is a field.) Since C is connected
(and non-empty), s(q(C)) is connected too and we get a well-defined degree dq,C .

There is a unique affine map σq : Rn → Ttrop ' Rd which is a section of qtrop and
takes q(C) to C. We then define the n-vector

µC = dq,C · (σq)∗(|e1 ∧ · · · ∧ en|).

It is independent of the choice of the auxiliary morphism q. (1)

1.4. Balancing condition. — We keep the same setting as in the previous para-
graph. Let F be an (n− 1)-dimensional face of ftrop(X) and define

∂µF =
∑
C⊃F

±µC ,

as the sum of all n-vectors µC corresponding to n-dimensional cells C of ftrop(X)
of which F is an (n − 1)-dimensional cell. Signs ± are added to take care of the
orientations: we fix an orientation of F , then orient C with the “outgoing normal”
rule used in the Stokes’s formula, so that µC becomes a genuine n-vector.

We have a generalization of the balancing condition in tropical geometry. In our
context, it claims that for any (n− 1)-dimensional face F of ftrop(X) which is not
countained in trop(∂X), then ∂µF = 0.

For the proof, we consider a generic morphism of tori q : T → Gn
m such that qtrop

is one-to-one on each cell C which is adjacent ot F , and such that qtrop(G) 6= qtrop(F )
is G is an (n− 1)-dimensional cell distinct from F . Then

q∗(
∑
±µC) =

∑
±dq,C ·q∗σq, C∗(|e1 ∧ · · · ∧ en|) =

(∑
±dq,C

)
· |e1 ∧ · · · ∧ en| = 0

by invariance of degree on each side of q(F ). Since for every generic projection q,
q∗(∂µF ) = 0, one has ∂µF = 0.

1.5. Integral of an (n, n)-form on an analytic space. — In the previous set-
ting, let α be an (n, n)-form on Ttrop. By definition, its pull-back f ∗α is an (n, n)-form
on X. We endow ftrop(X) with its canonical calibration µX,f and define∫

X

f ∗α =

∫
ftrop(X)

αµX,f .

It only depends on the (n, n)-form f ∗α, and not on the pair (f, α).

1. Beware: The proof of this fact given in the first arXiv version is incorrect!
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2. Partitions of unity

Lemma 2.1. — Let X be an affinoid space and let x, y be distinct points of X.
There exists a smooth function u on X such that u(x) = 1 and u(y) = 0.

Proof. — Recall that X is the set of multiplicative seminorms on an affinoid al-
gebra A . Be definition, if x 6= y, there exists f ∈ A such that |f(x)| 6= |f(y)|.
Assume for the moment that f be invertible; it then gives rise to a morphism
from X to Gm, and a smooth function u as requested is obtained as the composi-
tion ϕ ◦ ftrop = ϕ(− log|f |) where ϕ is a C∞ compactly supported function (“bump
function”) on R such that ϕ(− log|f(x)|) = 1 and ϕ(− log|f(y)|) = 0. In any case,
f defines a morphism from X to the affine line A1. If f(y) 6= 0, we take the same
function ϕ(− log|f |) on the locus f−1(Gm) where f is invertible, and extend it by 0.
Then u is smooth on f−1(Gm) by definition; it is also smooth on a neighborhood
of f−1(0) since it vanishes identically there. The case where f(y) = 0 is treated
similarly, since then f(x) 6= 0.

Given this lemma, the rest of the construction of partitions of unity, etc., is general
topology.

Corollary 2.2. — Let X be a good and Hausdorff analytic space. Then for any
x ∈ X and any neighborhoods U and V of x such that V ⊂ U , there is a smooth
function u on X such that u|V ≡ 1 and supp(u) ⊂ U .

Corollary 2.3 (Stone-Weierstrass). — Let X be a good and Hausdorff analytic
space and let U be an open set of X. A continuous function on X with compact
support contained in U can be uniformly approximated by smooth functions with
compact support contained in U .

Corollary 2.4. — If X is good and paracompact, then X admits smooth partitions
of unity.

