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1. Geometric Integration over valued fields

I was asked to talk about work with Kazhdan on integration over valued fields.1 The
integration theory of [HK06], [HK08] differs from the logical motivic integration of Denef,
Loeser, Cluckers, discussed in the preceding talk by Loeser, mainly in that we work with
an arbitrary value group Γ rather than a discrete value group Z, and take into account
definable sets in Γn. Notably, this includes the case Γ = R. Such definable sets are
piecewise linear and closely connected to tropical geometry.

We consider the first order theory of valued fields VF. The basic structure includes
addition and multiplication on a field F , and a valuation map val into an ordered Abelian
group Γ.2 In particular the residue ring O = {x : val(x) ≥ 0} and the maximal ideal
M = {x : val(x) > 0} can be defined. The residue map from the valuation ring O into
the residue field k can then be interpreted, or can be taken itself as basic. Geometric
motivic integration essentially involves both of these maps.

Integration was first studied from a logical viewpoint by Denef, in order to shed light
on the existing theory of integration for Qp. Here we concentrate on fields such as the
field of Puiseux series KPuiseux =

⋃
nC((t1/n)), with value group Q, where the classical

theory - based on local compactness - does not apply at all. The residue field is assumed
to have characteristic zero. (the results apply in large enough characteristic, for a problem
of given ’degree’.)

By a theorem of Ax and Kochen ([AK66]), the truth or falsity of a first order sentence
in the Henselization of F is determined by the truth value of certain other sentences of
the residue field and value group of F . The integration theory we describe depends on an
extension of this result from sentences, or formulas in 0 variables, that can only be true
or false, to formulas in n variables, that define a subset of n-space over the value field.
We show that a definable set can be transformed into one arising in a simple manner
from definable sets over the residue field and value group; it follows that appropriate
integration theories on the residue field and value group yield an integration theory on
the valued field.

Quantifier elimination. The basic framework is ACVFF , the first order theory of al-
gebraically closed valued fields extending the valued field F . Elimination of quantifiers
in this theory is due to A. Robinson [Rob56]. There is a parallel analytic version of this
theory, where similar results have been proved by Lipshitz and Z. Robinson [Li93], [LR98].

1This text is based on notes taken by Sam Payne during the talk and very kindly provided to me.
2One may allow analytic functions if desired; the results reported here remain valid. But it is also

valuable to know that local geometry can be carried out purely semi-algebraically, analogously to Nash
geometry over the reals.
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2 INTEGRATION OVER VALUED FIELDS

A definable subset D ⊂ Kn is a finite Boolean combination of sets cut out by conditions
of the form

val(f) ≤ val(g) or h = 0

for polynomials f , g, and h with coefficients in F . These are F -semialgebraic sets.
Residue conditions are also definable in this theory. For instance, the condition res(x) =

res(y) is equivalent to val(x) = val(y) and val(x) < val(x− y).
Such sets should really be called quantifier-free definable, as the general notion of defin-

ability allows quantifiers (∃x)(∀y) · · · . The term definable sets is justified in this setting
by Robinson’s quantifier elimination theorem, stating that this class of sets is closed under
coordinate projections (or equivalently, existential and universal quantifiers.)

Consequences of quantifier elimination. On the value group, the only basic relations
are the addition map, and the linear ordering. One corollary of quantifier-elimination in
this language is that any subset of Γn definable using the valued field structure - for
instance, the image under the tropicalization map of an algebraic set - is in fact cut
out by Q-linear inequalities. This statement, or similar ones in more concrete form, is
encountered at the foundations of tropical geometry (as we heard in Diane Maclagan’s
talk.)

Similarly for the residue field: in the ACVF setting, a definable subset of kn is by
definition one whose pullback to On is definable, possibly using quantifiers over the valued
field. But Robinson’s theorem implies that the definable subsets of kn are precisely the
constructible sets in the sense of algebraic geometry (finite Boolean combinations of Zariski
closed sets.)

