TOPOLOGY OF TROPICAL MODULI SPACES

MELODY CHAN

These are notes from my talk at the 2017 Simons Symposium on Non-Archimedean and Tropical Geometry, May 14-20, which was an exposition of parts of the preprint [CGP16] with Søren Galatius and Sam Payne.

1. Generalized Δ-complexes

A generalized Δ-complex is a data structure that efficiently captures "simplices with symmetries." To warm up, let us review (or recast, depending on your perspective) the notion of a Δ-complex, also known as a semisimplicial set. Let $\Delta_{\text {inj }}$ be the category whose objects are $[p]=\{0, \ldots, p\}$ for $p \geq 0$ and whose morphisms are injective, order-preserving maps.

Definition 1.1. A Δ-complex is a presheaf of sets on Δ_{inj}, that is, a functor

$$
X: \Delta_{\mathrm{inj}}^{\mathrm{op}} \rightarrow \text { Set. }
$$

You think of the elements of $X_{p}=X([p])$ as a list of p-simplices in X. For every $i \in[p]$, write $\delta^{i}:[p-1] \hookrightarrow[p]$ for the injective map missing i in its image; then $d^{i}=X \delta^{i}: X_{p} \rightarrow X_{p-1}$ is the data of the $i^{\text {th }}$ face map.
Example 1.2. For example, $\operatorname{Hom}_{\Delta_{\mathrm{inj}}}(-,[2])$ is an (oriented) triangle, with one 2-simplex, three edges, and three vertices.
Note that there's a natural geometric realization functor $|\cdot|: \Delta$ - $\mathbf{c x} \rightarrow$ Top.
There is a drawback (for us) in this category, which is that it does not admit colimits, e.g. encoding "half a triangle" without resorting to something like barycentric subdivisions. This is rectified as follows. Let I be the category with objects $[p]$ for $p \geq 0$, as before, and whose morphisms are all injective maps of sets (not just order-preserving ones). This category is sometimes called FI instead.
Definition 1.3. A generalized Δ-complex is a presheaf of sets on I, that is, a functor

$$
X: I^{\mathrm{op}} \rightarrow \text { Set. }
$$

There's again a natural geometric realization functor $|\cdot|: \Delta$ - $\mathbf{c x} \rightarrow$ Top.
Example 1.4. Now $\operatorname{Hom}_{I}(-,[2])$ is an (unoriented) triangle, with six 2 -simplices, six edges, and three vertices.

This category admits small colimits.

[^0]Example 1.5. "Half a triangle": this is obtained as the colimit of a diagram $Y \rightrightarrows Y$ where one arrow is the identity and one arrow is a flip. It has three 2 -simplices, 3 edges, and 2 vertices.

Remark 1.6. A similar construction occurs in [HV98], in which the building blocks are cubes $[0,1]^{n}$ with symmetries. V. Berkovich kindly remarked that he uses a more general construction in [Ber99] with simplices replaced by polysimplicial sets.

Remark 1.7. The category of generalized Δ-complexes is equivalent to the category of smooth, connected generalized cone complexes as defined in [ACP15], [KKMSD73].

One use of these gadgets is that they are a natural encoding of boundary complexes of normal crossings compactifications, as we now explain.

2. Boundary complexes as generalized Δ-Complexes

We follow [KKMSD73, Thu07, ACP15]. Suppose first $U \subseteq X$ for X an irreducible, smooth variety, with simple normal crossings boundary $D=X \backslash U$. Then the boundary complex $\Delta(X)=\Delta(U \subseteq X)$ is the dual complex of D : it is has one vertex v_{i} for every irreducible component of D_{i}, an edge $v_{i} v_{j}$ (for all $i \neq j$) for every irreducible component of $D_{i} \cap D_{j}$, and so on.

Now suppose $U \subseteq X$ for an irreducible smooth variety (or separated Deligne Mumford stack), such that $D=X \backslash U$ is now normal crossings. This implies that there is an étale atlas $V \rightarrow X$, where V is a scheme, such that the pullback $U_{V}:=U \times_{X} V \subseteq V$ is a simple normal crossings compactification. Then we define $\Delta(U \subseteq X)$ to be the coequalizer of the diagram

$$
\Delta\left(V \times_{X} V\right) \rightrightarrows \Delta(V)
$$

This is a generalized Δ-complex.
Example 2.1. Let G be the twice-marked, vertex weighted graph shown here:

It corresponds to a 0 -stratum of the Deligne-Mumford compactification $\overline{\mathcal{M}_{1,2}}$. We discuss this example informally as follows. We see two 1 -dimensional boundary strata meeting there, corresponding to the two edges of G; except that the boundary strata are indistinguishable from each other. The boundary complex of an appropriate neighborhood looks like a "half interval" (it is a coequalizer of a diagram $X \rightrightarrows X$ where $X=\operatorname{Hom}_{I}(-,[2])$ is the unordered 1 -simplex.)