3. Integrals

3.1. Definition. — Let X be a good and paracompact analytic space, let n =
dim(X). The integral of an (n, n)-form on X is defined in such a way that

∫
X
f ∗α =∫

ftrop(X)
〈α, µf〉 if X is compact, f : X → T is a moment map and α is an (n, n)-form

on Ttrop in the sense of Lagerberg. It satisfies additivity with respect to compact
analytic domains: if ω is an (n, n)-form onX and U, V are compact analytic domains
of X, then ∫

U∪V
ω +

∫
U∩V

ω =

∫
U

ω +

∫
V

ω.

There is one subtle points involving partitions of unity. Let ω be an (n, n)-form
on X; we want to define

∫
X
ω. By definition, there exists a family (Ui) of compact

analytic domains Ui whose interiors cover X and such that ω|Ui
= f ∗i (αi) for some
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moment maps fi : Ui → Ti and some (n, n)-forms αi on Ti,trop. Take a partition of
unity (λi) subordinate to the open covering (Ůi). Then, one will have∫

X

ω =

∫
X

(
∑

λi)ω =
∑
i

∫
X

λiω =
∑
i

∫
Ui

λif
∗
i (αi).

The difficulty is that λi is smooth, but is not necessarily of the form f ∗i (ui) for
some smooth function ui on Ti,trop, even after refinement of the moment map fi.
Fortunately, one can find a compact analytic domain Vi contained in the interior of Ui
and containing supp(ω|Ui

), a moment map gi : Vi → T ′i and a smooth function ui
on T ′i,trop such that λi = g∗i ui on Vi. One may also assume that ω|Vi = g∗i α

′
i for some

form on T ′i,trop.
Then, one can define∫

X

ω =
∑
i

∫
Vi

g∗i (viα
′
i) =

∑
i

∫
gi,trop(Vi)

〈viα′i, µgi〉.

3.2. Boundary integral. — One can also defined the integral on the boundary
of X of an (n − 1, n)-form. It is defined in such a way that for a compact analytic
spaceX of dimension n, a moment map f : X → T , and an (n−1, n)-form α on Ttrop,∫

∂X

f ∗(α) =
∑
F

∫
F

〈α, ∂µf〉.

(Here, F runs over the (n − 1)-dimensional cells of a cell decomposition of F , and
∂µf is the boundary calibration of the canonical calibration µf .)

The balancing condition implies that if supp(ω) is contained in Int(X), then∫
∂X
ω = 0.

3.3. Stokes’s formula. — Let ω be an (n−1, n)-form onX, compactly supported.
Then ∫

X

d′ ω =

∫
∂X

ω.

3.4. Green’s formula. — Let α be a (p, p)-form, let β be a (q, q)-form, assume
that p+ q = n− 1 and that α, β are “symmetric”. Then∫

X

α ∧ d′d′′ β − d′d′′ α ∧ β
∫
∂X

α ∧ d′′ β − d′′ α ∧ β.

The symmetry condition means that when one exchanges d′’s and d′′’s, the (p, p)-
form α gets changed to (−1)pα, and similarly for β. It is an analogue of the reality
condition for differential forms on complex spaces.
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4. Currents

4.1. Definition. — LetX be an analytic space. We define currents of bidimension
(p, q) on X to be continuous linear forms on the space of (p, q)-forms with proper
support on X. Two adjective needs an explanation. Proper support means that the
support of the form is compact and disjoint from the boundary of X. The topology
on the space of forms with proper support is naturally defined: a sequence (ωn) of
forms converges to a form ω if there exists a compact set K contained in Int(X) and
containing supp(ω) and supp(ωn) for every n, as well as a finite family of compact
analytic domains (Ui) whose interiors cover K, moments fi : Ui → Ti and forms αi,n,
αi on Ti,trop such that ωn|Ui

= f ∗i αi,n, ω|Ui
= f ∗i αi, and such that all coefficients of

ωn,i converge uniformly to ωi when n→∞, as well as their derivatives.

