
TOPOLOGY OF TROPICAL MODULI SPACES

MELODY CHAN

These are notes from my talk at the 2017 Simons Symposium on Non-Archimedean and
Tropical Geometry, May 14–20, which was an exposition of parts of the preprint [CGP16]
with Søren Galatius and Sam Payne.

1. Generalized ∆-complexes

A generalized ∆-complex is a data structure that efficiently captures “simplices with
symmetries.” To warm up, let us review (or recast, depending on your perspective) the
notion of a ∆-complex, also known as a semisimplicial set. Let ∆inj be the category whose
objects are [p] = {0, . . . , p} for p ≥ 0 and whose morphisms are injective, order-preserving
maps.

Definition 1.1. A ∆-complex is a presheaf of sets on ∆inj, that is, a functor

X : ∆op
inj → Set.

You think of the elements of Xp = X([p]) as a list of p-simplices in X. For every i ∈ [p],
write δi : [p−1] ↪→ [p] for the injective map missing i in its image; then di = Xδi : Xp → Xp−1

is the data of the ith face map.

Example 1.2. For example, Hom∆inj(−, [2]) is an (oriented) triangle, with one 2-simplex,
three edges, and three vertices.

Note that there’s a natural geometric realization functor | · | : ∆-cx→ Top.
There is a drawback (for us) in this category, which is that it does not admit colimits,

e.g. encoding “half a triangle” without resorting to something like barycentric subdivisions.
This is rectified as follows. Let I be the category with objects [p] for p ≥ 0, as before,
and whose morphisms are all injective maps of sets (not just order-preserving ones). This
category is sometimes called FI instead.

Definition 1.3. A generalized ∆-complex is a presheaf of sets on I, that is, a functor

X : Iop → Set.

There’s again a natural geometric realization functor | · | : ∆-cx→ Top.

Example 1.4. Now HomI(−, [2]) is an (unoriented) triangle, with six 2-simplices, six
edges, and three vertices.

This category admits small colimits.
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Example 1.5. “Half a triangle”: this is obtained as the colimit of a diagram Y ⇒ Y
where one arrow is the identity and one arrow is a flip. It has three 2-simplices, 3 edges,
and 2 vertices.

Remark 1.6. A similar construction occurs in [HV98], in which the building blocks are
cubes [0, 1]n with symmetries. V. Berkovich kindly remarked that he uses a more general
construction in [Ber99] with simplices replaced by polysimplicial sets.

Remark 1.7. The category of generalized ∆-complexes is equivalent to the category of
smooth, connected generalized cone complexes as defined in [ACP15], [KKMSD73].

One use of these gadgets is that they are a natural encoding of boundary complexes of
normal crossings compactifications, as we now explain.

2. Boundary complexes as generalized ∆-complexes

We follow [KKMSD73, Thu07, ACP15]. Suppose first U ⊆ X for X an irreducible,
smooth variety, with simple normal crossings boundary D = X \ U . Then the boundary
complex ∆(X) = ∆(U ⊆ X) is the dual complex of D: it is has one vertex vi for every
irreducible component of Di, an edge vivj (for all i 6= j) for every irreducible component
of Di ∩Dj , and so on.

Now suppose U ⊆ X for an irreducible smooth variety (or separated Deligne Mumford
stack), such that D = X \ U is now normal crossings. This implies that there is an étale
atlas V → X, where V is a scheme, such that the pullback UV := U ×X V ⊆ V is a simple
normal crossings compactification. Then we define ∆(U ⊆ X) to be the coequalizer of the
diagram

∆(V ×X V ) ⇒ ∆(V ).

This is a generalized ∆-complex.

Example 2.1. Let G be the twice-marked, vertex weighted graph shown here:
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It corresponds to a 0-stratum of the Deligne-Mumford compactification M1,2. We dis-
cuss this example informally as follows. We see two 1-dimensional boundary strata meeting
there, corresponding to the two edges of G; except that the boundary strata are indistin-
guishable from each other. The boundary complex of an appropriate neighborhood looks
like a “half interval” (it is a coequalizer of a diagram X ⇒ X where X = HomI(−, [2]) is
the unordered 1-simplex.)