This also holds jointly: definable subsets of kn×Γn are generated by rectangles, products
of a definable subset of each. In this sense the residue field and the value group are
orthogonal parts the first order theory of the valued field.

Another corollary is that all algebraic closed valued extensions K|F have the same first
order properties. In particular, there is a Nullstellensatz, which says that a semialgebraic
set with points over some valued extension of F has points over every algebraically closed
valued extension.

An interesting model of ACV FC was introduced by A. Robinson.

Example 1.1. Fix an ultrafilter u on N (viewed as an element of the Stone-Cech com-
pactification of N). Consider sequences an ∈ C satisfying the growth condition

|an| ≤ nk

for some k. After factoring out null sequences, this gives a valued field, with valuation
given by

val(a) = lim
n→u

− log |an|
log n

The valuation ring ORobinson consists of elements represented by bounded sequences.

Strictly speaking KRobinson depends on the choice of u; however the first order theory
does not depend on the choice of u, as follows from Robinson’s theorem.
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See [KT] for an application: Fix a left-invariant metric on a real Lie group such as
SLn(R). Looking at this metric space from a distance approaching infinity, it resembles
more and more closely the building SLn(KRobinson)/SLn(ORobinson), in a very precise sense.
In particular the limit is ”essentially” independent of choices, as conjectured by Gromov.

Another application is related to Grigory Mikhalkin’s talk in this conference. Consider
for instance a rational polytope P ⊂ Rn. It can be viewed as a definable set X ⊂ Rn

and we take Γ = R. By Robinson’s theorem, P is the image under tropicalization of a
semi-algebraic (or an algebraic) subset of KPuiseux if and only if it is the image of such
a subset of KRobinson. Now realizability over KRobinson is equivalent to being the limit of
the amoebas of a sequence of complex varieties. Therefore, a consequence of elimination
of quantifiers for ACVF is that a tropical variety is realizable as a limit of amoebas if and
only if it is the tropicalization of a variety over Puiseux series.

Proofs of quantifier elimination. Model theory often offers conceptual but ineffective
proofs of quantifier elimination, based on compactness arguments. Let me illustrate this
by showing that pushforward by a finite morphism preserves the class of quantifier-free
definable sets. We can reduce to the case of a finite Galois cover f : X → Y , where
X = SpecA and Y = SpecB, for F -algebras A and B; let G be the Galois group.
Define V(X) to be the space of all valuations on A that extend the given valuation on
F . It is a compact but totally disconnected space, equipped with a topology in which
{x : νx(f) ≥ νx(g)} is both open and closed; the clopen sets correspond precisely to their
Boolean combinations, i.e. the quantifier-free definable sets. Thus quantifier elimination
for finite maps amounts to showing that the restriction map V(X)→ V(Y ) is closed and
open. But indeed the induced map V(X)/G→ V(Y ) is continuous and bijective, hence a
homeomorphism.

The general case - pushforward under an arbitrary morphism - is still based on com-
pactness but a model-theoretic form is required, namely the compactness theorem of first
order logic.

Regardless of how it is proved quantifier elimination is always effective ipso facto, in
the sense of Gödel’s general recursive functions: there is an algorithm to find a quantifier-
free definable set equivalent to a given formula, guaranteed to terminate, but with no
estimate provided on the runtime. In various cases of valued fields, Weispfennig has given
primitive-recursive procedures, [We84]. In discussions with Bernd Sturmfels and Diane
Maclagan in this meeting, we noted existence of algorithms with multiply exponential
running times.

The Grothendieck (semi)rings of definable sets. Geometric motivic integration
works with a slight generalization of the residue field k, namely Temkin’s graded residue
field (cf. [Tem04], rediscovered as RES in [HK06].) It is just the union of all k∗-torsors of
the form {x : val(x) = α}/1 +M, with the class of definable sets induced from ACVFF ;
where α = val(f)/m for some f ∈ F,m ∈ N. Over an an algebraically closed base field
F , one can identify RES with (a redundant presentation of) the residue field k. We will
not expand on this point in the present talk.
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We study the semiring of definable sets up to definable bijections

K+(V F ) = {[X] : X ⊂ Kn definable over F}

where [X] = [Y ] if and only if there is a definable bijection f : X
Y−→. This is the

Grothendieck semi-ring of the theory; disjoint union, direct product being the sum and
product operations.