4.2. Examples. — Integrating (n, n)-forms with proper support on X furnishes
a current δX of bidimension (n, n).

More generally, let L/k be an ultrametric extension, let Y be a L-analytic space
of dimension p and let ϕ : Y → XL be an analytic map which is topologically proper.
The current ϕ∗δY associates to every (p, p)-form ω with proper support on X the
integral

∫
Y
ϕ∗(ω). The topological properness of the morphism ϕ ensures that the

support of ϕ∗(ω) is compact, so that the written integral converges.
In an analogous way, integration on the boundary of Y gives rise to a current δ∂Y

of bidimension (p− 1, p).
Assume that dim(X) = n and let ω be a form of degree (p, q). It gives rise to

a current [ω] of bidimension (n − p, n − q), defined by the formula α 7→
∫
X
α ∧ ω.

Moreover, one can prove that if [ω] = 0, then ω|Int(X) = 0. If X is boundaryless, or
if ∂X has empty interior in X, this gives an embedding of forms into currents.

4.3. Differential calculus. — Let T be a current of bidimension (p, q). We define
currents d′ T and d′′ T by duality, via the action of d′ and d′′ on forms:

d′ T : α 7→ (−1)p+q+1〈T, d′ α〉,
d′′ T : α 7→ (−1)p+q+1〈T, d′′ α〉.

These are currents of bidimension (p− 1, q) and (p, q− 1) respectively. As in differ-
ential geometry, some signs must be inserted so that differential calculus on forms
and currents match: for a form of bidegree (p, q), one has

d′[ω] = [d′ ω] and d′′[ω] = [d′′ ω].

Let α be a form of bidegree (n− 1, n) with proper support. Then

〈d′ δX , α〉 = 〈δX d′ α =

∫
X

d′ α =

∫
∂X

α = 0,

by the Stokes’s formula and the fact that α has proper support. More generally, let
ϕ : Y → XL be as above, let α be a form of bidegree (p−1, p) on X. By the Stokes’s
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formula on Y , one has

〈d′ ϕ∗(δY ), α〉 = 〈ϕ∗(δY ), d′ α〉 =

∫
Y

ϕ∗(d′ α) =

∫
Y

d′(ϕ∗α) =

∫
∂Y

ϕ∗α = 〈δϕ∗(Y ), α

so that
d′ ϕ∗(δY ) = ϕ∗(δ∂Y ).

5. The Poincaré–Lelong formula

5.1. On the support of (p, n)-forms. — An important (and slightly unusual)
feature of our (p, n)-forms is that their support is very small. In particular it avoids
every Zariski closed subset of empty interior. Let indeed ω be any (p, n)-form ω
on X, and let x be a point of supp(ω). By definition, there is a compact analytic
neighborhood U of x and invertible analytic functions on U which gives rise to a
moment f : U → T thanks to which ω is defined. Since the (p, n)-form ω is non-
zero around x, the tropicalization ftrop(U) must have an n-dimensional cell which
contains ftrop(x). This forces the transcendence degree of the residue field of x to be
n-dimensional (more precisely, a “graded” version of this). However, if x belonged to
a Zariski subset of dimension d < n, this transcendence degree would be at most d.

5.2. Statement of the Poincaré–Lelong formula. — Let f ∈ M (X)∗ be a
regular meromorphic function on X; this means that locally, f can be written as
the quotient of two holomorphic functions on X, none of which is (locally) a zero
divisor. Let div(f) =

∑
niYi be the divisor of f . It is a formal, locally finite, sum of

Zariski closed subsets Yi of X, with multiplicities ni given by the order of vanishing
(or minus the order of pole) of f along Yi. We then define a current of bidimension
(n− 1, n− 1) by

δdiv(f) =
∑

niδYi .

Let Uf be the largest open subset of X on which f is defined as well as its inverse.
It is a dense open subset, complementary to the union of the Yi (those for which
ni 6= 0). The function log|f | is defined and continuous on Uf . For any (n, n)-form
with proper support on X, the support of ω is contained in Uf , hence one can
consider the integral

∫
Uf

log|f |ω. This gives rise to a current [log|f |] on X. Note
that in complex geometry, the definition of this current is made more complicated
by the logarithmic poles.

The Poincaré Lelong formula is following equality of currents:

d′d′′[log|f |] = δdiv(f).