Example 2.2. This “example” is really a theorem of [ACP15], vastly generalizing and
making precise the above discussion. The link of the tropical moduli space of curves
([BMV11], see also [Cap13],[Mik06]) is canonically identified with the boundary complex
of the Deligne-Mumford-Knudsen compactification Mg,n ⊃ Mg,n. So it has the structure
of a generalized ∆-complex.
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The topology of boundary complexes is interesting. By the work of [Dan75], [Pay13],
[Ste06], [Thu07], it is known that the homotopy type of the boundary complex of a nc
compactification U ⊆ X is an invariant of U . Moreover, over C, by Deligne’s work [Del75]
(see [CGP16, §A] for details in this setup), for any normal crossings compactification of a
complex smooth, separated Deligne Mumford stack U ⊆ X of complex dimension d, there
is an identification

GrW2d H
2d−i(U,Q) ∼= H̃i−1(∆(U ⊆ X),Q)

of weight 2d (“top-weight”) rational cohomology of U with the reduced rational homology
of the boundary complex.

Hence the interest in studying the topology of the boundary complex ofMg,n, i.e. tropical
moduli spaces.

3. Results

Here are some results from [CGP16] on the topology of tropical moduli spaces ∆g,n.

• For g = 1, ∆1,n is homotopy equivalent ot a wedge of (n− 1)!/2 (n−1)-spheres; see
also [Get99].
• We have full calculations of H∗(∆g,n) using a computer, for a range of g, n, including

– g = 2 and n ≤ 8 (see also [Cha15] for further g = 2 results),
– g = 3, n ≤ 4,
– g = 4, n ≤ 3,
– g = 5, n = 0, 1;
– g = 6, n = 0.

In fact, the calculation for (g, n) = (6, 0) implies thatM6 has a unique top weight class, in
fact occurring in degree 15. In general, it is known from Euler characteristic considerations
[HZ86] that the spacesMg will have plenty of odd degree cohomology classes, but it seems
that very few explicit ones are known. We note that Tommasi has produced an example
of a class of weight 6 in H5(M4,Q) [Tom05].

Our data leads us to conjecture the following infinite family of top-weight cohomology
classes in Mg and Mg,1 for g odd. Let Wg be the genus g graph obtained by coning over
a g-cycle. Here is a picture of W5 (from [CGP16]):

Let W ′g be obtained from Wg by marking any vertex (for example, the central one) in Wg.
Then we conjecture that for g ≥ 3 odd, Wg and W ′g yield nonzero homology classes in

the tropical moduli spaces ∆g and ∆g,1 for all g odd. What we mean by “yield” will be
explained a little more in the next section.
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Remark 3.1. When g = 3 the conjecture is true by work of Looijenga and Bergstrom-
Tommasi [Loo93, BT07]. When g = 5 and g = 7 we have computationally verified the
conjecture; the case g = 5 can be done by hand, and the case g = 7 required extensive
computer calculation.

4. Techniques

We briefly highlight some of the combinatorics/combinatorial topology that goes into
our results.

First, we have a cellular homology theory for generalized ∆-complexes which is conve-
nient for computation. Given X : Iop → Set a generalized ∆-complex, define

Cp(X) = (ZXp ⊗ Zsign)Sp+1 .

There are natural boundary maps which make this into a complex. Similarly, define
Cp(X;Q) = Cp(X)⊗Q.

Proposition 4.1. There is a natural identifcation

H∗(· · ·Cp(X;Q)→ Cp−1(X;Q)→ · · · ) ∼= H∗(|X|;Q).

Example 4.2. This example highlights that the identification holds over Q-coefficients and
not necessarily with Z-coefficients. Consider again the half-interval. The relevant complex
is

0→ Z/2Z→ Z→ 0,

with associated integral homology Z/2Z and Z in degrees 1 and 0. On the other hand, the
geometric realization of the half-interval is contractible.

Because the definition of Cp involves taking Sp+1 coinvariants after tensoring with sign,

we see that for any dual graph G to a stable curve in Mg,n, if G admits an automorphism
that induces a non-alternating permutation of E(G), then G drops out in the cellular
chain complex associated to the generalized ∆-complex ∆g,n. We derive the following easy
criterion to produce cycles in H∗(∆g,n):

Remark 4.3. If every edge of a dual graph G is contained in a triangle, then G represents
a cycle in H∗(∆g,n).

Indeed, all 1-edge contractions of G are graphs with parallel edges; exchanging parallel
edges is a non-alternating automorphism. The criterion in the remark applies to the graphs
Wg and W ′g, for instance. (It’s much more subtle to verify that these cycles are nonzero in
homology, however.)

The second technique I briefly mention is that we have a combinatorial topology criterion,
loosely in the spirit of Forman’s Discrete Morse theory [For98], for finding sub-generalized-
∆-complexes with contractible geometric realization. In our applications, we find large
contractible subcomplexes of ∆g,n. In the case g = 1 this already yields the exact homotopy
type of ∆1,n. In general, these simplifications extend our computational range.
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[Thu07] Amaury Thuillier, Géométrie toröıdale et géométrie analytique non archimédienne. Applica-
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