For many applications it is helpful to pass from this semiring to the associated ring,
i.e. formally adjoing additive inverses. However, additive inverses lead to considerable
loss of information. In some cases the associated ring may even be zero; for instance the
bijection n 7→ n + 1 in the theory of the N yields [{0}] = [N] − [N>0] = 0. The semiring
setting is in addition smoothly compatible with operations such as passing to rational
points over a Henselian subfield, restricting to bounded setes, etc. We thus develop the
foundations in the semiring setting.

Volumes. The semiring K+(V F ) has the properties of a universal Euler characteristic.
For motivic integration, it is also natural to consider K+ vol(V F ), the semiring of defin-
able sets up to definable measure preserving bijections. Here, a bijection f is measure
preserving if

val(det(∂fi/∂xi)) = 0

away from a proper closed subvariety. (Any definable map is almost everywhere differ-
entiable; this can be shown abstractly, or else as a corollary of quantifier-elimination; in
ACVFF , any definable map is piecewise algebraic.) Any possible integration theory on
definable sets will factor through K+ vol(V F ). We will in fact be able to classify them
completely.

The results for K+, K+vol are entirely parallel; moreover it turns out that Kvol
+ can

easily be described in terms of K+.

Canonical lifts; embeddings of K+Γ, K+ RES into K+(V F ). The semirings of both
Γ and RES, reflecting the tropical and algebro-geometric worlds, each admit natural
embeddings into K+(V F ). Let us begin with the tropical analog, the scissors-congruence
semigroup of definable subsets of Γn, with respect to the group GLn(Z) n Γ(F )n. In
other words we form We form a Grothendieck semiring K+(Γ[n]) as above; an element is
an equivalence class of definable subsets of Γn, where X, Y are equivalent if there exists
a definable bijection f : X → Y that is piecewise in GLn(Z) n Γ(F )n. In other words
X =

⋃m
i=1Xi with Xi definable, and there exist matrices Mi ∈ GLn(Z) and an element

γi ∈ Γ(F )n, such that for x ∈ Xi, f(x) = Mix+γi. The volume preserving transformations
are those that, in addition, preserve the function (x1, . . . , xn) 7→

∑m
i=1 xi, Γn → Γ.

It is easy to see that if X, Y are equivalent, via f , then f lifts to a definable bijection
between their pullbacks to Kn. Thus there exists a natural homomorphism

K+(Γ)→ K+(V F )

taking a definable subset Z ⊂ Γn to its “tropical pullback”

Trop−1(Z) = {x ∈ (K∗)n : val(x) ∈ Z}.



INTEGRATION OVER VALUED FIELDS 5

Similarly, in each dimension n, there is a natural pullback map

K+(RES)[n]→ K+(V F ).

For a Zariski open subset W ⊂ kn, the map simply takes [W ] to the class of the inverse
image in the valuation ring, res−1(W ) ⊂ On . But here we must also consider étale maps
h : W → kn; in an appropriate sense [W ] is mapped to [W ×h On]. In particular if
W ∼= V (k) for a smooth scheme V over O, then [W ] 7→ [V (O)].

We write K+(·)[∗] for the direct sum of the K+(·)[n] in each dimension. Here is the
basic statement.

Theorem 1.2. The natural map

K+(Γ)[∗]⊗K+(RES)[∗]→ K+(V F )

is surjective. The same is true for the semirings Kvol
+ .

The statement is effective: given a definable X ⊂ Kn, one has to find a partition
X =

⋃r
i=1Xi, and a definable transformation gi : Xi → Yi where Yi is a ’rectangle’,

product of a canonical lift from RESl with a canonical lift from Γk, k+ l = n. In fact the
transformations will be generalized transvections, compositions of functions that translate
one variable by an additive quantity depending on the rest of the variables (which remain
fixed); thus when it comes to volumes, they are automatically measures-preserving.