Example 2.2. This "example" is really a theorem of [ACP15], vastly generalizing and making precise the above discussion. The link of the tropical moduli space of curves ([BMV11], see also [Cap13],[Mik06]) is canonically identified with the boundary complex of the Deligne-Mumford-Knudsen compactification $\overline{\mathcal{M}_{g, n}} \supset \mathcal{M}_{g, n}$. So it has the structure of a generalized Δ-complex.

The topology of boundary complexes is interesting. By the work of [Dan75], [Pay13], [Ste06], [Thu07], it is known that the homotopy type of the boundary complex of a nc compactification $U \subseteq X$ is an invariant of U. Moreover, over \mathbb{C}, by Deligne's work [Del75] (see [CGP16, \S A] for details in this setup), for any normal crossings compactification of a complex smooth, separated Deligne Mumford stack $U \subseteq X$ of complex dimension d, there is an identification

$$
\operatorname{Gr}_{2 d}^{W} H^{2 d-i}(U, \mathbb{Q}) \cong \widetilde{H}_{i-1}(\Delta(U \subseteq X), \mathbb{Q})
$$

of weight $2 d$ ("top-weight") rational cohomology of U with the reduced rational homology of the boundary complex.

Hence the interest in studying the topology of the boundary complex of $\mathcal{M}_{g, n}$, i.e. tropical moduli spaces.

3. Results

Here are some results from [CGP16] on the topology of tropical moduli spaces $\Delta_{g, n}$.

- For $g=1, \Delta_{1, n}$ is homotopy equivalent ot a wedge of $(n-1)$!/2 $(n-1)$-spheres; see also [Get99].
- We have full calculations of $H_{*}\left(\Delta_{g, n}\right)$ using a computer, for a range of g, n, including
$-g=2$ and $n \leq 8$ (see also [Cha15] for further $g=2$ results),
$-g=3, n \leq 4$,
$-g=4, n \leq 3$,
$-g=5, n=0,1$;
$-g=6, n=0$.
In fact, the calculation for $(g, n)=(6,0)$ implies that \mathcal{M}_{6} has a unique top weight class, in fact occurring in degree 15. In general, it is known from Euler characteristic considerations [HZ86] that the spaces \mathcal{M}_{g} will have plenty of odd degree cohomology classes, but it seems that very few explicit ones are known. We note that Tommasi has produced an example of a class of weight 6 in $H^{5}\left(\mathcal{M}_{4}, \mathbb{Q}\right)$ [Tom05].

Our data leads us to conjecture the following infinite family of top-weight cohomology classes in \mathcal{M}_{g} and $\mathcal{M}_{g, 1}$ for g odd. Let W_{g} be the genus g graph obtained by coning over a g-cycle. Here is a picture of W_{5} (from [CGP16]):

Let W_{g}^{\prime} be obtained from W_{g} by marking any vertex (for example, the central one) in W_{g}.
Then we conjecture that for $g \geq 3$ odd, W_{g} and W_{g}^{\prime} yield nonzero homology classes in the tropical moduli spaces Δ_{g} and $\Delta_{g, 1}$ for all g odd. What we mean by "yield" will be explained a little more in the next section.

Remark 3.1. When $g=3$ the conjecture is true by work of Looijenga and BergstromTommasi [Loo93, BT07]. When $g=5$ and $g=7$ we have computationally verified the conjecture; the case $g=5$ can be done by hand, and the case $g=7$ required extensive computer calculation.

4. Techniques

We briefly highlight some of the combinatorics/combinatorial topology that goes into our results.

First, we have a cellular homology theory for generalized Δ-complexes which is convenient for computation. Given $X: I^{\mathrm{op}} \rightarrow$ Set a generalized Δ-complex, define

$$
C_{p}(X)=\left(\mathbb{Z} X_{p} \otimes \mathbb{Z}^{\text {sign }}\right)_{S_{p+1}}
$$

There are natural boundary maps which make this into a complex. Similarly, define $C_{p}(X ; \mathbb{Q})=C_{p}(X) \otimes \mathbb{Q}$.

Proposition 4.1. There is a natural identifcation

$$
H_{*}\left(\cdots C_{p}(X ; \mathbb{Q}) \rightarrow C_{p-1}(X ; \mathbb{Q}) \rightarrow \cdots\right) \cong H_{*}(|X| ; \mathbb{Q}) .
$$

Example 4.2. This example highlights that the identification holds over \mathbb{Q}-coefficients and not necessarily with \mathbb{Z}-coefficients. Consider again the half-interval. The relevant complex is

$$
0 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0
$$

with associated integral homology $\mathbb{Z} / 2 \mathbb{Z}$ and \mathbb{Z} in degrees 1 and 0 . On the other hand, the geometric realization of the half-interval is contractible.