5.3. Another formula. — Let f : X → A1 be a morphism, let r > 0 be a positive
real number. Then the function x 7→ log(max(r, |f(x)|)) is continuous on X, hence
gives rise to a current of bidimension (n, n). Let ηr ∈ A1 be the point s(− log(r))
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of the skeleton of Gm. (Recall that when r = 1, it corresponds to the Gauss norm
on the ring k[T ] of polynomials.) Then one has

d′d′′[log max(r, |f(x)|)] = δf−1(ηr).

5.4. Indications about the proof. — One important part of the proof consists
in proving that “tropicalizations are constant” in families. Suppose that X is affinoid
and satisfies Serre’s S1 property (for example, that X is reduced). Let f : X → A1

be an analytic morphism whose fibers are purely (n− 1)-dimensional, let g : X → T
be a moment map. Let h = (g, f) : X → T ×A1; for any t ∈ A1, let Xt = f−1(t);
for any A ⊂ R, let XA = {x ∈ X ; |f(x)| ∈ A}.

Lemma 5.5. — There exists a positive real number r, a polyhedron P ⊂ Ttrop of
dimension (n− 1) and an ((n− 1)-dimensional) calibration of P such that:

(1) For every t ∈ D(0, r), the (n− 1)-skeleton of gtrop(Xt) is equal to P ;
(2) For any compact interval A ⊂ (0, r) with non-empty interior, the n-skeleton
of htrop(XA) equals P × A.

Here, by “(n− 1)-skeleton”, we mean the union of the (n− 1)-dimensional cells of
a polyhedron.

We can now describe the proof of the Poincaré-Lelong formula. Let ω be an
(n − 1, n − 1)-form on X with proper support. Since X0 is a Zariski closed subset
of X and d′′ ω is a (n− 1, n)-form, its support is supported on X(s,r) for some s > 0.
Let W be the subset {|f(x)| > s} of X, so that

〈d′d′′[log|f |], ω〉 =

∫
X

log|f | d′d′′ ω =

∫
W

log|f | d′d′′ ω.

By Green’s formula, this is equal to the sum of three terms∫
W

d′d′′(log|f |)ω +

∫
∂W

log|f | d′′ ω −
∫
∂W

d′′ log|f |ω.

View f as a moment map on Gm; then log|f | = −f ∗x, where x is a real affine
function on R = Gm,trop. Consequently,

d′d′′(x) = d′
(∂x
∂x

d′′ x
)

= d′(d′′ x) = 0.

Consequently, d′d′′(log|f |) = 0 on W , so that the first term in the previous sum
vanishes. As a side remark, this establishes a particular case of the Poincaré-Lelong
formula: if f is holomorphic and invertible, then d′d′′ log|f | = 0.

The second term vanishes too: since W is defined by the inequality |f | > s
on X, its boundary ∂W has a part where log|f | = s (more precisely, f = ηs) and
the remaining part is the intersection ∂X ∩W . By assumption, the support of ω
vanishes on the latter; by definition of s, the support of d′′ ω vanishes of the former.

Consequently, we have

〈d′d′′ log|f |, ω〉 = −
∫
∂W

d′′ log|f |ω.
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We compute the right hand side tropically, assuming that ω = g∗α. Since ω vanishes
on ∂X, it is equal to

−
∑

cells of the form
F=C×{s}

∫
F

d′′ log|f |〈α, µh〉 =

∫
P

ω =

∫
X0

ω.

The minus sign disappears because of (thanks to) our signs conventions: the positive
vector is entering C × [s,∞) in the cell C × {s}.

6. First Chern form of metrized line bundles

6.1. Metrics. — Let L be a line bundle on X. A continuous metric ‖·‖ on L
is the datum, for any local section s of L of a continuous function ‖s‖ such that
‖fs‖ = |f |‖s‖ if f is a local analytic function and s a local section and such that
‖s‖ does not vanish if s is a local frame. Such a metric is smooth if for any local
frame s, log‖s‖ is smooth.

Assuming that X is paracompact, partitions of unity easily imply the existence
of smooth metrics on every line bundle L.

We write L for the datum (L, ‖·‖) of a line bundle and of a metric on X.

6.2. Curvature form. — Let L be a metrized line bundle on X. There exists a
unique (1, 1)-form c1(L) on X which is locally equal to d′d′′ log‖s‖−1 for any local
frame s.