Proof of surjectivity. The proof of the theorem is easy, and we sketch it. We first
put together Γ and RES geometrically, into a single structure RV ; it is defined to be
K/(1 +M), with the induced structure. The multiplicative structure on RV fits into an
exact sequence 1→ k∗ → RV → Γ→ 0. (It may not seem very different from RES, but
RES is the pullback of Γ(F alg) whereas RV is a definable set, whose set of points, and
their image in Γ, depends functorially on K ≥ F alg.) The map of the theorem factors as

K+(Γ)[∗]⊗K+(RES)[∗]→ K+(RV )[∗]→ K+(V F )

and one has to show surjectivity of both arrows. For the left arrow, this is essentially the
orthogonality of RES and Γ referred to above; a definable subset of RES×Γ is a finite
union of rectangles, and while the exact sequence of RES is not split, still a definable
subset can be moved to a finite union of rectangles.

For the second one, one needs to consider a slight generalization of the theorem, applying
to subsets of Kn × RV (admitting projections to Kn with finite fibers.) This allows a
straightforward reduction to relative dimension 1 and then, by a devissage / compactness
argument, to dimension one over an extension field of F (which however may be relabeled
as F now). We are thus reduced to the case of X ⊂ K. Here quantifier-elimination
presents X very as a Boolean combination of a finite set of balls and a finite set of points,
and the argument becomes hands-on and elementary. For instance if X is a closed ball,
defined it suffices to move it so that it contains 0, and then it is a pullback of a subset
of Γ. The delicate point is to make sure of Galois invariance, essential for the devissage
argument. X may be for instance a closed ball minus a finite set of maximal open sub-
balls, without centers in F . In this case it can be moved to the pullback of a Zariski open
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subset of the affine line over k (whose complement is a finite set without k(F )-rational
points.) The general case is a combination of these.

This ends the sketch of the proof. Most classical applications of motivic integration
follow from this surjectivity. For instance, we can recover the results of Denef and Loeser
[DL01] on expressing uniformly in p the values of p-adic integrals. Here is a version for
volumes of definable sets that follows immediately from the volume version of Theorem
1.2.

Corollary 1.3. Given a polynomial f with coefficients in Q, there are r ∈ N, affine
schemes Wi ⊂ Ami

Z , and rational polytopes Yi ⊂ Rni, i = 1, . . . , r, such that for large
enough primes p,

vol{x ∈ Qn
p : val xi ≥ 0, val(f(x)−p) = 1} =

r∑
i=1

p−mi |Wi(k)|·vol{x ∈ Qn
p : val(x) ∈ Yi(Z)}

The left hand side is a kind of p-adic Milnor fiber, given by way of example; it could
be replaced by an arbitrary bounded definable set. On the right we see the finite field
contributionWi(k); each point has weight p−mi corresponding to the volume it contributes;
multiplied by the Γ-contribution, the volume of the pullback of Yi(Z) := Yi

⋂
Zn (since

here Γ = Z.) The latter, combinatorial expression can be written explicitly as
∑

N aNp
−N ,

where aN = {x ∈ Yi
⋂

Zni :
∑ni

j=1 xj = N}|, and reduced to a finite expression by various

methods (including ’motivically’; see below.)

The kernel. Understanding the kernels the maps of Theorem 1.2 is harder. The final
answer is however simple. The tensor product should be understood to be over the
semiring of finite subsets of Γ, since for instance the canonical lift of the point 0 ∈ Γ is
the same as the lift of Gm(k) ⊂ RES; namely O \M. One additional relation generates
the kernel:

[Γ>0]1 ⊗ 1 + 1⊗ [0]0 = 1⊗ [1]1
On the left side, one sees the positive ray of Γ, whose canonical lift is M\ {0}; adding a
point in dimension 0, one has a class whose lift isM. On the right hand side, one has the
lift of the element 1 of the residue field; this is the ball 1 +M. Translation by 1 shows
that these classes coincide in K+(V F ). It turns out that this relation generates the entire
kernel, in both the case of K+ and K+ vol.

