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Abstract

Under some assumptions, a tropical variety can be approximated by a one-
parametric family of complex varieties, which provides an important link between
complex and tropical geometries. The purpose of this talk is to discuss tropical ho-
mology together with its relations to Hodge decompositions (respectively, homology)
in complex (respectively, real) world.

1 Combinatorial patchworking

One of the motivations for the consideration of tropical homology comes from the combi-
natorial patchworking. This construction is one of the sources of tropical geometry and is
a particular case of the Viro method of construction of real algebraic varieties with pre-
scribed topology. We start with a brief description of the construction of combinatorial
patchworking restricting ourselves to the case of hypersurfaces in real projective spaces.

Let n and d be positive integer numbers (they are, respectively, the dimension of the
ambient projective space and the degree of the hypersurface under construction), and let
Tn(d) be the simplex in Rn with vertices

(0, 0, . . . , 0), (0, 0, . . . , 0, d), (0, . . . , 0, d, 0), . . . , (d, 0, . . . , 0).

We shorten the notation of Tn(d) to T , when n and d are unambiguous and call Tn(d)
the standard n-simplex of size d. Take a triangulation τ of T with vertices having integer
coordinates. Suppose that a distribution of signs at the vertices of τ is given. The sign
(plus or minus) at the vertex with coordinates (i1, . . . , in) is denoted by αi1,...,in .

Denote by T∗ the union of all symmetric copies of T under reflections and compositions
of reflections with respect to coordinate hyperplanes. Extend the triangulation τ to a
symmetric triangulation τ∗ of T∗, and the distribution of signs αi1,...,in to a distribution
at the vertices of the extended triangulation by the following rule: passing from a vertex
to its mirror image with respect to a coordinate hyperplane we preserve the sign if the
distance from the vertex to the plane is even, and change the sign if the distance is odd.

If an n-simplex of the triangulation of T∗ has vertices of different signs, select a piece
of hyperplane being the convex hull of the middle points of the edges having endpoints
of opposite signs. Denote by H the union of the selected pieces. It is a piecewise-linear
hypersurface contained in T∗. It is not a simplicial subcomplex of T∗, but it can be
deformed by an isotopy preserving τ∗ to a subcomplexK of the first barycentric subdivision
τ ′∗ of τ∗. Each n-simplex of τ ′∗ has a unique vertex belonging to τ∗. Denote by τ+

∗ the

1



union of all the n-simplices of τ ′∗ containing positive vertices of τ∗ and by τ−∗ the union
of all the rest n-simplices. The subcomplex K is the intersection of τ+

∗ and τ−∗ . A point
of H contained in a simplex σ of τ∗ belongs to a unique segment connecting the face of
σ with positive vertices and the face with negative ones. This segment meets K also in a
unique point and the deformation of H to K can be done along those segments.

Figure 1: Example of combinatorial patchworking

Identify by the symmetry with respect to the origin the faces of T∗. The quotient space
T̃ is homeomorphic to the real projective space RPn. Denote by H̃ the image of H in T̃ .

A triangulation τ of T is said to be convex if there exists a convex piecewise-linear func-
tion ν : T −→ R whose domains of linearity coincide with the n-simplices of τ . Sometimes,
such triangulations are also called coherent (see [GKZ94]) or regular (see [Zie94]).

Theorem 1.1 (Viro theorem) (see [V83, V84]) If τ is convex, there exists a non-
singular hypersurface X of degree d in RPn and a homeomorphism RPn → T̃ mapping
the set of real points RX of X onto H̃.

The statement of the above theorem can be naturally generalized replacing the simplex
T by an arbitrary polytope ∆ with integer vertices in Rn and replacing the projective
space by the toric variety associated with ∆.
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A hypersurface X with the properties described in Theorem 1.1 can be presented by
polynomial ∑

(i1,...,in)∈V

αi1,...int
−ν(i1,...in)xd−i1−...in0 xi11 . . . x

in
n ,

where V is the set of vertices of τ , and t is a positive and sufficiently big real number. For
function ν we can take any convex piecewise-linear function certifying that the triangula-
tion τ is convex.