Moreover, let s be a regular meromorphic section of L. Then, log‖s‖−1 is a
continuous function on X, with values in R ∪ {−∞,+∞}; however, it is continous
on the open subset of X where s is regular and non-vanishing. Consequently, one
obtains a well-defined current [log‖s‖−1] of bidimension (n, n). (As always, n =
dim(X).) The Poincaré Lelong formula then implies the following equality:

(6.3) d′d′′[log‖s‖]−1 + δdiv(s) = c1(L).

This shows that in our setting, Cartier divisors have Green currents.
From this equality, one easily shows by induction that integrating the curvature

forms of metrized line bundles recovers intersection numbers.

Proposition 6.4. — Let X be a proper algebraic variety of dimension n. Let
L1, . . . , Ln be line bundles on X equipped with smooth metrics on Xan. Then∫

Xan

c1(L1) ∧ · · · ∧ c1(Ln) = deg(c1(L1) · · · c1(Ln) ∩ [X]).

6.5. Model metrics. — In applications, it is important to consider metrized line
bundles given by models. Let R be the valuation ring of k. A model of X over R is
a R-formal scheme X, flat and locally topologically finitely generated, together with
an isomorphism of its generic fiber Xη with R. Similarly, a model of a line bundle L
is a line bundle L on a model X together with an isomorphism of its generic fiber Lη
with L.



10 ANTOINE CHAMBERT-LOIR

By a theorem of Raynaud (comparison between rigid analytic geometry and formal
geometry), models exist as soon as X is a paracompact strict k-analytic space. In
particular, analytic spaces associated to projective algebraic varieties have models.
Moreover, those models can be chosen to be projective flat schemes (rather than
formal schemes).

A model (X,L) of (X,L) gives rise to a metric on L which is defined as follows.
For any formal open subscheme U of X, any section s ∈ Γ(U,L) has a generic fiber sη
which is a section of L on the analytic domain Uη of X; its norm is 6 1 at every
point; moreover, if s is a basis, then its norm is 1 at every point. Let us write L for
the resulting metrized line bundle.

Model metrics are fundamental in applications. For example, these are the only
metrics that the classical Arakelov geometry of Gillet–Soulé (see [6]) considers, al-
though Zhang proposed in [9] an extension to some metrics (which are uniform limits
of “semipositive” model metrics). However, model metrics are continuous, but are
not smooth, so that line bundles equipped with such metrics do not have a Chern
form. Still, they have a Chern current, which is given by Equation (6.3): even at
points where s does not vanish, the function log‖s‖−1 is only continuous in general,
so that its image under d′d′′ is a current. Since products of currents do not exist in
general, this forbids a priori to consider analogues of Proposition 6.4.

Nevertheless, one can mimick a theory of complex analysis, due Bedford–Taylor [1]
and Demailly [5], and define the product of those Chern currents by approximating
the model metric by smooth metrics. This requires an elementary study of positive
forms and positive currents, completely analogous to the similar concepts in complex
geometry. Then one defines this product for metrics which are uniform limits of
smooth semipositive metrics, and conclude by linearity. In particular, if n = dim(X),
the nth power c1(L)n of the Chern current c1(L) is defined and is a measure on X.
We prove that this measure is a discrete measure.

We even give a precise formula for it. For simplicity of exposition, I assume here
that the valuation of the field k is discrete, X is a projective normal variety, and X
is an integrally closed projective scheme over R. (The general case is treated in [4].)

Let (Xi) be the family of irreducible components of Xs; for every i, let mi be the
multiplicity of Xi in the special fiber Xs.

Recall that there is a specialization (anticontinuous) map Xan → Xs from the
analytic space of X to the special fiber Xs of X. By the assumption made here, for
every i, the generic point of the irreducible component Xi has exactly one preimage,
say ξi, by the specialization map.

Proposition 6.6. — One has the following equality of measures

c1(L)n =
∑
i

mi(c1(L)n|Xi)δξi .

In particular, the present formalism of differential forms and currents allows to
recover the measures defined in an ad hoc manner in [3]. This indicates a strong
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relation between the present theory and non-archimedean Arakelov geometry which
needs to be explorated further.
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