The Grothendieck semiring of the value group. What can be said about the two
component semirings individually? Let us pass to the associated rings. In order not to
lose too much information, on the Γ side, we restrict to definable sets that are bounded
below.

The Grothendieck ring of RES is a version of the Grothendieck ring of varieties over a
field F , deeply related to motivic algebraic geometry. Sometimes motivic integration can
yield information regarding it, see the results on complements below.

The Grothendieck ring of Γ is related to tropical geometry and is much more susceptible,
in principle, to a complete analysis. Over an algebraically closed base (a restriction that
can probably be removed), and with rational coefficients, this is carried out in [HK08];
the method is integration by parts, with attention to arithmetic issues. (We must give
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formulas for the content of polytopes that works both for volumes over R and for number
of points over Z, as well as over non-archimedean situations.)

As a corollary we can determine the Grothendieck rings with rational coefficients; here
is the result for Kvol. The associated dimension-free ring Kvol,df is basically the ring of
quotients of two volumes of the same dimension (see [HK08], Theorem 3.24 for details.).

Theorem 1.4. Let F be algebraically closed, A = Γ(F ). The homomorphism of Theorem
1.2 induces an isomorphism

Kvol,df (V F )′ ∼= Kdf
Q (VarF )[tA, qA]′

On the right we have polynomial rings, with exponents from A, and two kinds of vari-
ables: qα denotes the normalized volume of a ball of radius α; tα is a logarithmic quantity,
the normalized volume of the hyperbolic region {(x, y) : 0 ≤ val(x) = − val(y) ≤ α}. The

ring Kdf
Q (VarF ) is the Grothendieck ring of varieties over F with rational coefficients, and

with [Gm] inverted, but where we retain only classes a
[Gm]n

with dim(a) ≤ n. We also

invert Ln − 1 where L = 1 + [pt]
[Gm]

is the ratio of class the affine line to a point; this

localization and the corresponding one on the left are denoted by adding ′ following the
notation for the ring. This reduces integration theories on valued-field definable sets over
F to quantities formed algebraically from varieties over the residue field.

Application to varieties with isomorphic complements. The second component
the Grothendieck semiring of varieties, admits no such simple description. When pass-
ing to the ring, an additional difficulty arises, in that equality of classes [X] = [Y ] is
not defined via any direct relation between two classes X, Y , but rather between their
complements in some possibly higher dimensional variety Z into which both embed. The
geometric meaning of this for X, Y is not transparent. Assuming X, Y are curves over
Q, by counting points of X, Y, Z over finite fields in and subtracting, we see that X, Y
have the same number points over large finite fields; when one of them has genus ≥ 2, it
follows by Faltings that they are birational. It was this observation that led Kontsevich
and Gromov to ask if X, Y must always be birational. This (inter alia) was proved by
Larsen-Luntz [LL04] using a strong form of resolution of singularities. It turns out that
motivic integration can also, and very naturally, return information about this question.

We have an constructible isomorphism f : Z(C)\X → Z(C)\Y . It extends to any bigger
algebraically closed field; in particular taking K = KPuiseux, we have f : Z(K) \ X →
Z(K) \ Y . View Z as a scheme over OK (descending to k); and let ρ : Z(OK)→ Z(k) be
the residue map. Then f restricts to a constructible bijection ρ−1V (X) \X → ρ−1V (Y ) \ Y .
Thus - as lower dimensional sets can be ignored - ρ−1V (X), ρ−1V (Y ) have the same motivic
volume. Computing this volume we find that [X×An−d] = [Y ×An−d] in the Grothendieck
group of n-dimensional varieties. We obtain:

Theorem 1.5. Let X, Y be two smooth, proper d-dimensional subvarieties of of a smooth
n-dimensional variety Z, and assume Z \X,Z \ Y are isomorphic. Then X, Y are stably
birational, i.e. X×An−d, Y ×An−d are birationally equivalent. If X, Y contain no rational
curves, then X, Y are birationally equivalent.
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