The piecewise-linear hypersurface H̃ which appears in the statement of Theorem 1.1 is
directly related to the tropical hypersurface H defined in Rn by the tropical polynomial

max
(i1,...,in)∈V

{−ν(i1, . . . in) + i1a1 + . . .+ inan}.

The triangulation τ is the dual subdivision of H. For each quadrant Q ⊂ Rn, the intersec-
tion of H̃ with the interior of Q can be identified with an appropriate subset of H (details
can be found, for example, in [BIMS15]).

If the triangulation τ is primitive (that is, all n-simplices of τ are of volume 1/n!; this
is the minimal possible volume for an n-simplex with vertices having integer coordinates),
then the tropical hypersurface H is said to be non-singular.

A hypersurface X defined in RPn by polynomial∑
(i1,...,in)∈V

αi1,...int
−ν(i1,...in)xm−i1−...in0 xi11 . . . x

in
n ,

where V is the set of vertices of τ , and t is a positive and sufficiently big real number,
is called a real subtropical hypersurface (or T -hypersurface) in RPn. If τ is primitive, we
speak about primitive real subtropical hypersurface in RPn.

2 Topology of real algebraic hypersurfaces in RP n

In 1876 A. Harnack published a paper [Har76] where he found an exact upper bound for
the number of connected components of the set of real points of a curve of a given degree
in RP 2. Harnack proved that the number of components of the set of real points of a real
plane projective curve of degree d is at most (d−1)(d−2)

2 + 1. On the other hand, for each
natural number d he constructed a non-singular real projective curve of degree d with
(d−1)(d−2)

2 + 1 components of the set of real points, which shows that his estimate cannot
be improved without introducing new ingredients. From Harnack’s results it is easy to
deduce a topological classification of non-singular curves of degree d in RP 2 (that is, a
classification of the real point sets of these curves up to homeomorphism): the set of real
points of such a curve is a collection of circles embedded in RP 2 and the number ` of
these circles can be any integer between 0 (respectively, 1) and (d−1)(d−2)

2 + 1 if d is even
(respectively, odd).

A much more difficult question (included by D. Hilbert in the 16-th problem of his
list) concerns isotopy classification of non-singular curves of degree d in RP 2 (that is, a
classification of the real point sets of these curves up to isotopy in RP 2). Since any self-
homeomorphism of RP 2 is isotopic to identity, the isotopy classification of non-singular
curves of degree d in RP 2 is a classification of topological pairs (RP 2,RX) up to homeo-
morphism, where RX is the set of real points of a non-singular curve of degree d in RP 2.
Such a classification is known only for d ≤ 7.
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Harnack [Har76] asked whether the inequality he proved in the case of curves has an
analog for surfaces in the three-dimensional projective space. This question is known as
Harnack problem. Understood literally, i.e., as a question about the number of connected
components of the set of real points, it has appeared to be a difficult problem. The
maximal number of components is found only for degree ≤ 4 (for degree 5 this maximal
number is known to be either 23, or 24, or 25). However, the Harnack inequality can be
generalized in other way.

Theorem 2.1 (Smith-Thom inequality) If X is an algebraic variety, then∑
i≥0

dimZ/2ZHi(RX; Z/2Z) ≤
∑
i≥0

dimZ/2ZHi(CX; Z/2Z),

where RX and CX are the sets of real and complex points of X, respectively.

A real algebraic variety for which the left and right hand sides of the Smith-Thom
inequality are equal is called an M-variety (or a maximal variety).

Put bi(Y ) = dimZ/2ZHi(Y ;Z/2Z) for any topological space Y and any non-negative
integer i. If X is a non-singular hypersurface of degree d in RPn, the Smith-Thom inequal-
ity provides an upper bound for every Betti number bi(RX) of RX. However, if n ≥ 3,
these upper bounds are, in general, far from being sharp. The question about sharp upper
bounds for the individual Betti numbers of real point sets of hypersurfaces of given degree
in RPn is one of the main problems in topology of real algebraic varieties.