Because the definition of C_{p} involves taking S_{p+1} coinvariants after tensoring with sign, we see that for any dual graph G to a stable curve in $\bar{M}_{g, n}$, if G admits an automorphism that induces a non-alternating permutation of $E(G)$, then G drops out in the cellular chain complex associated to the generalized Δ-complex $\Delta_{g, n}$. We derive the following easy criterion to produce cycles in $H_{*}\left(\Delta_{g, n}\right)$:
Remark 4.3. If every edge of a dual graph G is contained in a triangle, then G represents a cycle in $H_{*}\left(\Delta_{g, n}\right)$.

Indeed, all 1-edge contractions of G are graphs with parallel edges; exchanging parallel edges is a non-alternating automorphism. The criterion in the remark applies to the graphs W_{g} and W_{g}^{\prime}, for instance. (It's much more subtle to verify that these cycles are nonzero in homology, however.)

The second technique I briefly mention is that we have a combinatorial topology criterion, loosely in the spirit of Forman's Discrete Morse theory [For98], for finding sub-generalized-Δ-complexes with contractible geometric realization. In our applications, we find large contractible subcomplexes of $\Delta_{g, n}$. In the case $g=1$ this already yields the exact homotopy type of $\Delta_{1, n}$. In general, these simplifications extend our computational range.

References

[ACP15] D. Abramovich, L. Caporaso, and S. Payne, The tropicalization of the moduli space of curves, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 4, 765-809.
[Ber99] Vladimir G. Berkovich, Smooth p-adic analytic spaces are locally contractible, Invent. Math. 137 (1999), no. 1, 1-84. MR 1702143
[BMV11] Silvia Brannetti, Margarida Melo, and Filippo Viviani, On the tropical Torelli map, Adv. Math. 226 (2011), no. 3, 2546-2586. MR 2739784
[BT07] Jonas Bergström and Orsola Tommasi, The rational cohomology of $\overline{\mathcal{M}}_{4}$, Math. Ann. 338 (2007), no. 1, 207-239. MR 2295510
[Cap13] L. Caporaso, Algebraic and tropical curves: comparing their moduli spaces, Handbook of moduli. Vol. I, Adv. Lect. Math. (ALM), vol. 24, Int. Press, Somerville, MA, 2013, pp. 119-160.
[CGP16] Melody Chan, Søren Galatius, and Sam Payne, Tropicalization of the moduli space of curves II: Topology and applications, arXiv:1604.03176, 2016.
[Cha15] Melody Chan, Topology of the tropical moduli spaces $M_{2, n}$, arXiv:1507.03878, 2015.
[Dan75] V. I. Danilov, Polyhedra of schemes and algebraic varieties, Mat. Sb. (N.S.) 139 (1975), no. 1, 146-158, 160. MR 0441970
[Del75] P. Deligne, Poids dans la cohomologie des variétés algébriques, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, Canad. Math. Congress, Montreal, Que., 1975, pp. 79-85.
[For98] Robin Forman, Morse theory for cell complexes, Adv. Math. 134 (1998), no. 1, 90-145. MR 1612391
[Get99] E. Getzler, Resolving mixed Hodge modules on configuration spaces, Duke Math. J. 96 (1999), no. 1, 175-203. MR 1663927
[HV98] Allen Hatcher and Karen Vogtmann, Cerf theory for graphs, J. London Math. Soc. (2) 58 (1998), no. 3, 633-655. MR 1678155
[HZ86] J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986), no. 3, 457-485. MR 848681
[KKMSD73] G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 0335518
[Loo93] E. Looijenga, Cohomology of \mathcal{M}_{3} and \mathcal{M}_{3}^{1}, Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991), Contemp. Math., vol. 150, Amer. Math. Soc., Providence, RI, 1993, pp. 205-228.
[Mik06] G. Mikhalkin, Tropical geometry and its applications, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 827-852.
[Pay13] S. Payne, Boundary complexes and weight filtrations, Michigan Math. J. 62 (2013), 293-322.
[Ste06] D. Stepanov, A remark on the dual complex of a resolution of singularities, Uspekhi Mat. Nauk 61 (2006), no. 1(367), 185-186.
[Thu07] Amaury Thuillier, Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d'homotopie de certains schémas formels, Manuscripta Math. 123 (2007), no. 4, 381-451. MR 2320738
[Tom05] Orsola Tommasi, Rational cohomology of the moduli space of genus 4 curves, Compos. Math. 141 (2005), no. 2, 359-384. MR 2134272

Department of Mathematics, Brown University, Box 1917, Providence, RI 02912
E-mail address: melody_chan@brown.edu

[^0]: Date: July 14, 2017.