It is interesting to consider the problem formulated above near the tropical limit. Here
are two facts concerning the Betti numbers of primitive real subtropical hypersurfaces in
RPn.

Theorem 2.2 (see [IV07]) Let n ≥ 2 be an integer, and let (Xd)d≥1 be a sequence, where
Xd is a primitive real subtropical hypersurface of degree d in RPn. Then, for any integer
0 ≤ i ≤ n− 1, one has

bi(RXd) ≤ hi,n−1−i(CXd) +O(dn−1),

where hi,n−1−i are Hodge numbers.

Remark 2.3 Let n ≥ 2 and d ≥ 1 be integers. For any integer i = 0, . . ., n− 1, put

Hi(n, d) =

n+1∑
j=0

(−1)j
(
n+ 1

j

)(
d(i+ 1)− (d− 1)j − 1

n

)
.

If X is a non-singular hypersurface of degree d in CPn, then for any integer 0 ≤ i ≤ n−1,
one has Hi(n, d) = hi,n−1−i(CX)−1, if n−1 = 2i, and Hi(n, d) = hi,n−1−i(CX), otherwise
(see [DKh86]). In particular, for any integer i = 0, . . ., n − 1, there exists a non-zero
constant ci such that

hi,n−1−i(CX) = cid
n +O(dn−1).

Theorem 2.4 (see [B10]) Let n ≥ 2 and d ≥ 1 be integers, and let X be a primitive real
subtropical hypersurface of degree d in RPn. Then, the Euler characteristic χ(RX) of RX
is equal to the signature σ(CX) of CX. (If n is even, we set the signature of CX to be 0.)
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In the statement of Theorem 2.4, the projective space can be replaced by any non-
singular projective toric variety (see [B10]). Very recently, this statement was reproved by
Ch. Arnal [A17] using the tropical homology. The above statement can be generalized to
the case of primitive real subtropical complete intersections (see [BB07, A17]).

The tropical homology seems to be an appropriate tool to study Betti numbers of
real algebraic varieties near the tropical limit, and in particular, to attack the following
conjecture.

Conjecture 2.5 Let n ≥ 2 and d ≥ 1 be integers, and let X be a primitive real subtropical
hypersurface of degree d in RPn. Then, for any integer i = 0, . . ., n− 1, one has

bi(RX) ≤

{
hi,n−1−i(CX), if i = (n− 1)/2,

hi,n−1−i(CX) + 1, otherwise.

In the case n = 2, the statement of this conjecture is equivalent to Harnack’s inequality.
In the case n = 3, the statement of the conjecture follows from the Smith-Thom inequality
and Theorem 2.4. In the case of arbitrary non-singular algebraic surfaces in RP 3, the
inequalities b0(RX) ≤ h0,2(CX) + 1 and b1(RX) ≤ h1,1(CX) are wrong in general. The
first inequality is wrong already for surfaces of degree 4, since the real point set of such a
surface can have up to 10 connected components. The second inequality is the so-called
Viro conjecture. It is directly related to the Ragsdale conjecture [Ra06]; counter-examples
can be found in [I93, I97]. It is interesting to notice that the counter-examples in [I97] are
constructed via the combinatorial patchworking using a non-primitive triangulation.

3 Tropical homology

Tropical varieties are certain finite-dimensional polyhedral complexes enhanced with the
tropical structure. This is a geometric structure that can be thought of as a version of an
affine structure for polyhedral complexes. For example, the tropical projective space

TPn = (Tn+1 \ {(−∞, . . . ,−∞)})/ ∼,

where T = R∪ {−∞} is the tropical semi-field and (x0, . . . , xn) ∼ (x0 + λ, . . . , xn + λ) for
any λ ∈ R, is a smooth projective tropical variety homeomorphic to an n-simplex. The
restriction of the tropical structure to the relative interior of every k-dimensional face σ of
TPn turns σ into Rk (with the tautological affine structure of Rk = Zk⊗R). A projective
tropical m-variety X is a certain m-dimensional polyhedral complex in TPn. For example,
the tropical hypersurface H considered in Section 1 is, in fact, a hypersurface in TPn (in
Section 1 we spoke about the intersection of this hypersurface with the n-dimensional
stratum Rn of TPn).

A tropical structure on a tropical variety X can be used to define a natural coefficient
system ZFp (see the details below). This system is not locally constant everywhere, but it is
constant on the relative interiors of faces of X . Furthermore, it is a constructible cosheaf of
abelian groups. The tropical (p, q)-homology group Hp,q(X ) is the q-dimensional homology
group of X with coefficients in Fp = ZFp ⊗Q.

An important example of projective tropical varieties is provided by the tropical limit
of an algebraic family Zw ⊂ CPn, w ∈ C, t = |w| → +∞, of complex projective m-
dimensional varieties. It may be shown (cf. e.g. the fundamental theorem of tropical
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geometry in [MS15]) that the sets Logt(Zw) ⊂ TPn, where the map Logt : CPn → TPn
is defined by Logt(z0 : . . . : zn) 7→ (logt |z0| : . . . : logt |zn|), converge to an m-dimensional
balanced weighted polyhedral complex X in TPn. If X is a smooth tropical variety (for
the definition, see, for example, [BIMS15]), then for a generic w the complex variety Zw
is smooth. Notice that the above example generalizes the tropical limits of combinatorial
patchworking families (if a piecewise-linear convex function certifying the convexity of the
triangulation is chosen in an appropriate way).

The following result establishes, under certain assumptions, the equality between
dimHp,q(X ) and the Hodge numbers hp,q(Zw).

Theorem 3.1 (see [IKMZ16]) Let Z ⊂ CPn × D∗ be a complex analytic one-parameter
family of projective varieties over the punctured disc D∗. Assume that Z admits a tropical
limit X ⊂ TPn, which is a smooth projective Q-tropical variety (the prefix Q- means that
all the inequalities defining faces of X have rational coefficients; for precise definitions
see [IKMZ16]). Then, the dual spaces Hom(Hq(X ;Fp),Q) to the tropical homology groups
Hq(X ;Fp) are naturally isomorphic to the associated graded pieces W2p/W2p−1 of the
weight filtration in the limiting mixed Hodge structure on Hp+q(Z∞,Q), where Z∞ is the
canonical fiber of the family Z.

Under the assumptions of Theorem 3.1, the limiting mixed Hodge structure is of Hodge-
Tate type. That is, only even associated graded pieces GrW2pH

k(Z∞;Q) = W2p/W2p−1 are
non-trivial and they have Hodge (p, p)-type. Hence, the Hodge numbers hp,q(Zw) agree
with the dimensions of the spaces GrW2pH

p+q(Z∞;Q).

Corollary 3.2 The Hodge numbers hp,q(Zw) of a general fiber equal the dimensions of
the tropical homology groups Hq(X ;Fp).

The proof of Theorem 3.1 consists of providing a quasi-isomorphism between the tropi-
cal cellular complexes and the dual row complexes of the E1-term of the Steenbrink-Illusie
spectral sequence (see, for example, [PS08]) for the limiting mixed Hodge structure. Var-
ious results related to Theorem 3.1 appeared already in the literature (see, for example,
[KS16] which contains a relevant statement in the case of hypersurfaces).

We now give detailed definitions of the coefficient system ZFp and the tropical homology
groups. Let Σ =

⋃
σ ⊂ Rn = Zn ⊗ R be a rational polyhedral fan. For each cone σ ⊂ Σ,

we denote by < σ >Z the integral lattice in the vector subspace linearly spanned by σ.

Definition 3.3 For any integer p ≥ 0, the group ZFp(Σ) is the subgroup of ∧pZn generated
by the elements v1 ∧ · · · ∧ vp, where all v1, . . . , vp ∈< σ >Z for some cone σ ∈ Σ. It is
important that all p vectors vi come from the same cone. The dual group ZFp(Σ) =
Hom(ZFp(Σ),Z) is the quotient of ∧p(Zn)∗ by (ZFp(Σ))⊥.

It is not hard to see that the groups ZFp(Σ) form a graded algebra ZF•(Σ) over Z
under the wedge product in ∧k(ZN )∗.

Let X ⊂ TPn be a smooth projective Q-tropical variety. The polyhedral decomposition
of X into faces gives it a natural cell structure. To simplify the presentation, we assume
that each face of X is entirely contained in at least one affine chart of TPn. We say
that a point x ∈ TPn is of sedentarity I ⊂ {0, 1, . . . , n} if I is the set of indices of those
coordinates of x that are equal to −∞. The sedentarity of a point x ∈ TPn is sometimes
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denoted by I(x). For any subset I ( {0, 1, . . . , n}, denote by T0
I ⊂ TPn the subset formed

by the points of sedentarity I. The sedentarity of a face of X is the sedentarity of the
points of the relative interior of this face.

Let x ∈ X be a point in the relative interior of a face ∆x of sedentarity I in X . We
define Σ(x), the fan at x, to be the cone in T◦I ∼= Rn−|I| (where |I| is the number of
elements in I) consisting of vectors u ∈ T◦I such that x + εu ∈ X ∩ T◦I for a sufficiently
small ε > 0 (depending on u).

Definition 3.4 For any integer p ≥ 0, we define the coefficient groups Fp(x) and Fp(x)
to be ZFp(Σ(x))⊗Q and ZFp(Σ(x))⊗Q, respectively.

Note that the groups Fp(x) and Fp(y) are canonically identified by translation if x and
y belong to the relative interior of the same face ∆ of X. Thus, we can use the notation
Fp(∆).

Let x and y be two points of X such that the face ∆y whose relative interior contains
y is a face of the face ∆x whose relative interior contains x. Then, there are natural
homomorphisms

ι : Fp(x)→ Fp(y). (1)

To define the maps (1) we take an affine chart U (i) 3 y. If I(y) = I(x), then any face
adjacent to x is contained in some face adjacent to y, and the inclusion induces the required
map. If I(y) 6= I(x) (note that we must have I(y) ⊃ I(x)), then the required map is given
by the projection along the directions in U (i) that are indexed by I(y) \ I(x).

For a pair of adjacent faces ∆ and ∆′ of X , where ∆ is a face of ∆′, the map (1) and
its dual can be rewritten as

ι : Fp(∆′)→ Fp(∆), ι∗ : Fp(∆)→ Fp(∆′). (2)

This allows us to define a complex C•(X ;Fp), where

Cq(X ;Fp) = ⊕Fp(∆).

Here, the direct sum is taken over all q-dimensional faces of X. We can write a chain in
Cq(X ;Fp) as

∑
β∆∆. The boundary map

∂ : Cq(X ;Fp)→ Cq−1(X ;Fp)

is the usual cellular boundary combined with the maps ι in (2) for any pair of faces ∆ and
∆′ of X such that ∆ is a face of codimension 1 of ∆′. The groups

Hq(X ;Fp) = Hq(C•(X ;Fp), ∂)

are called the (cellular) tropical (p, q)-homology groups.

We can consider the dual cochain complex C•(X ;Fp) of linear functionals on faces ∆
of X with values in Fp(∆) and define the differential δ as the usual coboundary combined
with the maps ι∗ in (2). This defines the (cellular) tropical (p, q)-cohomology groups

Hq(X ;Fp) = Hq(C•(X ;Fp), δ).

Some important properties of tropical homology and cohomology, as well as connec-
tions with cohomology of superforms on polyhedral complexes and differential forms on
Berkovich spaces (see [CLD12]), can be found in [AB14] and [JSS15].
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Université Pierre et Marie Curie
4 place Jussieu, 75252 Paris Cedex 5, France
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